
Virus genome data can provide useful information 
for public health practice, particularly when com-

bined with epidemiologic data in real time. Goals of ge-
nomic surveillance can include monitoring circulating 
and emerging variants, detecting and characterizing 
outbreaks, describing spatiotemporal patterns of virus 
transmission, supporting epidemiologic and genomic 
characterization of variants, and pinpointing introduc-
tion sources that might be risk factors (1). Information 
from a paired genomic and epidemiologic surveillance 
system can then be translated into public health inter-
ventions to prevent disease, control spread, and miti-
gate outbreaks. Interventions could include planning 
preparedness according to emerging variant charac-
teristics, changing therapeutic and nonpharmaceutical 
interventions, and recommending control strategies on 
the basis of outbreak characteristics. To ensure gener-
alizability and equity when using paired genomic and 
epidemiologic data for public health purposes, the 
methods for capturing those data must ensure a repre-
sentative sample from the population of interest (2,3).
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Genomic data provides useful information for public 
health practice, particularly when combined with epide-
miologic data. However, sampling bias is a concern be-
cause inferences from nonrandom data can be mislead-
ing. In March 2021, the Washington State Department of 
Health, USA, partnered with submitting and sequencing 
laboratories to establish sentinel surveillance for SARS-
CoV-2 genomic data. We analyzed available genomic 
and epidemiologic data during presentinel and sentinel 
periods to assess representativeness and timeliness of 
availability. Genomic data during the presentinel period 
was largely unrepresentative of all COVID-19 cases. 
Data available during the sentinel period improved rep-
resentativeness for age, death from COVID-19, outbreak 
association, long-term care facility–affiliated status, and 
geographic coverage; timeliness of data availability and 
captured viral diversity also improved. Hospitalized cas-
es were underrepresented, indicating a need to increase 
inpatient sampling. Our analysis emphasizes the need 
to understand and quantify sampling bias in phyloge-
netic studies and continue evaluation and improvement 
of public health surveillance systems.



Surveillance System for SARS-CoV-2 Genomic Data

Ongoing global circulation of SARS-CoV-2 and 
repeated emergence of new variants indicate the 
need for robust genomic surveillance to inform pub-
lic health responses (4). In Washington, USA, sur-
veillance of SARS-CoV-2 is passive and, therefore, 
focused on cases of COVID-19 in persons seeking 
testing. In addition, methods for conducting next-
generation sequencing introduce limitations on sam-
pling; specimens must contain adequate quantities 
of viral RNA for sequencing efforts to be successful. 
Therefore, persons who had mild illness, delayed 
testing, reinfection, or other characteristics that might 
lower viral loads are less likely to be represented 
in sequencing data. Knowing those limitations, the 
Washington State Department of Health sought to 
establish a genomic sentinel surveillance system for 
SARS-CoV-2 in March 2021.

Before sentinel surveillance was initiated, large 
amounts of genomic data were produced by academ-
ic and clinical laboratories in Washington and shared 
publicly via the GISAID EpiCoV database (5–7). 
Studies using those data to rapidly produce critical 
viral transmission and evolution information were 
published early during the pandemic; however, the 
populations captured in those data remain unknown 
(8–12). Sampling bias or systematic differences in 
sample characteristics between COVID-19 cases with 
sequenced specimens and total COVID-19 cases is a 
concern. Using large datasets from a limited number 
of geographically sparse institutions might produce 
inaccurate phylogenetic representations of virus 
distribution and migration within the population 
(13,14). Specifically, discrete trait analysis is a type of 
phylogeographic analysis that treats lineage migra-
tion between locations as if the location was a discrete 
trait; models relying on this analysis type assume that 
sample sizes across subpopulations are proportional 
to their relative size and random sampling occurs 
(15). If 1 population is oversampled, large biases are 
expected in model output (15). This concern extends 
beyond state or country borders because representa-
tive sampling is often assumed for contextual data, 
which provides the backdrop upon which phyloge-
netic inference is based.

We describe implementing a sentinel surveil-
lance system that enables pairing of genomic and 
epidemiologic data. In addition, we assessed repre-
sentativeness and timeliness of genomic data avail-
ability before and after system implementation. By 
performing this evaluation, we provide information 
regarding populations of sampled cases and limi-
tations on inference affecting genomic data use. To 
support planning efforts to obtain more equitable 

and representative sampling, we identified subpop-
ulations that might be systematically excluded from 
sequencing surveillance. More broadly, we raise 
awareness regarding sampling bias in convenience-
based genomic surveillance systems and support de-
velopment of robust genomic surveillance systems 
in additional jurisdictions.

Methods

Sentinel Surveillance System Design
In March 2021, the Washington State Department of 
Health partnered with multiple laboratories to estab-
lish a sentinel surveillance program to monitor ge-
nomic epidemiology of SARS-CoV-2 within the state. 
Partner laboratories were selected to maximize geo-
graphic coverage and specimen numbers. The initial 
proportion of randomly selected positive specimens 
submitted for sequencing was designed to balance 
geographic coverage regionally and match available 
sequencing capacity; statewide case coverage varied 
from 8% to 25% during the study period (16). In ad-
dition to the Washington State Public Health Labora-
tories, the 6 sentinel laboratories are Atlas Genomics, 
Confluence Health/Central Washington Hospital, 
Interpath Laboratories, Incyte Diagnostics Spokane, 
Northwest Laboratories, and University of Wash-
ington Virology Division. PCR cycle threshold (Ct) 
is capped at 30 for this surveillance system. The sur-
veillance program is supplemented by a national sur-
veillance effort supported by the Centers for Disease 
Control and Prevention (CDC), which includes mul-
tiple commercial laboratories sequencing randomly 
selected specimens (2). Methods for next-generation 
sequencing vary across laboratories, but >90% se-
quences are generated by using an Illumina platform 
(https://www/illumina.com); assembly methods 
also vary.

Study Population Evaluation
We included all confirmed COVID-19 cases (SARS-
CoV-2 RNA detected by molecular amplification) re-
ported in the Washington Disease Reporting System 
from January 21, 2020, through December 31, 2021. 
Using laboratory accession numbers or patient de-
mographics, we linked those cases to sequences up-
loaded to the GISAID EpiCoV database (5–7) from 
January 21, 2020, through January 31, 2022, that indi-
cated the state of Washington in the geographic tag. 
We classified cases as presentinel surveillance if spec-
imens were sequenced before March 1, 2021. We clas-
sified cases as sentinel surveillance if specimens were 
sequenced on or after March 1, 2021, and submitted 

 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 29, No. 2, February 2023 243



SYNOPSIS

through the Washington State Department of Health 
sentinel surveillance program, or if the sequencing 
laboratory indicated that specimens were randomly 
selected. Specimens specifically selected for targeted 
sequencing as part of outbreak investigations because 
of travel history, known vaccine breakthrough status, 
or spike gene target failures were not considered sen-
tinel surveillance if sampled outside the random se-
lection process. Washington state and University of 
Washington Institutional Review Boards determined 
this project to be a surveillance activity and exempt 
from review.

Data Analysis
We assessed representativeness of data before and 
after implementing sentinel surveillance by compar-
ing COVID-19 cases with sequenced specimens to all 
COVID-19 cases during the same period according 
to sex, age, race, ethnicity, language, long-term care 
facility (LTCF) association, occupation, county of 
residence, outbreak association, travel history, hos-
pitalization, or death. All epidemiologic data analy-
ses were performed using R version 4.0.3 (17). We 
compared categorical data by using Pearson χ2 test 
or the formula Σ(|E-O|)/E, where E was expected 
and O observed counts. Expected counts were cal-
culated by standardization to overall reported cases 
during the same period. We visualized geographic 
comparisons by mapping standardized ratios of 
observed versus expected cases at the county level. 
We graphed the percentage of cases with sequenced 
specimens by county and month to visualize spatio-
temporal sampling. We evaluated areas with high 
presentinel sequencing coverage and high or low 
sentinel sequencing coverage to determine repre-
sentativeness because data from those areas enabled 
robust phylogeographic studies.

To determine variability of genomic data, we 
constructed phylogenetic trees for 4 scenarios us-
ing the Nextstrain (18) pipeline for SARS-CoV-2. 
The scenarios were presentinel surveillance with 
high coverage, low representativeness; presentinel 
surveillance with high coverage, high representa-
tiveness; sentinel surveillance with high coverage, 
high representativeness; and sentinel surveillance 
with low coverage, low representativeness. We 
performed rarefaction analysis to examine how 
sampling affected the diversity of sequences cap-
tured in each of those 4 scenarios. For each value 
from 1 to n, where n is the total number of avail-
able sequences for a location/timeframe of interest, 
we generated 10 subsampled datasets (sampling 
without replacement). We counted and plotted the 

number of unique haplotypes as a function of the 
number of sampled sequences.

We assessed timeliness of data by comparing the 
interval between initial specimen collection and ge-
nomic data upload to the GISAID database. We as-
sessed median timeliness by month and compared 
categorical data uploaded within <14 days, 14–27 
days, and >28 days after specimen collection.

Results
During the presentinel surveillance period, 10,653 
(3.3%) COVID-19 cases had sequencing informa-
tion available, compared with 56,106 (12.1%) cases 
sampled during sentinel surveillance. For all cat-
egorical comparisons using Pearson χ2 tests, we ob-
served statistically significant differences between 
presentinel and sentinel cases that had sequencing 
data. To avoid having a single large discrepancy 
dominate the representativeness measurement, we 
used the formula Σ(|E-O|)/E instead of Pearson 
χ2 test to directly compare representativeness be-
tween populations (Table).

Both presentinel and sentinel cases with se-
quencing data were generally representative of all  
COVID-19 cases for sex at birth. During the presen-
tinel surveillance period, older age groups and hos-
pitalized persons with sequenced specimens were 
overrepresented. Persons who died of COVID-19 
were overrepresented by ≈3-fold among presentinel 
cases with sequencing data compared with cases that 
had no sequencing data. Sentinel surveillance imple-
mentation resolved overrepresentation of decedents, 
but persons with COVID-19 who were hospitalized 
or >65 years of age were underrepresented.

Early during the pandemic, specimens from 
known outbreak-associated COVID-19 cases were 
more commonly sequenced, likely reflecting prefer-
ential sample selection of those cases for studies. Sim-
ilarly, sequencing of specimens from LTCF-associat-
ed COVID-19 cases was enriched by 2.5-fold. Sentinel 
surveillance implementation decreased but did not 
completely resolve enrichment of outbreak-associat-
ed cases, whereas LTCF-associated case enrichment 
was substantially resolved.

Presentinel COVID-19 cases with sequenced 
specimens had more complete symptom information 
when compared with all COVID-19 cases. Both pre-
sentinel and sentinel cases with sequenced specimens 
had symptom information reported more frequently 
compared with all cases. 

Persons self-reporting as a racial or ethnic minority 
were generally overrepresented among presentinel CO-
VID-19 cases with sequenced specimens; race/ethnicity 

244 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 29, No. 2, February 2023w 



Surveillance System for SARS-CoV-2 Genomic Data

data were less likely to be missing among those cases 
than among total COVID-19 cases. After sentinel sur-
veillance implementation, persons reporting Hispanic 
ethnicity or Spanish language preference were overrep-
resented among COVID-19 cases with sequenced speci-
mens. Differences in missing race data were resolved 
after sentinel surveillance implementation.

Industry information was missing for most cases. 
According to the available industry information, agri-
culture, forestry, fishing and hunting, and healthcare 
and social assistance were overrepresented among 

cases with sequenced specimens. Industry informa-
tion was missing for >90% of cases during the sentinel 
surveillance period; therefore, industry representa-
tion was not assessed in this study.

More persons with sequenced specimens during 
the presentinel period traveled outside the United 
States than expected, indicating likely enrichment for 
international travelers. Travel information was miss-
ing for >95% of cases during the sentinel surveillance 
period; therefore, traveler representation was not as-
sessed in this study.
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Table. Comparison of demographic characteristics between COVID-19 cases with sequenced specimens and all confirmed COVID-19 
cases in study of presentinel and sentinel surveillance system implementation and evaluation for SARS-CoV-2 genomic data, 
Washington, USA, 2020–2021* 

Variable 
Presentinel period†  Sentinel period‡ 

Overall Sequenced O/E Σ(|E-O|)/E§ Overall  Sequenced O/E Σ(|E-O|)/E§ 
Total no. 326,850 10,653    463,639 56,106   
Sex 

   
0.73  

   
0.55 

 F 159,460 (48.8) 5,326 (50.0) 1.02   230,524 (49.7) 27,163 (48.4) 0.97  
 M 157,133 (48.1) 4,932 (46.3) 0.96   223,711 (48.3) 27,916 (49.8) 1.03  
 Other 287 (0.1) NA¶ 0.53   331 (0.1) 55 (0.1) 1.37  
 Missing 9,970 (3.1) 390 (3.7) 1.20   9,073 (2.0) 972 (1.7) 0.89  
Age group, y 

   
2.36  

   
1.58 

 0–4 7,802 (2.4) 211 (2.0) 0.83   18,499 (4.0) 2,188 (3.9) 0.98  
 5–17 32,121 (9.8) 932 (8.7) 0.89   77,782 (16.8) 9,815 (17.5) 1.04  
 18–44 165,920 (50.8) 5,128 (48.1) 0.95   224,380 (48.4) 28,909 (51.5) 1.06  
 45–64 83,046 (25.4) 2,628 (24.7) 0.97   102,215 (22.0) 11,309 (20.2) 0.91  
 65–79 26,724 (8.2) 1,073 (10.1) 1.23   32,000 (6.9) 3,052 (5.4) 0.79  
 >80 10,998 (3.4) 680 (6.4) 1.90   8,591 (1.9) 832 (1.5) 0.80  
 Unknown 239 (0.1) NA¶ 0.13   172 (0.0) NA¶ 0.05  
COVID-19 deaths 5,134 (1.6) 448 (4.2) 2.68 1.68  4,568 (1.0) 452 (0.8) 0.82 0.18 
Hospitalized for COVID-19 18,992 (5.8) 891 (8.4) 1.44 0.44  25,060 (5.4) 1,721 (3.1) 0.57 0.43 
Outbreak-associated 49,165 (15.0) 2,350 (22.1) 1.47 0.47  25,902 (5.6) 4,281 (7.6) 1.37 0.37 
LTCF-associated 19,899 (6.1) 1,614 (15.2) 2.49 1.49  7,317 (1.6) 1,105 (2.0) 1.25 0.25 
Symptoms    0.61     0.80 
 Yes 172,070 (52.6) 6,860 (64.4) 1.22   173,363 (37.4) 27,140 (48.4) 1.29  
 No 24,182 (7.4) 701 (6.6) 0.89   44,731 (9.6) 3,430 (6.1) 0.63  
 Unknown 130,598 (40.0) 3,092 (29.0) 0.73   245,545 (53.0) 25,536 (45.5) 0.86  
Race/Ethnicity 

   
1.95  

   
1.35 

 Hispanic 70,020 (21.4) 2,671 (25.1) 1.17   53,221 (11.5) 9,285 (16.5) 1.44  
 Non-Hispanic, American 
 Indian, or Alaska Native 

3,953 (1.2) 161 (1.5) 1.25   5,455 (1.2) 685 (1.2) 1.04  

 Non-Hispanic Asian 16,321 (5.0) 755 (7.1) 1.42   21,787 (4.7) 3,261 (5.8) 1.24  
 Non-Hispanic Black 14,863 (4.5) 548 (5.1) 1.13   19,812 (4.3) 2,429 (4.3) 1.01  
 Non-Hispanic multiracial 5,575 (1.7) 217 (2.0) 1.19   7,707 (1.7) 1,173 (2.1) 1.26  
 Non-Hispanic Native  
 Hawaiian or other  
 Pacific Islander 

5,338 (1.6) 203 (1.9) 1.17   6,432 (1.4) 704 (1.3) 0.90  

 Non-Hispanic White 133,224 (40.8) 4,174 (39.2) 0.96   229,100 (49.4) 24,039 (42.8) 0.87  
 Non-Hispanic, other  
 race 

3,211 (1.0) 138 (1.3) 1.32   3,271 (0.7) 345 (0.6) 0.87  

 Unknown 74,345 (22.7) 1,786 (16.8) 0.74   116,854 (25.2) 14,185 (25.3) 1.00  
Language 

   
0.94  

   
2.15 

 English 104,984 (32.1) 3,357 (31.5) 0.98   138,437 (29.9) 18,484 (32.9) 1.10  
 Spanish 23,408 (7.2) 884 (8.3) 1.16   9,849 (2.1) 2,474 (4.4) 2.08  
 Other 5,137 (1.6) 239 (2.2) 1.43   1,745 (0.4) 337 (0.6) 1.60  
 Unknown 12,519 (3.8) 273 (2.6) 0.67   9,261 (2.0) 1,434 (2.6) 1.28  
 Missing 180,802 (55.3) 5,900 (55.4) 1.00   304,347 (65.6) 33,377 (59.5) 0.91  
*Values are no. or no. (%). We included all confirmed COVID-19 cases (SARS-CoV-2 RNA detected by molecular amplification) reported among 
Washington residents from January 21, 2020, through December 31, 2021, in the Washington Disease Reporting System. E, expected counts; LTCF, 
long-term care facility; NA, not applicable; O, observed counts.  
†Cases were classified as presentinel if specimens were sequenced before March 1, 2021. 
‡Cases were classified as sentinel if specimens were sequenced on or after March 1, 2021, through the sentinel surveillance program. 
§Formula used to directly compare representativeness between populations. 
¶Counts <10 are censored.  
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Reinfection data were captured starting on Sep-
tember 1, 2021; therefore, case-level data were not 
available for most of the study period. From Septem-
ber through December 2021, reinfection cases were 
underrepresented in the sequencing data, which 
might reflect a higher average Ct in this population.

Before sentinel surveillance implementation, geo-
graphic sequencing coverage was variable and fo-
cused on western Washington (Figure 1); King, San 
Juan, Pacific, and Yakima Counties had high cover-
age. Some areas of the state had little or no data avail-
able. After sentinel surveillance implementation, 
geographic coverage equalized regionally across the 
state; variable coverage because of sentinel laboratory 
service areas occurred as expected (Figure 1).

We investigated representativeness further in ar-
eas with high presentinel sequencing coverage and 
high cases numbers (Appendix Figure 1, https://
wwwnc.cdc.gov/EID/article/29/2/22-1482-App1.
pdf). During March–June 2020, Yakima County had 
19%–30% sequencing coverage for all COVID-19 
cases; high-quality genomic data were available for 
1,696 cases. High coverage was partially driven by 
sequencing specimens from LTCF-associated cases. 
A total of 25% of cases with sequenced specimens 
were affiliated with LTCFs, compared with 11% of all 
COVID-19 cases during that period. Persons with se-
quenced specimens were more commonly >65 years 
of age and less commonly of Hispanic descent or with 
Spanish language preference.

We performed phylogenetic analysis of all se-
quenced specimens from Yakima County cases with 
COVID-19 onset dates during March–June 2020 (Ap-
pendix Figure 2, panel A). During this period, most 
(63%) sequences were classified as Nextstrain clade 
20B (Pango lineage B.1.1), 23% were clade 19B (Pango 
lineage A), 9% were clade 20A (Pango lineage B.1) and 
5% were clade 20C. Comparatively, within the entire 
state of Washington, clades 20C and 19B (Pango lin-
eage A) were most prevalent during the same period.

Sequencing coverage was also high in Yakima 
County in February 2021. Sequencing coverage was 
26% across all COVID-19 cases, and high-quality ge-
nomic data were available for 271 cases. During this 
period, we observed smaller differences between 
cases with sequenced specimens and all cases for eth-
nicity and outbreak-association; otherwise, cases with 
sequenced specimens were largely representative of 
all cases during this time. We performed phyloge-
netic analysis of Yakima cases during February 2021 
(Appendix Figure 2, panel B). The most common lin-
eage identified was 21C (Pango lineage B.1.427/429 
or Epsilon), representing 33% of sequences, then 20G 

(Pango lineage B.1.2) at 29%, 20A at 13%, 20B at 9%, 
and 20C at 15%. In Washington, 30% of sequences in 
GISAID were Epsilon in February 2021.

After sentinel surveillance implementation, 
variability in geographic coverage was diminished 
regionally but persisted at the county level. We in-
vestigated counties with high and low sentinel se-
quencing coverage to determine effects of variable 
sentinel specimen sampling. We specifically com-
pared Whatcom County, a county with high cover-
age from a sentinel laboratory, and Clark County, 
a county with low coverage. During the sentinel 
surveillance period, cases with sequenced speci-
mens from Whatcom County were representative 
of all COVID-19 cases from the county for age, sex, 
race, death from COVID-19, and LTCF-association. 
Persons hospitalized for COVID-19 were under-
represented among sentinel surveillance cases, re-
flecting statewide findings. Outbreak-associated 
cases and symptomatic persons were slightly over-
represented among sentinel surveillance cases. 
We performed phylogenetic analysis of cases from 
Whatcom County during the sentinel surveillance 
period (Appendix Figure 2, panel C) and showed 
a transition from clade 20I (Alpha) to 21A/21I/21J 
(Delta) dominance, similar to what was observed in 
Washington overall.

Clark County had very low sequencing coverage 
over the sentinel surveillance period, ranging from 
0.8% of cases in April 2021 to 4.9% of cases in June 
2021. Persons <45 years of age and outbreak-associ-
ated cases were overrepresented among cases with 
sequenced specimens, and hospitalized persons were 
underrepresented. We performed phylogenetic anal-
ysis of cases from Clark County during the sentinel 
surveillance period (Appendix Figure 2, panel D). De-
spite limited coverage, we observed a variant profile 
similar to that of Whatcom County and Washington 
overall. We performed rarefaction analysis and found 
sentinel sampling from Clark and Whatcom counties 
displayed higher viral diversity than Yakima Coun-
ty at 2 presentinel timepoints (Figure 2). Additional 
sampling will be required in all scenarios to fully cap-
ture circulating viral diversity.

Timeliness of available genomic data in the GI-
SAID database varied over the study period (Figure 
3). During the presentinel period, median timeliness 
ranged from 23 days in February to 98 days in Oc-
tober of 2020; >50% of sequences were uploaded to 
GISAID >28 days after specimen collection for most 
months. During the sentinel period, median timeli-
ness was 26 days in August and 15 days in December 
of 2021; most sequences were uploaded to GISAID 
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<28 days after specimen collection in all months after 
sentinel surveillance implementation.

Discussion
After a sentinel surveillance system for sequenc-
ing SARS-CoV-2 specimens was implemented in  
Washington, the available data were more epide-
miologically and genomically representative of 
all COVID-19 cases and timelier than data before 
sentinel surveillance began. Specifically, represen-
tativeness of age, death from COVID-19, outbreak-
association status, LTCF-affiliated status, and 
geographic coverage improved; increased viral di-
versity was also noted. Before sentinel surveillance 
began, we were unable to identify a county or peri-
od with representative sampling, except for Yakima 
County during February 2021. After implementa-
tion, representativeness improved across multiple 
areas. Increased representativeness is a critical 
achievement because genomic data are routinely 

available to public health leaders and decision-
makers; ensuring equitable sampling coverage has 
substantial implications for response planning and 
interventions. Measuring effects of genomic sur-
veillance on public health responses in Washington 
was not included in this study; however, methods  
for measuring and evaluating effectiveness should 
be explored.

Overrepresentation of older persons in presentinel 
genomic data was partly driven by selection of LTCF-
associated COVID-19 cases and COVID-19 cases result-
ing in hospitalization or death. After sentinel surveil-
lance began, the decrease in representation of persons 
>65 years of age improved overall representativeness 
but actually resulted in undersampling this age group, 
possibly indicating poor sequencing coverage by facili-
ties where this population seeks care. Indeed, the sen-
tinel surveillance system underrepresents hospitalized 
cases; further consideration is needed to improve data 
capture of both inpatient and outpatient COVID-19 
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Figure 1. Geographic extent 
of sequencing data available 
for COVID-19 cases in study 
of sentinel surveillance system 
implementation and evaluation 
for SARS-CoV-2 genomic 
data, Washington, USA, 
2020–2021. A) Presentinel 
surveillance (specimens 
sequenced before March 1, 
2021). B) Sentinel surveillance 
(specimens sequenced on or 
after March 1, 2021, through the 
sentinel surveillance program). 
Standardized ratios (observed/
expected counts) of cases with 
sequenced specimens are 
indicated by county. No sequence 
data were available for 3 counties 
during the presentinel period. 
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cases. Before sentinel surveillance, outbreak-associated 
and symptomatic COVID-19 cases were oversampled. 
After implementation, overrepresentation of those 
cases decreased but was not resolved. At least 3 pos-
sible explanations exist for those findings: specimens 
from symptomatic SARS-CoV-2–infected persons are 
more likely to be sequenced because of higher aver-
age viral loads, which improves sequencing success;  
asymptomatic persons might be detected through 
screening programs not associated with sentinel lab-
oratories; and outbreak-associated specimens might 
be sent to sentinel laboratories to ensure sequencing 
for investigative purposes. Random sampling among 
specimens received at sentinel laboratories could, 
thereby, still lead to biased samples.

Minority race and ethnicity were more com-
monly reported among presentinel cases with 
sequenced specimens; data were also more com-
plete among those cases. Whether true overrepre-
sentation occurred or race data were differentially 
missing among all cases is unclear. After sentinel 
surveillance implementation, persons reporting  

Hispanic ethnicity and Spanish language preference 
were overrepresented compared with overall cases 
statewide, which likely reflects the catchment areas 
of sentinel laboratories. Geographic coverage vari-
ability was identified during both presentinel and 
sentinel surveillance periods. Presentinel coverage 
focused on western Washington, where laboratories 
were connected to sequencing capacity. Sentinel sur-
veillance enabled access to sequencing for additional 
laboratories and ensured greater equitable regional 
coverage, although variability at the county and 
subcounty levels remains. Variable coverage and 
representativeness at the substatewide level should 
be considered when using genomic data for specific 
analyses. Increasing geographic coverage will re-
quire additional sentinel laboratories that contribute 
specimens from areas of low coverage.

Other epidemiologic information was of interest 
in assessing representativeness, including industry 
and occupation, travel history, and reinfection status. 
However, data for those variables was incomplete, 
limiting their usefulness. As public health systems 
pivot away from capturing data through individual 
case interviews, datasets available for assessing sam-
pling of specimens for sequencing should be consid-
ered. The full potential of genomic epidemiologic sur-
veillance for improving public health requires pairing 
epidemiologic metadata with genomic data.

Viral diversity has been and continues to be dy-
namic over the course of the COVID-19 pandemic. 
Measuring true viral diversity requires random or 
complete sampling. Actual circulating viral diversity 
likely differed across locations and timepoints in-
cluded in our study; if circulating diversity generally 
increased over time, our conclusions would be biased 
toward assumption of improved capture because  
of surveillance.

Other states and countries have used various prac-
tices to select SARS-CoV-2 specimens for sequencing. 
Methods that rely on convenience samples, such as 
our presentinel system, likely have sampling biases 
that affect phylogenetic inference. In those settings, 
weighting cases for inclusion in estimates by using se-
lection probabilities might help to correct bias. Alter-
natively, approaches to correct for nonrepresentative 
sampling during analysis, such as inverse probability 
weighting, should be considered. Even after sentinel 
surveillance system is put in place, some biases re-
main, such as undersampling of hospitalized cases, 
that should be corrected by diversifying sources of 
specimens. Ongoing evaluation and improvement of 
systems is necessary, especially in the context of per-
forming epidemiologic studies. Many epidemiologic 
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Figure 2. Rarefaction analysis of virus haplotype diversity in 
Yakima, Clark, and Whatcom Counties in study of sentinel 
surveillance system implementation and evaluation for SARS-
CoV-2 genomic data, Washington, USA, 2020–2021. Presentinel 
COVID-19 cases (sequenced before March 1, 2021) with 
sequenced specimens from Yakima County (2 timepoints) were 
compared with sentinel COVID-19 cases (sequenced on or after 
March 1, 2021, through the sentinel surveillance program) with 
sequenced specimens in Clark and Whatcom Counties. Haplotype 
count indicates virus diversity.



Surveillance System for SARS-CoV-2 Genomic Data

studies of COVID-19 have availability of genomic 
data as an inclusion criterion; if sampling biases are 
not clarified, biased conclusions might be drawn. Co-
development of genomic epidemiology programs 
alongside bioinformatics programs is needed in pub-
lic health departments because epidemiologic and 
phylogenetic analyses are best performed after sam-
pling methods and data limitations are considered.

Although representativeness and timeliness 
were the focus of this study, other features should 
be considered in the design of surveillance sys-
tems, such as simplicity, flexibility, sensitivity, 
and stability (4). Sentinel surveillance systems are 
complicated and require ongoing coordination 
with laboratory partners; stability requires public 
health resources. Alternative systems to enable 
representativeness and timeliness while increasing 
simplicity and stability could include requirements 
for specimen submission, such as those commonly 
used for foodborne pathogens and other notifiable 
conditions. Sensitivity is essential for the surveil-
lance system goals of rare variant detection and 
timely surveillance of circulating virus variants. 
Right-size sampling, such as that performed for in-
fluenza surveillance, should be considered (19; S. 
Wohl et al., unpub. data, https://www.medrxiv.
org/content/10.1101/2021.12.30.21268453v1).

Even after careful consideration of surveillance 
system design for pathogen sequencing and pairing 

with epidemiologic data, limitations remain because 
of specimen requirements for sequencing. Studies 
using surveillance sequencing data should report 
the following limitations: application of laboratory-
based diagnostic testing might depend on many 
factors that are difficult to assess and increasingly 
complex because of availability of improved at-
home testing, and, among positive test results, those 
with a low PCR Ct are more likely to be sequenced. 
Therefore, representativeness of sequencing data is 
inherently limited.

Assessment of representativeness during presen-
tinel and sentinel surveillance is limited in the causal 
inferences that can be drawn. Other concurrent factors 
might have affected representativeness and timeliness 
during this study period. For example, CDC surveillance 
efforts were also increased during this timeframe; sam-
ples sequenced under CDC surveillance were coded as 
sentinel and were analyzed as part of the sentinel sur-
veillance system in Washington.

In conclusion, implementing a sentinel surveil-
lance system for sequencing SARS-CoV-2 specimens 
was associated with improved genomic and epide-
miologic representativeness and timeliness of avail-
able sequence data in Washington. Ongoing evalua-
tion and improvements will be necessary to ensure 
representative capture of inpatient settings. As 
public health leaders discuss changes to COVID-19 
surveillance systems nationally, datasets required to  
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Figure 3. Timeliness of sequence data availability in study of sentinel surveillance system implementation and evaluation for SARS-
CoV-2 genomic data, Washington, USA, 2020–2021. Graph shows percentages of COVID-19 cases with sequenced data uploaded to 
the GISAID database (https://www.gisaid.org) within 0–13, 14–27, and >28 days after specimen collection. A) Presentinel surveillance 
(specimens sequenced before March 1, 2021). B) Sentinel surveillance (specimens sequenced on or after March 1, 2021, through the 
sentinel surveillance program).
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assess representativeness of sampling for sequenc-
ing should be considered. Cross-jurisdictional sam-
pling bias is a concern when validating phylogeo-
graphic methods applications; attention to sampling 
will improve the usefulness of those datasets for 
public health practice.
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