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The real-time evaluation of the effectiveness of 
vaccination campaigns at the population level 

is essential for public health policy makers and sci-
entists working toward successful mitigation of the 
COVID-19 pandemic. Vaccination coverage against 
SARS-CoV-2 has increased globally and become 
even more crucial because of the emergence of vari-
ants of concern that have increased transmissibil-
ity and lethality (1). We assessed population-level 
effects of the COVID-19 vaccination campaign in 
12 countries worldwide before November 14, 2021. 
Our modeling framework enabled us to disentan-
gle the effects of vaccination and a time-varying 
transmission rate. We also fit the model to multiple 
waves of death in these countries before the Omi-
cron variant was detected.

The Study
We developed a transmission modeling approach to 
analyze diverse spatiotemporal datasets from differ-
ent countries and attempted to evaluate the COVID-19 
vaccination campaign in real time by adapting our re-
lated earlier work (2). The COVID-19 pandemic con-
tinues to be complex because of various short-term en-
forcements of public health and social measures (e.g., 
lockdowns), emergence of new virus variants, shifts in 
age profiles of infected persons, availability of multiple 
vaccines with different effectiveness, reinfection, and 
other factors. However, many of these factors are re-
flected in the key measure, the time-varying transmis-
sion rate, β(t), which characterizes the changes in con-
tact pattern in the population over time. Vaccination 
is intended to reduce the susceptibility of the popula-
tion to the disease. Disentangling real-time variation in 
β(t) and the effectiveness of vaccination is crucial for 
assessing the vaccination program and might only be 
achievable through mathematical modeling.

Country-specific mortality data generally pro-
vide a more reliable characterization of the key epi-
demic dynamics than data on reported confirmed 
COVID-19 cases, which rely on widely different test-
ing and reporting systems that can vary temporally 
and spatially and be subject to various ascertainment 
rates. For our analysis, we obtained data from the 
World Health Organization, including daily con-
firmed COVID-19 death numbers (3,4) and the pro-
portion of the population fully vaccinated (2 doses) 
for 12 countries: the United Kingdom, Italy, the 
United States, Spain, Russia, France, India, Brazil, Co-
lombia, Mexico, Germany, and Canada (5). We used 
a partially observed Markov process (6) model and 
maximum-likelihood–based iterative filtering tech-
nique to fit and make predictions on the mortality 
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To model estimated deaths averted by COVID-19 vac-
cines, we used state-of-the-art mathematical model-
ing, likelihood-based inference, and reported CO-
VID-19 death and vaccination data. We estimated 
that >1.5 million deaths were averted in 12 countries. 
Our model can help assess effectiveness of the vac-
cination program, which is crucial for curbing the  
COVID-19 pandemic. 
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data by susceptible-exposed-infectious-recovered–
type models (Appendix, https://wwwnc.cdc.gov/
EID/article/28/9/21-2226-App1.pdf). 

We estimated the transmission rate, β(t), which 
reflects the simultaneous effect of all possible inter-
ventions, excluding vaccination, over the study pe-
riod. The model assumed a 14-day delay between 
the 2 vaccine doses and the time for the vaccine to 
take effect. We set the unified vaccine efficacy (VE; 
represented by η) at 85% and examined vaccine effec-
tiveness from 75% to 95% (Appendix). The COVID-19 
surveillance data we used were originally collected 
from public domains; thus, neither ethical approval 
nor patient consent was applicable. 

To evaluate effectiveness of vaccination and the 
lives saved, we compared the final model fit and sim-
ulations of the baseline scenario of vaccination to the 
counterfactual scenario of without vaccination by set-
ting VE to η = 0. Vaccination coverage was defined as 
the proportion of the country’s population that was 
fully vaccinated (i.e., either receiving 2 vaccine doses 

or receiving 1 vaccine dose after infection). We plot-
ted vaccination coverage as a function of time for the 
12 countries (Appendix Figure 1).

We compared and fitted the model to data on 
weekly confirmed waves of COVID-19 deaths in the 
12 countries during 2020–2021 and reconstructed 
transmission rates (Appendix Figure 1, panels A–I). 
We then used the model to reconstruct COVID-19 
deaths that would have occurred in these countries in 
the hypothetical without-vaccination counterfactual 
scenario (i.e., in complete absence of vaccination). 
Thus, we could compare the observed mortality rate 
against that of the model’s without-vaccination sce-
nario (Appendix Figure 1).

We found that vaccination campaigns saved the 
lives of up to 1,822,670 (0.069% of the total popula-
tion) persons in these 12 countries (Appendix Table 
2). For instance, the United States reported 416,842 
confirmed deaths during January 1–November 14, 
2021 (Appendix Figure 1, panel E). According to the 
model’s without-vaccination predictions, had the 
United States not initiated a vaccination program, 
1,102,958 deaths would have occurred there during 
the same time frame. Thus, vaccination saved 686,115 
lives (0.2% of the population) in the United States 
during the study period. The model estimated that 
vaccination averted 182,464 (0.27% of the population) 
deaths in the United Kingdom; 109,367 (0.23% of the 
population) deaths in Spain; 78,969 (0.2% of the pop-
ulation) deaths in Canada; and 96,008 (0.16% of the 
population) deaths in Italy. Vaccination coverage in 
each of these countries was >60% (Appendix Table 2).

Vaccination seems to have prevented severe Del-
ta waves in Italy, France, Germany, and Canada dur-
ing the second half of 2021 (Appendix Figure 1). For 
Russia, India, Brazil, Colombia, and Mexico, where 
vaccine coverage was relatively low or delayed, vac-
cination had only a mild effect on the epidemic dy-
namics and mortality rates (Appendix Table 2).

 Widely available vaccines might encourage 
risky behavioral practices among the population, 
which might be less prevalent in the absence of a 
countrywide vaccination campaign. Our idealized 
reconstruction method ignores this possibility and 
might have led to overestimation of both the trans-
mission rate in the without-vaccination scenario and 
the number of deaths averted (7). To examine this 
possibility further, we plotted the changes in deaths 
averted by vaccination as a percentage of the popu-
lation as calculated for 5 levels of transmission rate 
reduction (Figure). The reductions are intended to 
compensate for risky behaviors persons might en-
gage in when vaccinated. We considered these as 

Figure. Deaths averted because of vaccination according to 
a model used to evaluate effectiveness of global COVID-19 
vaccination campaign. The graph represents the difference in total 
deaths under the counterfactual scenario (without vaccination) and 
under the baseline scenario (with vaccination) as a percentage 
of the population. We compared 5 counterfactual scenarios 
under without-vaccination in which we set the transmission rates 
after April 16, 2021, to reduce by 0, 10%, 15%, 20%, and 50% 
compared with the baseline scenario. The y-axis 0.3% means 3 
persons per 1,000 population were saved from COVID-19–related 
death because of vaccination. The absolute value of negative 
deaths averted results from substantial reduction in transmission 
rate, rather than vaccination. β(t), time-varying transmission rate; 
BRA, Brazil; CAN, Canada; COL, Colombia; DEU, Germany; ESP, 
Spain; FRA, France; GBR, Great Britain (United Kingdom); IND, 
India; ITA, Italy; MEX, Mexico; RUS, Russia; USA, United States.
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5 counterfactual without-vaccination scenarios in 
which transmission rates after April 16, 2021, were 
reduced to 0 (scenario 1), 10% (scenario 2), 15% (sce-
nario 3), 20% (scenario 4), and 50% (scenario 5) of 
the level of transmissibility in the baseline scenar-
io. These counterfactual scenarios were intended 
to show that any overestimation of deaths averted 
based on the idealized counterfactual scenario 1 (0 
reduction) was generally minimal unless the trans-
mission rate was reduced by >25% (Appendix).

We conducted additional sensitivity analyses on 
the model performance and counterfactual scenarios 
to explore parameter ranges and several different 
model structures, constructing more complex models 
of imperfect vaccination (Appendix Tables 1–3, Fig-
ures 2, 3). Our estimates of deaths averted show rea-
sonable robustness to changes in the model structure 
and parameters.

Conclusions
We used a disease transmission model and likeli-
hood-based inference approach to evaluate effective-
ness of COVID-19 vaccination in 12 countries. Our 
analysis indicated that vaccination averted >1.5 mil-
lion deaths in the studied countries until November 
14, 2021, or at least precluded the need to reintroduce 
more stringent public health and social measures to 
control transmission. 

Of our several assumptions for this evaluation, we 
first assumed the infection fatality ratio was roughly 
constant over time (1,8,9). We evaluated a second 
model in which we allowed the infection fatality ratio 
to decrease because of vaccination (Appendix). In ad-
dition, we used a unified constant VE although VE 
differs across countries, demographic characteristics 
(10), and type of vaccine and its coverage (11). None-
theless, our modeling framework enabled us to assess 
the effect of vaccination on a time-varying transmis-
sion rate. Our model can help assess effectiveness of 
the COVID-19 vaccination program, which is crucial 
for curbing the COVID-19 pandemic. 
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