
Ghana reported its first case of COVID-19 on 
March 12, 2020, and 171,065 cases and 1,445 

deaths had been recorded as of December 31, 2022 
(1). The country introduced various public health 
measures when the pandemic first emerged, includ-
ing school closures, travel bans, mask mandates, 
and, later, vaccination, all of which were associated 

with a decline in transmission (2). Ghana was the 
first country to receive 600,000 doses of the Oxford-
AstraZeneca COVID-19 AZD1222 vaccine (https://
www.astrazeneca.com) on February 24, 2021, 
through the COVAX program (3). The vaccination 
program was deployed in March 2021; politicians 
and civil society leaders publicly received vaccines 
to boost nationwide trust in the program (4). The 
first batch of vaccines was delivered to regions and 
populations with the highest burden of COVID-19: 
the Greater Accra and Ashanti regions, frontline 
healthcare workers, the elderly, and persons with 
comorbidities. In addition to the initially dispersed 
vaccine doses, the Ministry of Health received an 
additional supply of the AZD1222 vaccine and the 
Pfizer-BioNTech BNT162b2 vaccine (https://www.
pfizer.com) from several high-income countries (5).

Given the limited availability of doses and vac-
cine hesitancy, only 9.2% of the Ghana population 
of 30,800,000 was fully vaccinated as of December 
2021 (6). Hence, the government’s goal to reach wide-
spread vaccine coverage by October 2021 was not met 
(3). Studies of COVID-19 vaccine hesitancy among 
residents of Ghana reported that >35% of study par-
ticipants said they would not receive the vaccine 
because of concerns about vaccine efficacy and con-
spiracy theories (4,7). Moreover, a seroprevalence 
study in August 2020 found that only 19% of Ghana 
residents tested positive for SARS-CoV-2 IgM, IgG, or 
both (8). Such studies suggest that most of the popu-
lation in Ghana remains susceptible to SARS-CoV-2, 
and mitigating the pandemic might best be achieved 
through effectively prioritizing the dispensation of 
limited vaccines. To optimize Ghana’s vaccination 
strategy, provide evidence of the benefits of vaccina-
tion, and increase uptake in the population, research 
is required to quantify the vaccine’s effect on the mag-
nitude of the epidemic peak, cumulative infections, 
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We assessed the effect of various COVID-19 vaccina-
tion strategies on health outcomes in Ghana by using 
an age-stratified compartmental model. We stratified the 
population into 3 age groups: <25 years, 25–64 years, 
and ≥65 years. We explored 5 vaccination optimiza-
tion scenarios using 2 contact matrices, assuming that 
1 million persons could be vaccinated in either 3 or 6 
months. We assessed these vaccine optimization strate-
gies for the initial strain, followed by a sensitivity analysis 
for the Delta variant. We found that vaccinating persons 
<25 years of age was associated with the lowest cumu-
lative infections for the main matrix, for both the initial 
strain and the Delta variant. Prioritizing the elderly (≥65 
years of age) was associated with the lowest cumulative 
deaths for both strains in all scenarios. The consensus 
between the findings of both contact matrices depended 
on the vaccine rollout period and the objective of the 
vaccination program.
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and deaths in the context of limited vaccine supplies 
and logistical barriers.

Several mathematical modeling studies of CO-
VID-19 vaccination strategies in other countries and 
jurisdictions were published in 2020 and 2021 (9–13). 
Alagoz et al. used an agent-based model to simulate the 
transmission dynamics of COVID-19, accounting for 
the proportion of the population vaccinated, vaccine ca-
pacity, and adherence to nonpharmaceutical interven-
tions (9). Moghadas et al. used an agent-based model to 
evaluate the effect of vaccination campaigns on reduc-
ing incidence, hospitalizations, and deaths (10). Aside 
from agent-based models, homogenous-mixing and 
age-stratified compartmental models also have been 
used. Matrajt et al. used an age-stratified deterministic 
model, paired with optimization algorithms, for 16 age 
groups by varying vaccination efficacy and coverages 
in the population (11). Mumtaz et al. used an age-strat-
ified model to assess the vaccination rollout under dif-
ferent vaccination coverages accounting for the decline 
in transmission and age-mixing matrix (12). Bubar et 
al. expanded their work further to account for contact 
structure, seroprevalence, and age-specific vaccine ef-
ficacy (13). The outcomes explored in these studies in-
cluded symptomatic infections, cumulative infections 
and deaths, and hospitalizations, focusing mainly on 
high-income countries outside Africa. Thus, determin-
ing who to vaccinate first when vaccines are available 
and analyzing the sensitivity of modeling outputs to 
the choice of contact matrices are underexplored in the 
Africa context and in Ghana specifically.

We employed an age-stratified model to assess 
the effect of vaccinating 1 million persons in 3 ver-
sus 6 months using 2 Africa contact matrices. We 
retrospectively assessed the counterfactual effect of 
various age-targeted vaccine optimization strategies 
against the initial and Delta strains of SARS-CoV-2 
when vaccines first became available. Our aim was 
to inform future vaccination programs by identifying 
factors critical to achieving optimal outcomes. The 
Georgia Southern University Institutional Review 
Board determined that this project (H20364) was ex-
empt from full review under the nonhuman subjects 
determination (G8) according to the Code of Federal 
Regulations Title 45 Part 46.

Methods

Model Formulation
We proposed an age-stratified Susceptible-Exposed-
Presymptomatic-Symptomatic-Asymptomatic-Re-
covered-Dead-Vaccinated (SEPIARD-V) model to 
simulate SARS-CoV-2 transmission dynamics and 

the effect of various vaccination scenarios (Appendix 
1 Figure) (14). The SEPIARD-V model acknowledges 
that persons who are initially asymptomatic and later 
develop symptoms transmit the virus while in the 
presymptomatic phase. A 2020 study of presymptom-
atic transmission of SARS-CoV-2 in Singapore pro-
vided evidence of COVID-19 transmission 1–3 days 
before symptom onset (15). The model was suitable 
for studying the transmission dynamics of COVID-19 
in Ghana because of the growing evidence that both 
symptomatic and asymptomatic patients transmit 
the infection, regardless of their symptomatic status 
(16,17). Our model, therefore, assumed that presymp-
tomatic, asymptomatic, and symptomatic persons 
contributed to transmission. Our model also assumed 
that immunity from both natural infection and vac-
cination waned over time, making reinfection pos-
sible (Table 1; Appendix 1). An effective reproduction 
number (Rt) of 3.13 was assumed for the virus in the 
main analysis to represent the virus strain that first 
hit Ghana in the spring of 2020, referred to as the ini-
tial strain in this study (Armachie et al., unpub. data, 
https://doi.org/10.20944/preprints202104.0125.v1). 
A higher Rt of 5.35 was assumed for the Delta vari-
ant in the scenario analyses, with a reduced vaccine 
efficacy of 67% for the AZD1222 vaccine (32; Pearson 
et al., unpub. data, https://doi.org/10.1101/2021.12.
19.21268038). Our model was run for 500 days to al-
low enough time for the first wave of the epidemic to 
subside and to include observations relevant to when 
the second wave began to emerge.

Age Groups and Contact Matrices
Because of the strong evidence of assortative mixing 
between age groups in sub-Saharan Africa (33,34), we 
incorporated a contact matrix between age groups 
into the model. We stratified the population was 
stratified into 3 groups: <25 years, 25–64 years, and 
≥65 years of age. Two contact matrices were adapted 
from studies in Uganda (main matrix) and Ethiopia 
(second matrix) (33,35). The main matrix suggested 
that, on average, the within-group contact rate among 
persons <25 years of age was 23.58 per day; for per-
sons 25–64 years of age, that contact rate was 15.05 
per day; and for persons ≥65 years of age, the contact 
rate was 0.54 per day (33). For the second matrix, on 
average, the within-group daily contact rate was 8.2 
among persons <25 years of age, 7.8 for persons 25–64 
years of age, and 1.6 for persons ≥65 years of age (35). 
The population breakdown for Ghana was 56.08% 
<25 years of age (n = 17,272,640), 39.48% 25–64 years 
of age (n = 12,159,840), and 4.44% ≥65 years of age (n 
= 1,367,520) (36) (Appendix 1). 
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Scenario Analyses
Our analysis aimed to determine which age group 
should be prioritized in the case of limited vaccine 
supply under different rollout speeds. We analyzed 
multiple scenarios, looking at a percentage of each sub-
population vaccinated when prioritizing different age 
groups, with coverage calculated for 1 million people 
using the 2021 population (37). The primary scenar-
ios, by percentage of persons vaccinated in each age 
group, were as follows: (i) 73.1% of persons ≥65 years 
of age; (ii) 8.2% of persons 25–64 years of age; (iii) 5.8% 
of persons <25 years of age; and (iv) 3.4% of persons 
<65 years of age. We also assessed projected outcomes 
of vaccinating each age group at the same rate with-
out prioritization (v). We used 2 rollout speeds (daily 
vaccination rates) in each scenario, assuming 2 million 
doses can be exhausted in 3 months and 6 months (Ap-
pendix 1 Tables 1–3). Finally, we performed analyses 
for 2 additional scenarios by changing the assumptions 
on vaccine supplies. First, the number of people to be 
vaccinated was either halved or doubled. Hence, we 
assumed enough vaccines were available for 500,000 
persons (1 million doses) and 2,000,000 persons (4 
million doses). We repeated our age-specific scenario 
analysis using the second contact matrix, adapted from 
Trentini et al. (35).

Analysis
We solved our model’s system of ordinary differen-
tial equations according to the Runge-Kutta 4 meth-

od in the deSolve package in R version 4.1.1 (The 
R Foundation for Statistical Computing, https://
www.r-project.org). We estimated the number of 
infections and deaths averted in the general popula-
tion and compared them across all study scenarios. 
We assessed the percent of the population who were 
symptomatic at the peak, those who were ever in-
fected (cumulative infections), and those who died 
(cumulative deaths) (Appendix 1; Appendix 2).

Results

Symptomatic Infections at the Peak under the Main 
Scenario of Vaccinating 1 Million Persons
The following results of our main analysis assumed 
an Rt of 3.13 for the initial strain. We demonstrated 
that vaccinating 1 million persons <25 years of age in 
3 months was associated with the lowest percentage 
(6.75%) of symptomatic persons in the population at 
the peak. However, prioritizing the elderly (≥65 years 
of age) resulted in the highest percentage of symp-
tomatic persons (7.19%) at the peak, given a 3-month 
rollout using the main matrix. If the rollout period 
was increased to 6 months, prioritizing persons <25 
years of age also resulted in the lowest symptomatic 
percentages (7.01%) using the main matrix. The sec-
ond matrix suggested that focusing vaccination ini-
tiatives on persons 25–64 years of age was associated 
with the lowest percentage of symptomatic infections 
(6.96%) (Tables 2, 3; Figure 1).
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Table 1. Parameter values for age-stratified SEPIARD-V COVID-19 model to assess health outcomes of COVID-19 vaccination 
strategies, Ghana* 
Parameter Symbol Value References 
Mean latency period which is the period from exposure to 
infectiousness 

1/k 1.85 d Abbasi et al. (18), Liu et al. (19) 

Mean duration of being infectious and symptomatic 1/f 15.7 d Cai et al. (20), Xing et al. (21) 
Mean duration of being infectious and asymptomatic 1/q 7.25 d Ma et al. (22), Byrne et al. (23) 
Mean duration of being infectious and presymptomatic 1/c 2.9 d Tindale et al. (24), Byrne et al. (23) 
Reproduction number for the initial strain R 3.13 Armachie et al., unpub. data, 

https://doi.org/10.20944/preprints2
02104.0125.v1 

Reproduction number for the Delta strain R 5.35 Pearson et al., unpub. data, 
https://doi.org/10.1101/2021.12.19.

21268038 
Probability of exposed person becoming 
presymptomatically infected 

δ 0.30 Chen et al. (25), Buitrago-Garcia et 
al. (26) 

Vaccine efficacy against infection σ 0.745 Knoll et al. (27) 
Relative transmissibility of asymptomatic persons u 0.75 CDC (28) 
Relative transmissibility of presymptomatic persons r 0.75 CDC (28) 
Mean duration of immunity after vaccination χ 182 d Iacobucci (29) 
Mean duration of immunity after natural infection w 365 d Good and Hawkes (30) 
Age-specific case-fatality ratio z 0.002 for <25 y, 0.005 for 

25–64 y, 0.048 for ≥65 y 
Our World in Data (January 26, 

2021–November 12,  
2021; 22), Lawal (31) 

Daily vaccination rate v Varied by 0.00009–
0.0163977 d–1 per person 

Estimated 

*CDC, Centers for Disease Control and Prevention; SEPIARD-V, Susceptible-Exposed-Presymptomatic-Symptomatic-Asymptomatic-Recovered-Dead-
Vaccinated. 
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Cumulative Infections under the Main Scenario  
of Vaccinating 1 Million Persons
Our results suggest that vaccinating persons <25 
years of age was associated with the largest num-
ber of cumulative infections averted in Ghana un-
der the assumption of vaccinating 1 million people 
in 3 months (2,653,676 cases), whereas vaccinating 
persons ≥65 years of age was associated with the 
smallest number averted (702,432 cases) (Figure 2). 
We also found that vaccinating persons <25 years of 
age should be prioritized when the population was 
vaccinated at a slower rate (over 6 months) or when 
the vaccine supply doubled or halved (Table 2). The 

results were  sensitive to a change in the contact  
matrix (Table 3).

Cumulative Deaths Averted under the Main Scenario of 
Vaccination of 1 Million Persons
Vaccinating the elderly (≥65 years of age) could avert 
>7,000 deaths if 1 million people were vaccinated 
over 3 months, assuming the main contact matrix, 
and >4,000 deaths would be averted if the elderly 
population was vaccinated over 6 months. The num-
ber of deaths prevented was the lowest when persons 
<25 years of age were prioritized in both vaccination 
time frames (2,317 in 3 months vs. 1,157 in 6 months), 
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Table 2. Scenario analysis of outcomes in the total population under various vaccination scenarios, using the main matrix method for 
the initial strain, Ghana 

Vaccine prioritization by age group, y 

Scenario, % infections 
500,000 

vaccinated 
in 3 mo 

500,000 
vaccinated 

in 6 mo 

1 million 
vaccinated 

in 3 mo 

1 million 
vaccinated 

in 6 mo 

2 million 
vaccinated in 

3 mo 

2 million 
vaccinated 

in 6 mo 
Symptomatic infections at peak 
 Only ≥65 7.22 7.24 7.19 7.22 7.16 7.19 
 25–64 7.09 7.17 6.92 7.09 6.61 6.92 
 <25 7.01 7.13 6.75 7.01 6.26 6.75 
 <65 7.03 7.15 6.81 7.03 6.37 6.81 
 Same rate across age groups 7.04 7.15 6.83 7.04 6.40 6.83 
Cumulative infections 
 Only ≥65 172.88 173.50 172.09 172.88 171.33 172.09 
 25 –64 170.80 172.57 167.44 170.80 161.00 167.44 
 <25 170.04 172.20 165.76 170.04 157.17 165.76 
 <65 170.28 172.43 166.19 170.28 158.20 166.19 
 Same rate across age groups 170.41 172.39 166.44 170.41 158.51 166.44 
Deaths 
 Only ≥65 0.18 0.19 0.17 0.18 0.17 0.17 
 25–64 0.19 0.19 0.19 0.19 0.18 0.19 
 <25 0.19 0.19 0.19 0.19 0.18 0.19 
 <65 0.19 0.19 0.19 0.19 0.18 0.19 
 Same rate across age groups 0.19 0.19 0.19 0.19 0.18 0.19 

 

 
Table 3. Scenario analysis of outcomes in the total population under various vaccination scenarios using the second matrix method for 
the initial strain, Ghana 

Vaccine prioritization by age group, y 

Scenario, % infections 
500,000 

vaccinated 
in 3 mo 

500,000 
vaccinated 

in 6 mo 

1 million 
vaccinated 

in 3 mo 

1 million 
vaccinated 

in 6 mo 

2 million 
vaccinated in 

3 mo 

2 million 
vaccinated 

in 6 mo 
Symptomatic infections at peak       
 Only ≥65 7.02 7.10 6.92 7.02 6.82 6.92 
 25–64 6.96 7.07 6.75 6.96 6.35 6.75 
 <25 6.99 7.09 6.79 6.99 6.42 6.79 
 <65 6.97 7.08 6.76 6.97 6.35 6.76 
 Same rate across age groups 6.98 7.08 6.76 6.98 6.35 6.76 
Cumulative infections 
 Only ≥65 177.71 179.61 175.36 177.71 173.19 175.36 
 25–64 178.22 180.28 174.26 178.22 166.42 174.26 
 <25 178.62 180.48 174.95 178.62 167.74 174.95 
 <65 178.39 180.48 174.42 178.39 166.69 174.42 
 Same rate across age groups 178.30 180.33 174.25 178.30 166.13 174.25 
Deaths 
 Only ≥65 0.19 0.20 0.18 0.19 0.17 0.18 
 25–64 0.21 0.22 0.21 0.21 0.19 0.21 
 <25 0.22 0.22 0.22 0.22 0.21 0.21 
 <65 0.22 0.22 0.21 0.22 0.20 0.21 
 Same rate across age groups 0.21 0.22 0.21 0.21 0.20 0.21 
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assuming the main contact matrix (Figure 2). Vacci-
nating the elderly (≥65 years of age) remained the best 
option to reduce deaths, regardless of the mixing pat-
terns (Tables 2, 3; Figures 1, 2).

Varying Vaccine Supply to Vaccinate 500,000  
or 2 Million Persons
Similar to the base case scenarios of vaccinating 1 
million persons, prioritizing persons <25 years of 
age was associated with the lowest percentage of 
cumulative infections if 500,000 or 2 million persons 
were vaccinated in 3 or 6 months (Table 2). However, 
simulations using the second matrix reported mixed 
results. For example, prioritizing the elderly seemed 
to be the best strategy for lowering cumulative infec-
tions when vaccine supplies were only enough for 

500,000 people (177.71% for 3 months and 179.61% 
for 6 months). In contrast, vaccinating each age group 
at the same rate was preferred when the supply was 
enough to vaccinate 2 million persons (166.13% for 3 
months and 174.25% for 6 months) (Table 3). Prioritiz-
ing the elderly (≥65 years of age) remained the strate-
gy of choice to specifically lower COVID-19 mortality 
for both matrices (Tables 2, 3).

Comparing Outcomes for the Initial and Delta Variants 
in the Absence of Vaccination
In the absence of vaccination, the scenario analysis 
for the Delta variant using the main matrix suggested 
10.29% of symptomatic persons at the peak, 231.24% 
of persons having cumulative incidence of COVID-19, 
and 0.28% deaths in the population (Appendix 1 Table 
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Figure 1. Effects of various vaccination scenarios on symptomatic infections at peak (upper panels), cumulative infections (middle 
panels), and deaths (lower panels) as a percentage of the general population, Ghana. The assessment used 2 different contact matrices 
in the main analysis and an effective reproductive number of 3.13 for the initial strain. A) Results assuming 1 million persons were 
vaccinated in 3 months. B) Results assuming 1 million persons were vaccinated in 6 months. Percentage of cumulative infections is 
>100% because of waning immunity from natural infection and vaccination.
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4). Those percentages were higher than those for the 
initial strain, which were calculated as 7.26% of symp-
tomatic persons at peak, 174.37% of persons having cu-
mulative incidence of COVID-19, and 0.20% deaths in 
the population (Figure 1). Those findings were consis-
tent with the results from the second matrix (Appendix 
1 Table 5). In the Delta variant scenario, the percentage 
of symptomatic persons at the peak was slightly lower 
with the second matrix (10.14%) than with the main ma-
trix (10.29%). However, cumulative infections (238.73%) 
and deaths (0.31%) were higher with the second matrix 
in the Delta variant scenario (Appendix 1 Tables 4, 5).

Impact of Vaccination Strategies on Symptomatic 
Infections at the Peak Due to the Delta Variant
In analyzing vaccine prioritization for the Delta 
variant scenario, we found that prioritizing per-

sons <25 years of age was associated with the low-
est percentage of symptomatic infections at the 
peak, regardless of the available vaccine doses and 
rollout speed, using the main matrix (Table 4). As 
for the initial strain scenario, prioritizing persons 
<65 years of age was associated with the lowest 
percentage of symptomatic infections at the peak 
(9.89%) under the assumption of vaccinating 1 mil-
lion persons over 3 months using the second matrix 
for the Delta variant (Table 5).

Impact of Vaccination Strategies on Cumulative  
Infections and Deaths Caused by Delta Variant
The scenario where 1 million people were vaccinat-
ed over 3 months suggested that focusing on per-
sons <25 years of age had the lowest value of cu-
mulative infections (226.32%) for the Delta variant, 
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Figure 2. Effects of various vaccination scenarios on the number of cumulative infections averted (upper panels) and the number of 
deaths averted (lower panels) in the general population, Ghana. The assessment used 2 different contact matrices in the main analysis 
and an effective reproductive number of 3.13 for the initial strain.  A) Results assuming 1 million persons were vaccinated in 3 months. 
B) Results assuming 1 million persons were vaccinated in 6 months.
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findings that paralleled our analysis of the initial 
strain (165.76%). Prioritizing persons <25 years of 
age was the best option to minimize cumulative in-
fections in the population with a 6-month rollout for 
the Delta variant (228.77%) (Table 4). Importantly, 
the results on cumulative infections of the second 
matrix suggested the elderly (235.15%) should be 
prioritized for vaccination first for the Delta vari-
ant with a 6-month rollout (Table 5). Prioritizing 
the elderly remained the best strategy for lowering 
deaths in the population for the initial strain and 
the Delta variant in all the scenarios (Tables 4, 5; 
Appendix 1 Tables 4, 5).

Discussion
Vaccination is the best tool to control the spread of 
SARS-CoV-2 and minimize the burden of COVID-19 
globally. Because Ghana primarily relies on multilater-
al donations for their COVID-19 vaccine supply, there 
is a need to determine the best vaccine optimization 
strategies to minimize deaths, cumulative case counts, 
and epidemic peaks over a relatively short period. Us-
ing 2 contact matrices, we used an age-stratified math-
ematic model to answer the question of who should 
get vaccinated first when the vaccine supply is limited 
and when supplies are exhausted over 3 and 6 months. 
Our findings suggest that, for both the initial strain and 
the Delta variant, prioritizing persons <25 years of age 
for vaccination would avert the most cumulative in-
fections and prioritizing the elderly (≥65 years of age) 
would result in the lowest death counts.

Optimization of vaccine prioritization strat-
egy is sensitive to the population structure. Prioritiz-
ing younger persons to avert cumulative infections 
is a finding that has been reported in other studies 

(13,38,39). Bubar et al. concluded in their multicountry 
research that the cumulative incidence of COVID-19 
was lowest when adults 20–49 years of age were pri-
oritized, especially with a highly effective transmis-
sion-blocking vaccine (13). In Senegal, Diarra et al. 
used an age-structured dynamic mathematical model 
to explore various vaccination strategies and reported 
that prioritizing persons <60 years of age was associ-
ated with the lowest case burden (40). Those authors 
argued that countries with younger populations, such 
as Ghana, should prioritize vaccinating younger per-
sons to minimize hospital costs and productivity loss.

As was the case for our team, most research 
teams conducting previous studies concluded that 
prioritizing the elderly was associated with the low-
est mortality. However, Bubar et al. reported that 
persons 20–49 years of age should be prioritized to 
minimize mortality when transmission is low, when 
vaccine efficacy is lower in older adults, and when 
the vaccine is highly effective in blocking transmis-
sion. Buckner et al. reported results similar to those 
in our study and found that, to control deaths di-
rectly, the elderly should be vaccinated first, after 
stratifying young adults by essential worker status 
(41). Although the conclusions in that study and our 
study were similar, Buckner et al. used a dynamic 
approach in modeling vaccine allocation strategies 
that accounted for changes in the epidemiologic 
status of the population (shares of the population 
in different disease states) over 6 months using sto-
chastic nonlinear programming techniques. In a vac-
cine optimization modeling study in India, Foy et al. 
concluded that prioritizing older adults (>60 years of 
age) was associated with the most significant reduc-
tion in deaths, regardless of vaccine efficacy, control 
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Table 4. Comparing outcomes for the Delta variant if 1 million persons were vaccinated under the various vaccination strategies using 
the main matrix method, Ghana 

Vaccine prioritization by age group, y 
Scenario, % infections 

Initial strain, 3 mo Delta variant, 3 mo Initial strain, 6 mo Delta variant, 6 mo 
Symptomatic infections at peak 
 Only ≥65 7.19 10.22 7.22 10.25 
 25–64 6.92 10.08 7.09 10.18 
 <25 6.75 9.99 7.01 10.14 
 <65 6.81 10.02 7.03 10.15 
 Same rate across age groups 6.83 10.03 7.04 10.16 
Cumulative infections 
 Only ≥65 172.09 228.43 172.88 229.50 
 25–64 167.44 227.00 170.80 229.07 
 <25 165.76 226.32 170.04 228.77 
 <65 166.19 226.50 170.28 228.87 
 Same rate across age groups 166.44 226.55 170.41 228.89 
Deaths 
 Only ≥65 0.17 0.25 0.18 0.26 
 25–64 0.19 0.27 0.19 0.28 
 <25 0.19 0.28 0.19 0.28 
 <65 0.19 0.27 0.19 0.28 
 Same rate across age groups 0.19 0.27 0.19 0.28 
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measures, and rollout speed (38). Another modeling 
study by Chapman et al., using COVID-19 data from 
California, reported similar results (42); however, 
that study focused on identifying the groups to pri-
oritize after healthcare workers and long-term facil-
ity residents received initial vaccine doses.

The differences in outcomes between the contact 
matrices in our study might be due to the much lower 
reported contact rates among the younger population 
in the matrix adapted from Trentini et al. (i.e., second 
matrix) (35). The study by Bubar et al. on vaccine op-
timization strategies across multiple countries, includ-
ing South Africa, concluded the best vaccination strate-
gy depended on the extent of mixing patterns (13). The 
use of 2 contact matrices reflects the degree to which 
decision makers should consider social interactions in 
the population before optimizing vaccination strate-
gies when vaccine supplies are limited. Our findings 
demonstrate that the mixing pattern is relevant when 
the goal of the vaccination program is to minimize in-
fection burden and the vaccine rollout takes place over 
an extended period. Thus, a population with lower 
contact rates among the older population would need 
to prioritize younger persons. However, contact pat-
terns in the population may not be relevant if the goal 
of the vaccination program is to minimize deaths and 
vaccine uptake is high. Future studies might consider 
exploring differences observed using matrices of dif-
ferent settings; for example, rural versus urban and 
household versus community mixing.

As reported by Ko et al., the question of who 
should receive vaccinations first depends also on 
the objective for vaccination (minimizing cumula-
tive infections or deaths) and the effective reproduc-
tion number (39). Thus, policymakers might need 

to consider compromises in deciding the best vac-
cine allocation strategies. For example, prioritizing 
the elderly may lead to fewer deaths but higher case 
numbers, which could exacerbate economic loss due 
to a high case count in a younger population. The 
transmissibility of the circulating variant also might 
inform a vaccine optimization strategy. We did not 
see evidence of this effect in our study because the 
priority group remained the same for the Delta vari-
ant, which carried a higher reproduction number. 
Another study concluded vaccine optimization de-
pended on the vaccine supply (42).

Although our study demonstrates the need to 
prioritize certain age groups to minimize the burden 
of COVID-19 in Ghana, depending on the objective 
of the program, other factors need to be considered 
to ensure people receive vaccinations when they 
become eligible. Employing targeted vaccine cam-
paigns to minimize hesitancy among the prioritized 
group might be a necessary part of the program. 
Acheampong et al. reported the level of reluctance 
among older adults was lower than that for younger 
adults in Ghana (43). Likewise, a survey among per-
sons >65 years of age in the United States found that 
91% of the elderly were willing to get vaccinated 
(44). This reported vaccine hesitancy across different 
age groups suggests a need for campaigns to create 
an enabling environment and engage younger pop-
ulations about their role in mitigating the pandemic.

The first limitation of our study is that our 
model was age-stratified only. Other demographic 
variables (e.g., occupation and comorbidity) might 
change a person’s COVID-19 infection risk and 
clinical prognosis (45). Second, our model did not 
include a hospitalization compartment. Thus, we 
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Table 5. Comparing outcomes for the Delta variant if 1 million persons were vaccinated under the various vaccination strategies using 
the second matrix methods, Ghana 

Vaccine prioritization by age group, y 
Scenario, % infections 

Initial strain, 3 mo Delta variant, 3 mo Initial strain, 6 mo Delta variant, 6 mo 
Symptomatic infections at peak 
 Only ≥65 6.92 9.96 7.02 10.04 
 25–64 6.75 9.90 6.96 10.01 
 <25 6.79 9.90 6.99 10.01 
 <65 6.76 9.89 6.97 10.01 
 Same rate across age groups 6.76 9.89 6.98 10.01 
Cumulative infections 
 Only ≥65 175.36 232.82 177.71 235.15 
 25–64 174.26 234.30 178.22 236.48 
 <25 174.95 234.44 178.62 236.57 
 <65 174.42 232.29 178.39 236.50 
 Same rate across age groups 174.25 234.13 178.30 236.43 
Deaths 
 Only ≥65 0.18 0.26 0.19 0.28 
 25–64 0.21 0.31 0.21 0.31 
 <25 0.22 0.31 0.22 0.31 
 <65 0.21 0.31 0.22 0.31 
 Same rate across age groups 0.21 0.31 0.21 0.31 
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could not evaluate the effects of the Omicron vari-
ant, for which vaccines demonstrated effectiveness 
against severe infections but modest effectiveness 
against infection. Third, the contact matrices we 
used were adapted from other countries in Africa. 
Those countries had similar demographic distribu-
tions as Ghana, and we assumed that the frequen-
cy of contact in the population would be similar. 
Fourth, we did not have data to represent the rural 
and urban differences in contact matrices in Ghana. 
Fifth, our model design specified the symptomatic 
period to be the same for persons who recovered 
from COVID-19 and those who died from it. Sixth, 
the highly transmissible Omicron variant was not 
included in our study because of limited evidence of 
the effectiveness of vaccines against infection from 
that variant (46). Last, our model accounted for vac-
cine effectiveness against infection but did not ac-
count for the reduction of the case-fatality ratio if a 
person was vaccinated and still became infected.

In conclusion, we used an age-stratified com-
partmental model to assess the impact of various 
COVID-19 vaccine allocation strategies in Ghana. 
Our study reiterates the need to increase vaccina-
tion rates by ensuring increased vaccine supplies 
and faster rollout speed. Vaccinating persons <25 
years of age was associated with the highest num-
bers of cumulative infections averted for the initial 
strain and the Delta variant. Prioritizing persons ≥65 
years of age was associated with the lowest deaths 
in the population. Our findings indicate that vaccine 
prioritization strategies in Ghana, or in any country, 
depend on the country’s policy objectives, popula-
tion structure, mixing patterns, and vaccine supply.
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