
By early January 2023, the COVID-19 pandemic 
had caused >6.7 million deaths worldwide (1), 

and severe socioeconomic hardship (2–4), particularly 
for racial minorities (5,6). Children experienced pan-
demic-related school closures that led to substantial 
losses in learning (7–9), elevated rates of child abuse 
(10), lack of access to healthy food (11), and emotional 
harm (12). By the end of March 2020, all kindergarten 
through 12th grade (K–12) public schools in the Unit-
ed States had stopped in-person instruction (13), af-
fecting 55 million students. Schools in 48 US states re-
mained closed through the end of the school year (14). 

In August and September of 2020, a total of 74% of the 
100 largest school districts in the United States started 
the year with remote-only teaching (15). By Novem-
ber 2020, 19% of those districts remained fully remote, 
and 36% had fully resumed in-person learning (15). 
Schools continued to reopen throughout the year.

By September 2021, a large fraction (70%) of US 
adults had been vaccinated with highly effective 
SARS-CoV-2 vaccines (16), including an estimated 
86% of K–12 teachers and school staff (17). Howev-
er, children <12 years of age were still ineligible for 
vaccines (16,18). Because large pockets of the coun-
try were still unvaccinated, COVID-19 continued to 
claim lives, and 100,000 deaths were reported in the 
United States during July–September 2021, including 
246 deaths among children 0–17 years of age (16). At 
the end of October 2021, the United States authorized 
administration of COVID-19 vaccines for children 
5–11 years of age (19). In January 2022, schools re-
turned from winter break amidst a major COVID-19 
wave fueled by the emergence of the highly trans-
missible and immune-evasive Omicron variant (F.P. 
Lyngse, unpub. data, https://doi.org/10.1101/2021.
12.27.21268278), and case counts among students and 
staff reached record numbers despite increasing vac-
cine coverage in the United States (16,20).

Schools across the country adopted diverse re-
opening plans for the 2021–22 school year. Among 
the largest districts, 96% offered some form of in-
person learning (21). Although some schools fully 
returned to prepandemic normal operations without 
COVID-19 interventions, many adopted policies for 
using masks, social distancing, quarantine, or test-
ing requirements to safeguard the return to campus. 
The federal government invested $122 billion to sup-
port safe, in-person instruction through screening, 
improved building ventilation, purchase of personal 
protective equipment, hiring of additional personnel, 
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In response to COVID-19, schools across the United 
States closed in early 2020; many did not fully reopen 
until late 2021. Although regular testing of asymptomatic 
students, teachers, and staff can reduce transmission 
risks, few school systems consistently used proactive 
testing to safeguard return to classrooms. Socioeconomi-
cally diverse public school districts might vary testing lev-
els across campuses to ensure fair, effective use of lim-
ited resources. We describe a test allocation approach 
to reduce overall infections and disparities across school 
districts. Using a model of SARS-CoV-2 transmission in 
schools fit to data from a large metropolitan school dis-
trict in Texas, we reduced incidence between the highest 
and lowest risk schools from a 5.6-fold difference under 
proportional test allocation to 1.8-fold difference under 
our optimized test allocation. This approach provides a 
roadmap to help school districts deploy proactive test-
ing and mitigate risks of future SARS-CoV-2 variants and 
other pathogen threats.
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and other measures (22,23). Within the first 2 months 
of the school year, ≈1.5% of schools closed temporar-
ily in response to COVID-19 outbreaks (21).

Frequent and systematic testing of asymptomatic 
persons has been shown to be a viable and cost-effec-
tive mitigation strategy in communities, universities, 
and schools (24–29). However, tests are costly and 
inaccessible for many school districts in the United 
States; districts with limited testing resources are 
forced to determine how to allocate testing across 
schools to protect their students, staff, and commu-
nities. Some districts have opted to restrict testing to 
symptomatic persons and other districts have appor-
tioned tests according to school enrollment (30,31).

In this study, we propose a strategy for allocat-
ing testing resources across a diverse school dis-
trict in which the frequency of testing depends on 
the school’s enrollment and grade range, recent  
COVID-19 cases reported among students and staff, 
and the estimated prevalence in the surrounding (i.e., 
catchment) community. Coupling derivative-free 
constrained optimization and a detailed agent-based 
simulation of SARS-CoV-2 transmission within and 
between classrooms, we derived an optimal alloca-
tion of tests across a school system that could mini-
mize the maximum risk for cumulative infections on 
any campus over a 10-week period. We applied our 
approach to design a testing strategy for the 11 main 
high schools in the Austin Independent School Dis-
trict (AISD; Austin, Texas, USA), which has 18,500 
enrolled students and 1,500 staff (32).

Methods
To determine an optimal allocation of tests across 
schools we developed a 2-step framework in which 
we first modeled COVID-19 transmission within 
schools for different levels of surveillance testing 
and then used those results as an input to an optimi-
zation model (Appendix, https://wwwnc.cdc.gov/
EID/article/29/3/22-0761-App1.pdf). We first con-
sidered a hypothetical school system with 6 schools 
of 500 students each that differ over 2 parameters: 
community incidence and in-school transmission 
rate. For community incidence, we considered low 
and high scenarios. In the low scenario, the com-
munity had 35 new daily cases/100,000 persons; in 
the high scenario the community had 70 new daily 
cases/100,000 persons. For the transmission rate, we 
considered unmitigated R0 values to be low (1.0), 
moderate (1.5), or high (2.0).

We then modeled 11 high schools in AISD by us-
ing student enrollment based on attendance in early 
January 2021. We considered 2 different in-school 

transmission rate scenarios: an unmitigated trans-
mission rate in all schools of with an R0 of 1.0; and 
transmission rates of each school estimated by fit-
ting a regression model of the number of cases re-
ported in that school against the estimated enroll-
ment (33) (Appendix).

For each school and each scenario, we ran 300 sto-
chastic simulations. We assumed that only students 
(not adult staff) were tested on Monday mornings 
and that test results were available instantly (34); pre-
liminary analysis suggested that testing adults had 
minimal effects. During any given week, students 
in the model were selected for testing evenly across 
classes rather than testing a subset of entire classes.

In addition to proactive testing, we assumed that 
90% of symptomatic persons would seek testing 0.5–
1.5 days after symptom onset and then isolate after 
testing, even before results are available. We assumed 
20% of infected students and 57% of infected adults 
would become symptomatic (35,36).

In our analysis of a hypothetical school system, we 
assumed that tests were perfectly accurate and that a 
positive test immediately triggered a 14-day isolation 
of the person and a 14-day quarantine of household 
and classroom members. For our case study of AISD, 
we assumed lower test accuracy based on estimates 
for the widely used Abbott BinaxNow antigen tests 
(https://www.abbott.com), which had 95% sensitiv-
ity for symptomatic persons, 80% sensitivity for as-
ymptomatic persons, and 99% specificity (37,38).

Transmission Model
We built a stochastic agent-based model of COVID-19 
transmission within schools that included household 
transmission for students. We held the average com-
munity incidence constant through the simulation 
and all persons could become infected through out-
side interactions that were not explicitly modeled. 
The modeled population included students, teach-
ers, staff, bus drivers, and members of the students’ 
households. We modeled various contacts between 
agents in schools (Appendix).

We used published estimates for the average 
SARS-CoV-2 incubation, latent, and infectious peri-
ods, as well as a person’s infectiousness through time 
(39). We assumed that asymptomatic cases were two 
thirds as infectious as symptomatic cases (40).

We simulated contacts at half-hour intervals and 
stochastically determined infection events based on 
the transmission probability between pairs of inter-
acting persons. For each scenario, we derived the 
transmission rate to produce the specified unmiti-
gated in-school R0 (Appendix). This R0 is the basic 
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reproductive rate we would obtain without any test-
ing, symptomatic or surveillance, and reflects other 
mitigation measures in place, such as face masks or 
social distancing.

We ran simulations for 10 weeks. We initiated 
simulations with everyone susceptible and simulated 
community and household infections for 10 days be-
fore school started.

Optimization Model
The objective of our test-allocation problem was to 
minimize the maximum risk experienced by any 
school in the system under consideration. Because 
of the stochastic nature of our COVID-19 transmis-
sion model, we had to choose a measure that summa-
rized the risk for a given school under each possible 
frequency of surveillance testing. We defined the risk 
for each school as the expected number of on-campus 
infections of students plus the 90% conditional value-
at-risk (CVaR) of the number of on-campus infec-
tions. Here, CVaR represents the expected number of 
such infections, conditional on restricting attention to 
the worst 10% of simulated outcomes, and hence ac-
counts for risk aversion. Given 2 candidate allocations 
with a similar average number of cases, we preferred 
the allocation that limited the upside tail risk in terms 
of a large outbreak. We further accounted for risk by 
taking the worst-case risk measure across all schools. 
We used on-campus infections, rather than total  

infections, because total infections are partially driven 
by community incidence rather than school interven-
tions. We further used the proportion of a school’s in-
fected population rather than the absolute number of 
infections, which enabled us to treat large and small 
schools equally. Then, we could calculate each school’s 
risk as a function of the number of tests allocated; more 
tests reduced the risk incurred. Our goal was to allo-
cate tests to schools to minimize the largest risk mea-
sure incurred at any school, subject to the constraints 
that we respect total testing capacity across the school 
system and that we cannot test all students at a school 
more than once per week (Appendix Figure 13).

Results
Under all transmission scenarios, we expected pro-
active testing to greatly reduce the proportion of 
students infected on campus over a 10-week period 
(Figure 1, panel A). In the high-risk scenario (in-
school R0 = 2.0), 14-day testing reduced the fraction 
of students infected from 18.2% to 4.1%; under the 
lowest risk scenario (in-school R0 = 1.0), the expected 
incidence decreased from 4.0% to 1.5%. When we in-
creased testing frequency from every 14 days to every 
7 days, the expected incidence in high-risk scenario 
reduced to 2.1% and expected incidence in low-risk 
scenario reduced to 1.0%.

The efficacy of testing to mitigate in-school trans-
mission depended on whether quarantine was limited 

 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 29, No. 3, March 2023 503

Figure 1. Projected effects of a 
COVID-19 test allocation strategy 
to mitigate SARS-CoV-2  
infections across 11 school 
districts in the Austin Independent 
School District, Austin, Texas, 
USA. The whisker plots 
demonstrate projected effects 
over a 10-week period in a 
school with 500 students under 
2 scenarios: A) assuming the 
household and classroom of each 
detected case is quarantined; or 
B) assuming only households 
(not entire classrooms) are 
quarantined. Colors indicate 
reproduction numbers as low 
(1.0), moderate (1.5), and high 
(2.0) in-school transmission risks 
in the absence of proactive or 
symptomatic testing, isolation, 
and quarantine. Whiskers 
indicate points that lie within 
1.5 interquartile ranges of the 
lower and upper quartiles; boxes 
indicate interquartile range and 
horizontal bars indicate median fraction of students infected on-campus depending on the frequency of proactive testing as never (0), or 
once per every 28, 21, 14, or 7 days. Results are based on 300 stochastic simulations for each scenario.



RESEARCH

to the household of the positive case or extended to the 
entire classroom (Figure 1, panel B). Under a moder-
ate transmission scenario (in-school R0 = 1.5) in which 
students are tested every other week, the expected in-
cidence decreased from 6.3% (95% CI 1.0%–15.6%) to 
2.9% (95% CI 1.0%–6.2%) when we added classroom 
quarantine to household quarantine. We also estimated 
the costs of quarantine in terms of days of in-school edu-
cation lost over the 10-week projection period, under the 
moderate transmission risk scenario (Figure 2, panel A; 
Appendix  11). Without proactive testing, we expected 
the strategy of quarantining entire classrooms after a 
positive test to result in an average of 3 (6%) out of 50 
school days missed per student. We expected house-
hold-only quarantine to reduce that cost by roughly 
6.5-fold, to an average 0.9% of school days missed; how-
ever, that strategy roughly doubled the days students 
spent at school while infectious (Figure 2, panel B). 

Regardless of quarantine policy, our model 
showed that proactive testing could reduce in-school 
exposure, with few to no additional lost days of school. 
In addition, we found that shortening the quarantine 
period for classroom contacts from 14 to 7 days would 
mitigate some of the educational losses without sub-
stantially increasing health risks (Appendix Figure 12).

As a sensitivity analysis, we also considered a 
higher rate of SARS-CoV-2 introductions from the 
surrounding community by raising daily new cases 
from 35 cases/100,000 persons to 70 cases/100,000 
persons and lowering the accuracy of SARS-CoV-2 
tests (37,38) (Appendix Figures 10, 11). In our sensi-
tivity analysis, we found that our estimates were ro-
bust to the assumed sensitivity and specificity of the 
tests (Appendix).

Case Study—Optimizing Testing across a  
Large Municipal School District
We applied our model to derive an optimal allocation of 
testing resources across the 11 high schools in AISD, the 
largest district in Austin, Texas, which includes 75,000 
students, 5,500 teachers, and 5,000 staff. The district op-
erates 125 schools from pre-K–12th grade; 55% of stu-
dents are Hispanic and 30% White, and >50% come from 
economically disadvantaged backgrounds (32). We esti-
mated the external force of infection for each school by 
comparing reported COVID-19 incidence in the neigh-
borhood of a school to reported incidence across the 
entire metropolitan statistical area (MSA) from March 
2020–January 2021 (Figure 3, panel A) (41). We listed 
the schools in order of the estimated external risks; the 
catchment of school A had almost double (195%) the 
city-wide incidence, and the catchment of school K had 
only 37%. In general, risk (i.e., COVID-19 incidence) was 
higher on the east side of Austin.

We estimated on-campus transmission risk for 
each school by using reported cases from each school 
during August 16, 2020–March 8, 2021 (Figure 3, panel 
B). In brief, we scaled the in-school R0 based on the dif-
ference between the cumulative, per student incidence 
in a school to the cumulative incidence throughout the 
district. We assumed a baseline R0 of 1.0; thus, schools 
with incidence equal to the district-wide incidence had 
resulting estimates that ranged from 0.70–1.41. Our es-
timates for on-campus transmission risk and external 
force of infection were not greatly correlated (Appen-
dix). We also ran scenarios in which all schools had the 
same transmission risk (Appendix Figures 5, 6).

On the basis of the estimated heterogeneity in 
risks across the district, we estimated the optimal  
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Figure 2. Projected days of 
school missed in a COVID-19 
test allocation strategy to 
mitigate SARS-CoV-2 infections 
across 11 school districts in 
the Austin Independent School 
District, Austin, Texas, USA. 
The graphs demonstrate the 
expected proportion of school 
days missed due to isolation 
or quarantine over a 10-week 
period in a school with 500 
students under 2 scenarios: A) 
assuming the household and 
classroom of each detected 
case is quarantined; or B) 
assuming only households 
(not entire classrooms) are quarantined. Estimates assume a moderate (reproduction number = 1.5) in-school transmission risk in the 
absence of proactive or symptomatic testing, isolation, and quarantine. All projections assume that isolation and quarantine periods 
last 14 days. In addition to on-campus transmission, persons might be exposed in the surrounding community at a rate of 35 new daily 
infections/100,000 population. The results are based on 300 stochastic simulations for each scenario.
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allocation of testing resources across schools by 
searching the space of possible allocations. For a 
given allocation, we projected the outcome for each 
school by first averaging the expected cumulative 
incidence (i.e., the mean across 300 simulations) and 
then the projected tail risk (i.e., the mean across the 
10% worst-outcome simulations). We found the max-
imum value across schools (i.e., the projection for the 
highest-risk school) and then selected the allocation 
that minimized this value. Assuming that the aver-

age community incidence was 70 new daily cases 
per 100,000 population, based on estimates from late 
January 2021 in the Austin area (42), and that the dis-
trict had a total testing budget of 1 test per student 
every 14 days across the district, the optimized al-
location ranged from testing once per 45 days in the 
lowest-risk school (school K) to once per 7 days in 
the highest-risk school (school A) (Figure 4, panel A). 
We assumed that testing could not be administered 
more frequently than weekly. The optimal allocation  
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Figure 3. Locations of 11 high 
schools in the Austin Independent 
School District, Austin, Texas, 
USA, used to model a COVID-19 
test allocation strategy to mitigate 
SARS-CoV-2 infections across 
school districts. A) Daily incidence 
of COVID-19 infections in late 
January 2021 in the catchment 
area of each high school relative 
to the average incidence across 
the Austin Metropolitan Statistical 
Area. Estimates are based on 
COVID-19 case reports during 
March 2020–January 2021. A value 
of one corresponds to the average 
incidence in the MSA. Schools are 
listed A through K from highest 
to lowest estimated daily incidence (Appendix Table 3, https://wwwnc.cdc.gov/EID/article/29/3/22-0761-App1.pdf). B) On-campus 
transmission risks, estimated from reported COVID-19 cases during August 16, 2020–March 8, 2021. Values are scaled so that 1.0 
means that the school reported the expected number of cases, based on a least-squares linear fit of reported cases to school enrollment 
(Appendix Figure 4).

Figure 4. Test allocations and estimated infection rates based on testing frequency in a COVID-19 test allocation strategy to mitigate 
SARS-CoV-2 infections across 11 school districts in the Austin Independent School District, Austin, Texas, USA. A) Testing allocation for 
3 testing strategies. Orange dashed line indicates pro rata strategy; blue bars indicate optimized strategy to minimize the maximum risk; 
diamonds indicate optimized strategy considering only variation in community transmission risks. Numbers to the left of the y-axis indicate 
the assumed on-campus reproduction number for each school. B) The median percent of students infected on-campus under the optimized 
strategy (blue) and pro rata strategy (orange), over a 10-week period; arrows indicate increases or decreases in infection rates. We 
modeled infections rates by using 3 testing strategies: pro rata, in which all schools test their students once per every 14 days; optimized to 
minimize the maximum risk of any school, considering variation in both community and in-school transmission risks; optimized considering 
only variation in community transmission risks. Values are averaged across 300 simulations (Appendix Table 4, https://wwwnc.cdc.gov/EID/
article/29/3/22-0761-App1.pdf). The model assumes that classrooms quarantine for 14 days following a positive test. 



RESEARCH

differed slightly when we assumed instead that 
schools had the same on-campus R0 and differences 
in risk stemmed solely from the community force of 
infection (Figure 4, panel A).

We projected infection rates under both the opti-
mized allocation and a nonoptimized pro rata alloca-
tion in which resources would be allocated propor-
tional to enrollment (Figure 4, panel A). We expected 
the optimized strategy to slightly reduce the overall 
infection rate for the district relative to the pro rata 
strategy and equalize risks across campuses. In the 
optimized strategy, the median infection rate in-
creased by 0.4% for the lowest-risk school (school 
K) and decreased by 1.8% for the highest-risk school 
(school A) (Appendix Table 4).

When we considered total incidence by combin-
ing both community-acquired and school-acquired 
infections, we expected ≈5.8-fold difference between 
the highest risk and lowest risk schools, in the absence 
of testing (Figure 5, panel A). Using a 14-day testing 
budget, we found a pro rata strategy would lower 
overall incidence but not reduce the disparity (Figure 
5, panel B), but an optimized allocation would greatly 
shrink the gap to a 3.6-fold difference (Figure 5, panel 

C). Restricting our analysis to infections that occur on 
campus, the optimized allocation again reduced the 
disparity in risk across schools (Table).

To provide intuition, we also derived an optimal 
testing allocation to reduce risks in a hypothetical 
district containing 6 schools, 1 of each combination 
of either low or high external risk and either low, 
moderate, or high internal risk (Appendix Figures 8, 
9). We compared 3 possible testing scenarios: no test-
ing, universal testing every 2 weeks, and an optimal 
testing strategy in which the 2-week testing budget is 
allocated to schools to minimize the maximum risk 
experienced by any school in the system. We found 
that going from no testing to a pro rata allocation de-
creased the maximum risk for any school from 24.7% 
(95% CI 11.9–38.0) of students infected to 6.6% (95% 
CI 3.0–11.4); under the optimal allocation, risk was 
further reduced to 4.5% (95% CI 1.4–8.3). Using this 
strategy, the total expected risk across all 6 schools 
was reduced from 12.8% (95% CI 9.0–16.9) of infec-
tions without testing to 3.8% (95% CI 2.5–5.2) with 
a pro rata allocation, which was further reduced to 
3.5% (95% CI 2.4–4.8) under the optimal testing allo-
cation (Appendix Figure 14, panel B).
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Figure 5. Cumulative infections in 
schools used to model a COVID-19 
test allocation strategy to mitigate 
SARS-CoV-2 infections across 
11 school districts in the Austin 
Independent School District, Austin, 
Texas, USA. Graphs represent 
cumulative COVID-19 infections 
over a 10-week period under 3 
testing scenarios: A) no testing; B) all 
schools test students every 14 days; 
and C) optimized allocation of tests 
based on school-specific transmission 
risks, assuming a district-wide budget 
of 1 test per student every 14 days. 
Schools are ordered from A–K based 
on community incidence from high 
to low in the school catchment area. 
Graphs show 7-day moving averages 
based on a single simulation for 
each scenario and school. To show 
representative projections, we 
selected the simulation that produced 
a cumulative attack rate closest to the 
median across all 300 simulations.
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Discussion
Proactive testing can be an effective strategy for 
preventing SARS-CoV-2 transmission on school 
campuses, if test turnaround is short and positive 
cases are immediately isolated (44; A. Bilinski, un-
pub. data, https://doi.org/10.1101/2021.05.12.2125
7131).Because testing requires considerable time, re-
sources, and personnel, schools might opt to stream-
line their efforts as COVID-19 risks change. Our 
study provides a framework to help school districts 
allocate limited testing resources across different 
schools, depending on the in-school and local com-
munity transmission risks, while weighing the costs 
and benefits of classroom quarantine after a positive 
test. Prioritizing testing based on estimated risks can 
help mitigate the disproportionate COVID-19 bur-
den falling on lower socioeconomic and racial mi-
nority neighborhoods (45–47).

Our results suggest that the optimal allocation 
of tests across schools depends on both the in-school 
transmission rate and the force of infection from 
the surrounding community. However, estimating 
in-school risks is difficult without sufficient testing 
because of overdispersion in the distribution of sec-
ondary cases and the small proportion of children 
that develop symptoms upon SARS-CoV-2 infection 
(48). A modest level of baseline surveillance test-
ing could help determine the relative risks across 
schools (49). Our case study of AISD high schools 
suggests that even without such information, allo-
cating testing resources based on community risks 
alone could substantially close gaps among schools 
(Appendix Figure 7).

Although proactive testing can lower and equal-
ize COVID-19 risks across a heterogeneous school  

district, disparities are likely to persist. Schools draw-
ing from neighborhoods with high COVID-19 inci-
dence will continue to experience higher case counts 
and absenteeism. Other intervention measures, in-
cluding vaccination and use of face masks, are essen-
tial for further reducing risks and ensuring equitable 
access to education.

The optimal allocation of scarce resources across 
multiple entities, like the number of tests per school, 
depends on the state of the entire system. A school 
might receive anywhere from no tests to enough tests 
for weekly testing of every student, depending on the 
level of risk relative to other schools. Schools could 
potentially game the system to gain larger allocations. 
For example, a school could inflate reported cases or 
enable higher rates of transmission by allowing high- 
risk activities or relaxing precautionary measures. If 
such issues arose, then allocation calculations could 
be based solely on estimates for the force of infection 
from the surrounding communities.

This approach can be broadly applied to distrib-
uting limited SARS-CoV-2 testing resources across 
systems with heterogeneous risks, such as work-
places, correctional facilities, or long-term care facili-
ties. Our case study demonstrates that, even within 
a single city, tailoring control strategies to hyperlo-
cal estimates of risks can reduce transmission overall 
and mitigate chronic disparities in access to resourc-
es and disease burden. On larger geographic scales, 
spatiotemporal variation in COVID-19 risks has been 
even more apparent, and cities, states, and countries 
exhibit highly asynchronous waves of transmission. 
Dynamic allocation of scarce public health resources 
based on reliable estimates of risk could substantially 
reduce the burden of COVID-19 and future pathogen 
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Table. Estimated heterogeneity in COVID-19 incidence and total disease burden across 11 high schools in the Austin Independent 
School District, Austin, Texas, USA, under 3 testing scenarios in a modeled COVID-19 test allocation strategy to mitigate SARS-CoV-2 
infections across school districts* 

Infections 
Testing allocation 

No testing Pro rata testing Optimal testing 
Total infections†    
 Risk gap 5.8 4.8 3.6 
 Gini coefficient (SE)‡ 0.23 (0.053) 0.26 (0.057) 0.19 (0.037) 
 No. infections (95% CI)§ 115 (79–158) 70 (50–94) 69 (49–93) 
 Infection rate (95% CI)§ 9.4 (6.5–12.9) 5.7 (4.1–7.7) 5.6 (4–7.6) 
On-campus infections#    
 Risk gap 6.5 5.6 1.8 
 Gini coefficient (SE)‡ 0.27 (0.098) 0.23 (0.075) 0.13 (0.041) 
 No. infections (95% CI)§ 70 (38–119) 27 (13–49) 26 (12–48) 
 Infection rate (95% CI)§ 5.8 (3.1–9.7) 2.2 (1.1–4.1) 2.1 (1.0–3.9) 
*The risk gap is the ratio of the median cumulative incidence across 300 simulations of the school with the highest expected incidence to that of the 
school with the lowest expected incidence.  
†Total student infections, occurring both on and off campus, over the 10-week projection period.  
‡Gini coefficients indicate overall disparities in expected burden, where values of 0 correspond to maximum equality and values of 1 correspond to 
maximum inequality (43). Gini coefficients were calculated using the median proportion of students infected across 300 simulations. 
§The total median infections in the district over the horizon simulated, expressed as absolute and per capita. 
#Infections occurring on campus, over the 10-week projection period.  

 



RESEARCH

threats across the United States but requires consider-
able coordination at the state and federal level.

The first limitation of our study is that we assumed 
immediate in-school and community risks could be re-
liably estimated. In practice, the data required to esti-
mate such risks often lag, are biased, or are unavail-
able. Such uncertainty could be included in our model 
by using stochastic variables that evolve based on test 
results from each school. However, the additional 
complexity would slow computational optimization. 
Second, we estimated heterogeneity in incidence but 
did not explicitly consider vaccination, health out-
comes other than incidence, or socioeconomic or other 
factors known to correlate with COVID-19 risks (50). 
Schools drawing from more vulnerable communities 
might have access to fewer mitigation resources be-
sides testing, lower vaccination coverage, or higher in-
fection hospitalization and mortality rates. Such factors 
could be explicitly modeled and incorporated into the 
objective function used to derive equitable allocations. 
Third, the study derived allocations to minimize infec-
tions occurring across a school district. However, other 
outcomes could be explicitly incorporated into further 
analyses, including absenteeism and loss of education 
resulting from isolation and quarantine. The costs and 
benefits of quarantining entire classrooms, in addi-
tion to the households of positive cases, depend on the 
frequency of testing. Classroom quarantine would al-
ways be expected to elevate absenteeism but only sub-
stantially reduces exposure risks when testing is infre-
quent. With frequent testing or low transmission risks, 
limiting the scope and duration of quarantine might be 
advisable. Hospitalization risks for school staff and the 
potential for schools to exacerbate transmission in the 
surrounding community also could be integrated into 
allocation calculations. Finally, our model does not 
consider the potential costs or logistical impediments 
to dynamically allocating tests among schools. In ad-
dition to the challenges of rapidly calculating alloca-
tions and distributing tests accordingly, schools might 
require additional trained staff to administer tests, 
conduct contact tracing, and ensure the quick and safe 
isolation and quarantine of affected persons (30).

In conclusion, as the United States plans for  
COVID-19 postpandemic management, proactive 
testing will remain a highly effective countermeasure 
that can be tailored to changing risks on a local scale. 
As tests become more economical and as surveil-
lance within schools and communities improves, our 
model demonstrates that school systems can optimize 
testing and quarantine policies to prevent transmis-
sion, limit absenteeism, and ensure continuity of op-
erations during future COVID-19 surges.
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