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Appendix Table. Posterior median (2.5%, 97.5%) values for human Mpox half-lives on surfaces during the wet and dry phases.* 
Medium Surface Temperature, ◦C Relatively humidity, % Wet-phase half-lives, d (IQR) Dry-phase half-lives, d (IQR) 
Blood Polypropylene   86.36 (11.96–2,812.03) 38.75 (6.75–1,234.38) 
Feces Polypropylene   0.76 (0.35–2.51) 0.06 (0.01–0.14) 
Saliva Polypropylene   2.05 (0.66–9.84) 0.16 (0.05–0.25) 
Semen Polypropylene   7.85 (4.19–47.67) 4.57 (3.35–7.09) 
Serum Polypropylene   1.74 (1.21–5.81) 1.32 (0.98–1.78) 
Urine Polypropylene   0.86 (0.32–4.10) 0.11 (0.03–0.21) 
DMEM Cotton 4 40 0.83 (0.55–1.99) 0.20 (0.02–0.62) 
DMEM Polypropylene 4 40 1.88 (1.06–6.95) 0.42 (0.11–0.82) 
DMEM Stainless steel 4 40 4.74 (2.10–18.18) 0.32 (0.11–0.51) 
DMEM Cotton 21 40 0.16 (0.10–0.24) 0.05 (0.00–0.17) 
DMEM Polypropylene 21 40 3.26 (1.13–14.25) 0.15 (0.11–0.22) 
DMEM Stainless steel 21 40 1.74 (0.66–9.13) 0.29 (0.19–0.40) 
DMEM Cotton 28 65 0.17 (0.10–0.29) 0.06 (0.01–0.20) 
DMEM Polypropylene 28 65 1.14 (0.47–5.71) 0.16 (0.05–0.31) 
DMEM Stainless steel 28 65 0.79 (0.36–2.18) 0.05 (0.01–0.15) 
*DMEM, Dulbecco modified Eagle medium 
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Appendix Figure. Regression fits for decontamination control conditions (untreated sample) out to 20 

days. All data were used for the fit shown in the main text, but for direct comparison with the 120-minute 

treatment experiments only the first 120 minutes are shown there.  

Additional Methods 

The following pages contain additional methods for this article. 



2 Bayesian inference methods

2.1 Conceptual overview
As in our prior virus stability work [1]–[4], we infer individual titers and virus half-lives in a Bayesian 
framework. Such models can be used either to infer individual titers or to fit an exponential decay rate 
(equivalently, a half-life) to a set of samples taken at different timepoints. In the latter case, we jointly 
infer the decay rate and the individual sample titers, for maximally-principled error propagation. By also 
estimating individual titer values (without any assumptions about their relationship or the decay process), 
we are able to check the goodness-of-fit of the exponential decay model.

Our prior work quantified viable virus via an endpoint titration assay; here, we instead use a plaque assay. 
The underlying inferential models are the same except for the final step of the observation process, where 
a Poisson model for the observed number of plaques replaces the “single-hit” model [5] for the positive or 
negative status of an individual well.

When inferring virus decay rates, we typically describe models in terms of exponential decay rates of 
viable virus 𝜆, which has units of log𝑏 viable virus per unit time, for some base 𝑏. It is typically easier to 
interpret the mathematically equivalent half-life values ℎ, given by:

ℎ =
log𝑏 (2)

𝜆
(1)

Here, we measure titers in log base 10, so:

ℎ =
log10 (2)

𝜆
(2)

We typically place priors on log half-lives log(ℎ) rather than on decay rates 𝜆, and then calculate the 
implied 𝜆.

2.2 Notation
In the text that follows, we use the following mathematical notation.

2.2.1 Logarithms and exponentials

log(𝑥) denotes the logarithm base 𝑒 of 𝑥 (sometimes called ln(𝑥)). We explicitly refer to the logarithm 
base 10 of 𝑥 as log10 (𝑥). exp(𝑥) denotes 𝑒𝑥 .

2.2.2 Probability distributions

The symbol ∼ denotes that a random variable is distributed according to a given probability distribution. 
So for example

𝑋 ∼ Normal(0, 1)

indicates that the random variable 𝑋 is normally distributed with mean 0 and standard deviation 1.

We parameterize normal distributions as:

Normal(mean, standard deviation)
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We parameterize positive-constrained and negative-constrained normal distributions (i.e. truncated Nor-
mal distributions with lower limit 0 and upper limit ∞, or lower limit −∞ and upper limit 0, respectively)
as:

PosNormal(mode, standard deviation)
NegNormal(mode, standard deviation)

More generally, we parameterize truncated normal distributions with arbitrary lower and upper limits of
truncation as:

TruncNormal(mode, standard deviation, lower limit,upper limit)

We parameterize Poisson distributions as:

Poisson(mean)

2.3 Poisson observation model
Given a sample with underlying virus concentration 𝑣𝑖 in units of log10PFU/volume diluted by a log10
dilution factor 𝑑𝑖 and then plated onto susceptible cells in a volume 𝑝𝑖 , we model the observed plaque
count 𝑦𝑖 as:

𝑦𝑖 ∼ Poisson(𝑝𝑖10𝑣𝑖−𝑑𝑖 + 𝑓 ) (3)

where 𝑓 is an inferred or assumed false hit rate that can be used to model false positive plaques.

That is, we treat the observed plaque count as Poisson distributed with a mean given by the underlying
virus concentration, the volume plated, the dilution performed, and any sources of error that could lead to
spurious “plaques”.

Here, for simplicity, we assume a fixed negligible false hit rate of 10−20. It is both unbiological and
impractical to use a true zero false hit rate ( 𝑓 = 0), as this makes Markov Chain Monte Carlo inference
less numerically stable.

2.4 Titer inference
To infer individual titers, we use a weakly informative Normal prior for the true virus concentrations 𝑣𝑖 in
units of PFU/mL:

𝑣𝑖 ∼ Normal(3,3) (4)

We then apply the Poisson plaque assay model described in section 2.3 above.

2.5 Fluid half-life inference
We infer half-lives of infectious virus in various bulk liquid media by adapting a model previously pre-
viously described [2], [4], which allows us to account for variation in initial virus concentration, among 
other sources of experimental error.

There are multiple experimental conditions: the various liquid media tested. These include authentic 
human secretions including blood, saliva, and serum at several distinct concentrations, as well as deionized 
water and wastewater subjected to several distinct levels of chlorination.
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Broadly, our model assumes that each replicate begins with some initial concentration of viable virus 𝑣(0),
which then decays exponentially at some rate 𝜆, so that at time 𝑡, we have

log10 [𝑣(𝑡)] = log10 [𝑣(0)] −𝜆𝑡 (5)

To model our experiments, we need to account for the fact that we performed multiple replicates for each
experimental condition. Each of these replicates might have begun with different initial virus concentra-
tions. Additionally, individual samples taken over time and plaque counts derived from those samples
might be over-dispersed relative to the ideal predicted Poisson counts (due to processes of sampling, plat-
ing, infection, and counting processes not being mathematically ideal).

We use hierarchical modeling to handle the potential differences in initial virus concentration among repli-
cates. For each replicate 𝑘 of experimental condition 𝑗 , we model the initial log10 concentrations of viable
virus log10 [𝑣0 𝑗𝑘] as Normally distributed about an inferred condition-specific mean initial concentration
log10 [�̄�0 𝑗 ], with an inferred condition-specific standard deviation 𝜎𝑣0 𝑗 :

log10 [𝑣0 𝑗𝑘] ∼ Normal(log10 [�̄�0 𝑗 ],𝜎𝑣0 𝑗 ) (6)

Across all replicates, viable virus then decays exponentially at an inferred condition-specific rate 𝜆 𝑗 . So
we predict that if a sample 𝑣𝑖 𝑗𝑘 is taken for replicate 𝑘 of condition 𝑗 at a time 𝑡𝑖 𝑗𝑘 :

log10 [𝑣𝑖 𝑗𝑘] = log10 [𝑣0 𝑗𝑘] −𝜆 𝑗 𝑡𝑖 𝑗𝑘 +𝜎𝑣 𝑗𝜖𝑖 𝑗𝑘 (7)

where:

𝜖𝑖 𝑗𝑘 ∼ Normal(0,1) (8)

The Normally distributed errors 𝜖𝑖 𝑗𝑘 represent deviations from ideality / potential over-dispersion of plaque
counts. The condition-specific scaling factor 𝜎𝑣 𝑗 represents an inferred degree of deviation from ideality.
In particular, note that this is equivalent to stating:

log10 [𝑣𝑖 𝑗𝑘] ∼ Normal(log10 [𝑣0 𝑗𝑘] −𝜆 𝑗 𝑡𝑖 𝑗𝑘 ,𝜎𝑣 𝑗 ) (9)

Any observed plaque count(s) for 𝑦𝑖 𝑗𝑘𝑙 are then modeled as Poisson distributed per equation 3:

𝑦𝑖 ∼ Poisson(𝑝𝑖 𝑗𝑘10𝑣𝑖 𝑗𝑘−𝑑𝑖 𝑗𝑘 + 𝑓 ) (10)

In practice we typically have a single count 𝑦𝑖 𝑗𝑘 for each sample 𝑣𝑖 𝑗𝑘 , corresponding to the first dilution
at which plaques were countable.

We use the following priors.

Log half-lives log(ℎ 𝑗 ) for each experimental condition 𝑗 , where ℎ𝑖 has units of days:

log(ℎ 𝑗 ) ∼ Normal(log[0.1], log[20]) (11)

Mean initial log10/PFU/mL virus titers log10 [�̄�0 𝑗 ] for each experimental condition 𝑗 :

log10 [�̄�0 𝑗 ] ∼ Normal(3,2) (12)
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Condition-specific standard deviations 𝜎𝑣0 𝑗 for the Normally-distributed replicate log10 initial virus con-
centrations:

𝜎𝑣0 𝑗 ∼ PosNormal(1,0.25) (13)

Condition-specific standard deviations 𝜎𝑣 𝑗 for the predicted titer errors:

𝜎𝑣 𝑗 ∼ PosNormal(0,0.5) (14)

2.6 Surface half-life inference
We modeled decay on surfaces analogously to how we modeled decay in bulk fluid form (section 2.5),
with the additional detail that we allowed for biphasic decay to take account of potential effects of medium
evaporation [3].

In particular, we allowed each surface experiment to have a inferred breakpoint time 𝑤 𝑗 , during which
the half-life switches from a “wet-phase” half-life ℎ𝑤 𝑗 to a “dried-phase” half-life ℎ𝑑 𝑗 . We placed a
Truncated Normal prior on the 𝑤 𝑗 on the interval between the last day in which the sample was observed
to be macroscopically wet 𝑡𝑤 and the first day it was observed to be macroscopically dry 𝑡𝑑 , with a mode
at the midpoint (𝑡𝑑 − 𝑡𝑤)/2, and a standard deviation of 2. In practice, this is very similar to a uniform
prior on the interval (𝑡𝑤 , 𝑡𝑑).

𝑤 𝑗 ∼ TruncNormal
( 𝑡𝑑 − 𝑡𝑤

2
,2, 𝑡𝑤 , 𝑡𝑑

)
(15)

Until 𝑤 𝑗 , virus then exponentially at an inferred condition-specific rate 𝜆𝑤 𝑗 =
log10 (2)
ℎ𝑤 𝑗

and afterward at an

inferred condition-specific rate 𝜆𝑑 𝑗 =
log10 (2)
ℎ𝑑 𝑗

. So we predict that if a sample 𝑣𝑖 𝑗𝑘 is taken for replicate 𝑘

of condition 𝑗 at a time 𝑡𝑖 𝑗𝑘 :

log10 [𝑣𝑖 𝑗𝑘] =
{

log10 [𝑣0 𝑗𝑘] −𝜆𝑤 𝑗 𝑡𝑖 𝑗𝑘 +𝜎𝑣 𝑗𝜖𝑖 𝑗𝑘 𝑡𝑖 𝑗𝑘 ≤ 𝑤 𝑗

log10 [𝑣0 𝑗𝑘] −𝜆𝑤 𝑗𝑤 𝑗 −𝜆𝑑 𝑗 (𝑡𝑖 𝑗𝑘 −𝑤 𝑗 ) +𝜎𝑣 𝑗𝜖𝑖 𝑗𝑘 𝑡𝑖 𝑗𝑘 > 𝑤 𝑗
(16)

The observation process was then the same as for titer inference and fluid half-life inference.

To parameterize the half-lives during the two phases in a principled way while avoiding identifiability
issues, we placed a normal prior on the log wet-phase half-life ℎ𝑤 𝑗 , and the modeled the log dried-phase
half-life ℎ𝑑 𝑗 as offset from ℎ𝑤 𝑗 by some inferred offset 𝑜 𝑗 = log(ℎ𝑑 𝑗 ) − log(ℎ𝑤 𝑗 ). We placed a negative-
constrained normal prior on 𝑜 𝑗 (that is, we assumed dried-phase half-lives were shorter than wet-phase
half-lives, consistent with prior empirical and thereotical work [3]:

log(ℎ𝑤 𝑗 ) ∼ Normal(log(0.25), log(20)) (17)

𝑜 𝑗 ∼ Normal(log(0.25), log(20)) (18)

where
log(ℎ𝑑 𝑗 ) = log(ℎ𝑤 𝑗 ) + 𝑜 𝑗 (19)

All other aspects of the model, including prior distribution choices, were identical to the fluid half-life
inference model, with the except that we modeled condition-specific standard deviations 𝜎𝑣 𝑗 for the pre-
dicted titer errors as potentially larger, since surface experiments are noisier:

𝜎𝑣 𝑗 ∼ PosNormal(0,1) (20)
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3 Code and data
All code and data needed to reproduce our analyses is archived on Github (https://github.com/
dylanhmorris/mpox-stability) and Zenodo (https://example.com), and licensed for reuse, with 
appropriate attribution and citation.
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