
Bushmeat or wild meat refers to the meat of terres-
trial wild mammals hunted primarily for human 

consumption in tropical and subtropical regions (1). 
Terrestrial wild mammals represent just 1.8% (≈0.003 
gigatons of carbon [GtC]) of the global biomass of 
mammals (≈0.17 GtC) but are vastly outweighed by 
the biomass of domestic mammals raised for food 
(≈0.1 GtC) (2). However, >70% of zoonotic disease 
spillover events have been associated with wildlife 
and bushmeat (3,4). Hunting, preparing, and selling 
bushmeat (hereafter referred to as bushmeat activi-
ties) has been associated with high risk for zoonotic 

pathogen spillover due to contact with infectious 
materials from animals. Bushmeat activities provide 
opportunities for repeated pathogen transmission 
between animals and humans, leading to outbreaks, 
epidemics, and pandemics (5,6). For instance, Ebola 
virus spillover events and subsequent outbreaks in 
the Congo Basin have been traced back to hunters 
who were exposed to ape carcasses (7,8).

Bushmeat remains a staple source of protein 
among low-economic rural communities, where al-
ternative proteins can be scarce (9,10). However, 
geographic distribution of bushmeat activities in 
rural areas remains insufficiently documented (11). 
The urban demand for bushmeat from rural areas 
is inconsistent and dependent on various reasons, 
including low cost compared with domestic meat, 
taste preferences, or social prestige (12). The hunted 
animal is often butchered and consumed immedi-
ately in rural areas (13). In regions where the urban 
demand is high, the animals are transported either 
live-caged or butchered and smoked to urban mar-
kets (13). Bushmeat activities pose a risk for zoonotic 
disease transmission regardless of setting (14), and 
the geographic and anthropologic heterogeneities in 
bushmeat activities renders surveillance for spillover 
risk challenging.

A recent study used the geographic range of en-
dangered mammals to map mammal hunting for 
bushmeat and traditional medicine (15). Other map-
ping efforts, although accurate in capturing the mar-
ket dynamics, have been restricted to local or regional 
settings (16,17). Research on bushmeat has been either 
biocentric, based on wildlife conservation (18), or an-
thropocentric, related to food security (19). Because 
zoonotic diseases known to be transmitted from wild 
mammals, such as mpox and Ebola, continue to emerge 
and expand geographically, an urgent need exists to 
integrate bushmeat activities into the epidemiology of 
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Human populations that hunt, butcher, and sell bush-
meat (bushmeat activities) are at increased risk for zoo-
notic pathogen spillover. Despite associations with global 
epidemics of severe illnesses, such as Ebola and mpox, 
quantitative assessments of bushmeat activities are 
lacking. However, such assessments could help priori-
tize pandemic prevention and preparedness efforts. We 
used geospatial models that combined published data on 
bushmeat activities and ecologic and demographic driv-
ers to map the distribution of bushmeat activities in rural 
regions globally. The resulting map had high predictive 
capacity for bushmeat activities (true skill statistic = 0.94). 
The model showed that mammal species richness and 
deforestation were principal drivers of the geographic dis-
tribution of bushmeat activities and that countries in West 
and Central Africa had the highest proportion of land area 
associated with bushmeat activities. These findings could 
help prioritize future surveillance of bushmeat activities 
and forecast emerging zoonoses at a global scale.
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emerging zoonoses. Efforts to document bushmeat ac-
tivities have been sporadic and have not been synthe-
sized geographically to enable objective prioritization 
and targeting of epidemiologic surveillance resources. 
However, to sustainably and effectively monitor at-
risk areas for outbreak prevention and preparedness, 
bushmeat activity hotspots need to be identified on a 
global scale.

We mapped bushmeat activities in tropical and 
subtropical rural areas. We trained geospatial models 
that we calibrated by using published data and envi-
ronmental and demographic covariates of bushmeat 
activities. We validated the capacity of the bushmeat 
activities map in predicting zoonotic disease emer-
gence by using 2 established models of Ebola virus 
disease (EVD) (20,21). In addition, we identified 100 
urban locations that could most benefit from in-
creased surveillance for bushmeat activities.

Methods
We used a multistep procedure to model the distri-
bution of bushmeat activities. We modeled activities 
by using the following steps: collate datapoints from 
systematic literature search; prepare environmental 
and demographic covariates; fit model; conduct en-
semble modeling; calculate the geographic area as-
sociated with bushmeat activities; and perform post 
hoc validation (Appendix, https://wwwnc.cdc.gov/
EID/article/29/4/22-1022-App1.pdf).

Data Collection
We searched for peer-reviewed reports on bush-
meat hunting, handling, butchering, and selling by  

reviewing 3 electronic databases: Web of Science 
(https://www.webofscience.com), PubMed (https://
pubmed.ncbi.nlm.nih.gov), and Google Scholar 
(https://scholar.google.com). We also searched web-
sites for nongovernmental agencies, including Inter-
national Union for Conservation of Nature (https://
www.iucn.org), TRAFFIC (https://www.traffic.org), 
and the Center for International Forestry Research 
(CIFOR; https://www.cifor.org). We included studies 
with locations of bushmeat activities during January 1, 
2000–February 1, 2022, and restricted the search to lit-
erature in English and French. 

We identified 2,113 articles from all databases, of 
which 130 articles included geographic coordinates 
and precise locations of bushmeat activities. Among 
those 130 articles, we identified and included in the 
study 76 articles that were based in rural sites (de-
fined as human settlements of <50,000 persons) (Fig-
ure 1). We excluded the other 54 articles because the 
locations included were urban sites (n = 28) or nation-
al parks without precise geographic coordinates of 
bushmeat activities (n = 26) (i.e., bushmeat was hunt-
ed or sold within the park). We excluded urban sites 
because different covariates could be associated with 
bushmeat activities between urban and rural sites, 
precise geographic coordinates were not given, and 
model prediction based on population density might 
be overestimated if a single pooled model was used 
for rural and urban sites (Appendix). 

We extracted 221 unique locations from the in-
cluded studies and reports and georeferenced location 
latitude and longitude coordinates in decimal degrees. 
We used village or town centroids unless the exact  
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Figure 1. Geographic distribution of articles from the literature used to model a map of global bushmeat activities (hunting, preparing, 
and selling bushmeat) to improve zoonotic spillover surveillance. We extracted data from 76 articles. Red dots indicate occurrences of 
bushmeat activities (n = 221) in 38 countries, and colored shading indicated the number of articles extracted per country.
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location of markets were mentioned in the articles (Ap-
pendix). We created a search string and used PRISMA 
(https://www.prisma-statement.org) to create a flow-
chart of data extraction (Appendix Figure 1). 

Environmental and Demographic Covariates
We extracted data from potential environmental and 
demographic covariates of bushmeat activities based 
on previous analyses (Appendix Table 1). Among 
those covariates, we developed 2 raster layers that we 
considered essential for predicting bushmeat preva-
lence. First, we developed a bushmeat species diver-
sity raster from terrestrial mammal distribution data 
(22) and a list of mammals hunted and sold for com-
mercial purposes for consumption, excluding mam-
mals hunted as pests and trophies (15) (Appendix). 
We extracted a polygon layer of the distribution of 
128 mammal species selected from the International 
Union for Conservation of Nature database of terres-
trial wild mammals by using the species identifica-
tion and then rasterized to 0.00833 degrees. Second, 
we constructed a raster of the distance to protected 
areas, such as natural parks, forest reserves, and wil-
derness areas (Appendix). We used data from World 
Geodetic System version 84 (GISGeography, https://
gisgeography.com) to project all covariates and resa-
mpled by using a pixel resolution of 2.5 minutes of arc 
(0.04166 degrees), equating to ≈5 × 5 km resolution.

Model Fitting and Evaluation
We selected 8 covariates with a recommended variance 
inflation factor (VIF) <10 (23) to account for potential 
collinearity among the covariates (Appendix Table 2). 
We used data on bushmeat activity extracted from the 
literature search datapoints, along with 1,000 random-
ly generated background points biased toward more 
populous areas as a proxy for reporting bias across the 
study area (24). We mapped bushmeat activities by us-
ing 4 models: MaxENT, random forest (RF), boosted 
regression tree (BRT), and Bayesian additive regres-
sion tree (BART). For each model, we used 80% of the 
datapoints (observed and background) for the training 
dataset; we used the remaining 20% of datapoints as 
the validation dataset (Appendix Figure 4). We fit and 
evaluated the base models by using area under the 
curve (AUC) and true skill statistic (maxTSS). 

We used 2 cross-validation (CV) methods and in-
put covariates from R (The R Foundation for Statisti-
cal Computing, https://www.r-project.org) to prevent 
model overfitting: k-fold CV based on covariates from 
the SDMtune package (25) and environmental CV (En-
vCV) with covariates from the blockCV package (26). 
We split the training data into 4-folds (k = 4) for both 

approaches. We only chose models with an AUC and 
maxTSS >0.5 after CV for hyperparameter tuning and 
to develop an ensemble model. The MaxENT model 
performed poorly (maxTSS = 0.47) in EnvCV, and we 
excluded it from further analysis. We also compared 
the models with a geographic null model to assess the 
predictive power of covariates (27).

Model Optimization and Ensemble Modeling
We split data into training, validation, and testing 
sets for model optimization by tuning the appropri-
ate hyperparameters for each model. We used the 
entire dataset in the optimized models to predict the 
global distribution of bushmeat activities. We stacked 
the model predictions from RF, BRT, and BART and 
used those as metacovariates for developing an en-
semble model. We used a binomial logistic regression 
model in a hierarchical Bayesian framework with an 
intrinsic conditional autoregressive model (iCAR) 
(28) to assemble the model predictions. We validated 
the output ensemble prediction by using maxTSS and 
comparing deviance with a geographic null model. 
We generated the final 5 × 5 km resolution bushmeat 
activities raster from the mean probability from each 
pixel of the ensemble model. We took the SD of each 
pixel as an uncertainty metric. We used Pearson cor-
relation between the mean probability and uncertain-
ty raster to assess collinearity between the 2 metrics. 
To ensure that the prediction was focused in rural ar-
eas, we masked the urban centers by using an urban 
built-up area raster (29).

Calculation of Area Associated with Bushmeat Activities
We reclassified the probability of bushmeat activi-
ties into 4 categories: very low probability (<0.2), 
low (0.2–0.5), intermediate (0.5–0.8), and high (>0.8). 
We then calculated the number of pixels per country 
in each category. For each country, we derived the 
proportion of area belonging to the high probability 
category by dividing the cumulative surface of those 
pixels by the area of the country.

Post Hoc Validation
To evaluate the added value of the bushmeat activities 
raster map, we used it as a covariate in 2 established 
infectious disease risk mapping models and measured 
how the performance of these models improved. We 
chose 2 models of EVD (20,21), a zoonotic disease 
known to be transmitted through bushmeat. To repro-
duce the models, we used the dataset, predictors, and 
R code (if available) from the original published arti-
cles. To ensure the same number of predictor variables 
were used, we ran each model twice. We first used 
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the MaxENT version 3.41 EVD model (20). We used a 
mask raster as the control in the first run of the Max-
ENT model, then compared its results with the bush-
meat raster as a predictor covariate in the second run. 
We then used a BRT EVD model (21). For the first run, 
we used a randomly permuted bushmeat predictor as 
the control; for the second run, we used the extracted 
bushmeat covariate. We used a jackknife (leave-one-
out) approach to determine the variable importance 
and AUC to compare the model performance without 
and with the bushmeat predictor layer (Appendix).

Identifying Urban Locations for Future Bushmeat  
Activity Surveillance 
We identified 100 urban locations across the study 
area where we could conduct hypothetical surveys to 
maximize information gained from bushmeat activity 

surveillance. We quantified the necessity for addition-
al surveillance (NS), a previously described measure 
(30), as the product of the uncertainty on bushmeat 
activity predictions and population density (Figure 
2). We identified and placed a hypothetical survey on 
the pixel with the highest NS value, then gradually 
reduced NS around this first hypothetical survey by 
a 50-km radius (Appendix). We used the same proce-
dure to add consecutive surveys by using the pixels 
with the highest NS until we identified 100 locations 
that could benefit from additional surveillance.

Results
We conducted a systematic literature search and 
identified 2,113 studies reporting bushmeat activi-
ties (Appendix). To calibrate our model, we extracted 
221 unique rural locations where bushmeat activities 
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Figure 2. Model prediction and uncertainty maps for model of global bushmeat activities (hunting, preparing, and selling bushmeat) to 
improve zoonotic spillover surveillance. A) Distribution of bushmeat activities in the tropical and subtropical regions from an ensemble 
of 3 model predictions using a hierarchical binomial model with spatial autocorrelation. B) Map illustrating the uncertainty of predicted 
bushmeat activities represented by the SD of each pixel. Each pixel represents a 5 × 5 km area.
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were reported from 76 articles (Figure 1). We extract-
ed data on the taxonomic groups of bushmeat species 
from 59.2% (45/76) of the included articles. Even-toed 
ungulates (31%) were the most reported taxonomic 
group, followed by primates (28%), bats (15%), and 
rodents (15%) (Appendix Figure 3).

We modeled the geographic distribution of bush-
meat activities by using the extracted occurrences 
and predictions of 3 geospatial models, RF, BRT, and 
BART (Figure 2). The resulting ensemble raster had a 
high maxTSS of 0.94 and was able to predict presence 
and absence of bushmeat activities. We identified an 
859,765 km2 area, a superficial area ≈3.5 times the land 
area of the United Kingdom, as having a high prob-
ability (0.8–1) of bushmeat activities. Globally, the 3 
countries with the largest proportion of their territory 
associated with bushmeat activities were Equato-
rial Guinea, Guinea-Bissau, and Liberia (Table 1). In 
Asia, Laos and Vietnam had the highest risk areas. 
The largest region, as classified by the United Nations 
geoscheme (https://www.un.org/geospatial), with 
bushmeat activities was in Central Africa (216,863 
km2); the next highest was Southeast Asia (205,367 
km2) (Appendix Table 18).

Of the optimized RF, BRT, and BART models, 
the AUC and maxTSS were high and performed well 
against the geographic null model (average AUC 0.97 
vs. 0.63; maxTSS 0.76 vs. 0.47) (Table 2). In both the 
RF and BRT models, the distribution of bushmeat ac-
tivities was affected most by mammal richness, 42.2% 
in RF and 28.8% in BRT, and deforestation, 25.9% in 
RF and 17.2% in BRT. However, mean precipitation 
and mammal richness contributed most in the BART 
model (Appendix).

For the ensemble model, the hierarchical binomi-
al model with iCAR performed better than the model 
without spatial autocorrelation and the geographic 
null model when we compared the deviance (Table 
3). We calculated the global distribution of bush-
meat activities from the mean value of the posterior  

distributions of probability per pixel of the ensemble 
model, and generated the uncertainty raster from the 
SD of the probability (Figure 2, panel A). We found 
no collinearity between the mean probability and the 
uncertainty per pixel (Appendix Figure 22).

We conducted a post hoc validation by assessing 
the added value of the resulting map on the predic-
tive performance of 2 established Ebola risk mapping 
models (21,22). Despite the negligible increase (<0.01) 
in AUCs of models with the bushmeat raster (Table 4), 
using bushmeat activities as a covariate contributed 
greatly to the distribution of EVD (Table 4; Appendix).

We used uncertainty levels on the map to iden-
tify 100 urban locations that could most benefit from 
future bushmeat surveillance efforts (Figure 3). The 
model predicted the largest number of surveys per 
country for Brazil (17 surveys) and the Democratic 
Republic of Congo (DRC; 15 surveys), the next high-
est was Colombia (8 surveys). South America (34 
surveys) had the highest NS compared with South 
Asia (1 survey) and Central America (2 surveys) (Ap-
pendix Table 19). We provide model data in GitHub 
(https://github.com/soushie13/Bushmeat-related_
activities) (Appendix).

Discussion
We developed a global map of bushmeat activities in 
rural tropical and subtropical regions by using an en-
semble geospatial modeling approach combined with 
221 occurrence points extracted from previously pub-
lished reports. The resulting map of 5 × 5 km pixels 
was consistent with published data on occurrence of 
local bushmeat activities (16,17), and with previous 
global mapping of efforts that focused on bushmeat 
hunting (15). We assessed the predictive capacity 
of our map by using 2 complementary approaches. 
First, we compared our model with a geographic 
null model, then we measured the improvement of 
existing risk mapping models for the occurrence of 
Ebola, after excluding our map in the model training  
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Table 1. Countries with high bushmeat activities in a study to map global bushmeat activities to improve zoonotic spillover surveillance 
by using geospatial modeling* 

Country 
Area with high probability for 

bushmeat activities, km2 
Land surface area, 

km2 
Percentage of country with high 

probability for bushmeat activities Region 
Equatorial Guinea 13,570 28,050 48.4 Central Africa 
Guinea-Bissau 11,064 28,120 39.3 Central Africa 
Liberia 28,955 96,320 30.1 West Africa 
Malawi 25,498 94,280 27.0 East Africa 
Sierra Leone 18,929 72,180 26.2 West Africa 
Laos 49,354 230,800 21.4 Southeast Asia 
Uganda 34,487 200,520 17.2 East Africa 
Vietnam 48,230 310,070 15.6 Southeast Asia 
Côte d’Ivoire 43,736 318,000 13.8 West Africa 
Cameroon 56,355 472,710 11.9 West Africa 
*High bushmeat activities (hunting, preparing, and selling bushmeat) are based on the proportion of high probability (>80%) areas in the ensemble raster. 
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process. Because we excluded urban areas from this 
study, we created an additional surveillance map to 
identify urban areas with the highest uncertainty of 
bushmeat activities and prioritized 100 urban loca-
tions for future surveillance.

Our results suggest that the largest areas associ-
ated with bushmeat activities were in Central Africa, 
Southeast Asia, and West Africa (Appendix Table 
18). In most countries of Central Africa, the domestic 
livestock sector is negligible (Gabon, DRC, Congo) or 
limited (Cameroon, Central African Republic), lead-
ing bushmeat to be a crucial component of food se-
curity (12). Our results show that Equatorial Guinea 
in Central Africa had the highest proportion of land 
area associated with bushmeat activities. Equatorial 
Guinea is also home to the largest bushmeat market 
in Africa, Malabo Market on Bioko Island, where 
recent efforts to limit bushmeat sales through bans 
have been largely ineffective (31). Notable zoonotic 
diseases such as EVD and mpox have established ori-
gins from Central Africa in the 1970s and are believed 
to have been transmitted through bushmeat (32,33), 
demonstrating the significance of active surveillance 
of bushmeat activities in this region.

In Asia, Laos and Vietnam were the countries 
most associated with bushmeat activity (Table 1). A 
high volume of wildlife trade and established trade 
routes previously have been reported between Viet-
nam, Laos, and China (34,35). Studies have linked the 
origin of infectious reservoir sources of 2002–2004 
SARS-CoV-1 outbreak that arrived at Guangdong 
markets and restaurants to Vietnam or Laos through 
a regional network (36,37).

Our study shows that data on bushmeat harvest 
in the Americas remain limited (10/76 studies includ-
ed in data extraction), and only 10% of the predicted 
area was linked to bushmeat activities. Bushmeat 
commercialization was restricted to hidden markets 
in the Amazon Basin. Consumption in urban areas 
of the Americas has been unevenly studied (12) and 
is highly variable but not negligible, as previously 
thought because of large livestock production systems 
in South America (38,39). Our study also identified 
34 urban sites in South America that would benefit 
from additional surveillance for bushmeat activities, 
highlighting that bushmeat activities remain under-
reported and understudied in that region (Figure 3).

As the risks of zoonotic spillover directly from 
wildlife are increasing, increased surveillance mea-
sures, including identifying and monitoring bush-
meat hotspots, are urgently needed to predict 
spillover risk and enable early intervention (5,40). 
Virologic sampling and seroprevalence surveys that 

can be used to monitor spillover risk are costly and 
time consuming; thus, to optimize resources, those 
surveys require targeting locations where bushmeat 
is prevalent (41). Our approach to map the global 
distribution of bushmeat activities aims to help pri-
oritize these efforts. Moreover, we validated this map 
for predicting the risk for EVD from previously es-
tablished models (20,21) and found bushmeat activity 
was a major covariate in the distribution of EVD in 
Africa. Local governments and agencies could apply 
the necessity for additional surveillance map (Figure 
3) to effectively monitor bushmeat activity sites that 
are often unreported, potentially unregulated, and 
previously unknown.

In this analysis, we used 8 environmental and de-
mographic covariates to predict the geographic dis-
tribution of bushmeat activities. Mammal richness, 
deforestation, and precipitation had the greatest in-
fluence on the model distributions. Deforestation as-
sociated with development of logging roads enables 
easier access to the deeper forest and provides faster 
transportation of hunted meat to villages and towns 
(42). Control of deforestation and logging is urgently 
needed and could have far-reaching benefits for pre-
venting bushmeat-associated zoonoses, as already 
established with EVD (43). In addition, studies show 
that precipitation effects bushmeat activities (44). In 
most areas, hunting pressure increases during the dry 
season when the water sources dry up, but in other 
areas, bushmeat hunting is preferred in periods of 
increased rainfall because the hunting sites become 
inaccessible to conservation patrols (44).
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Table 2. Model predictive performance of a model map of global 
bushmeat activities to improve zoonotic spillover surveillance* 
Model AUC maxTSS 
Random forest 0.945 0.741 
Boosted regression trees 0.945 0.758 
Bayesian additive regression trees 0.952 0.775 
Geographic null 0.633 0.472 
*Predictive performance measured by AUC and maxTSS. Bushmeat 
activities are hunting, preparing, and selling bushmeat. AUC, area under 
the curve; maxTSS, maximum true skill statistic. 

 

 
Table 3. Comparison of model deviance and the percentage of 
deviance explained by the predictor covariates for model of 
global bushmeat activities to improve zoonotic spillover 
surveillance* 

Model Deviance 
% Deviance 
explained Covariates 

Null  1153.835 0 None 
Binomial 373.936 85 3 metacovariates† 
Binomial iCAR 235.874 100 Addition of spatial 

autocorrelation 
*Bushmeat activities are hunting, preparing, and selling bushmeat. iCAR, 
intrinsic conditional autoregressive. 
†Covariates included random forest, boosted regression tree, and 
Bayesian additive regression tree. 
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The first limitation of our study is that data on 
geographic sites of bushmeat hunting and selling are 
limited. Collecting reliable information on bushmeat-
related activities is challenging because many species 
are protected under national laws, deterring infor-
mants from discussing their involvement to avoid 
incriminating themselves (45). Second, we did not in-
dependently collect data for this analysis, but that limi-
tation is inherent to any modeling study attempting 
to map burden or risk by using passive surveillance 
data. Third, restriction of the spatial extent of the study 
area to the tropical and subtropical parts of the world 
might be considered an implicit bias; however, our 
intent was to focus on these regions as per the defini-
tion of bushmeat (1). Fourth, we did not quantify the 
distribution of zoonotic risk based on the taxonomic 
group of the mammal reservoir species as in other 
studies (46,47). However, the data we extracted from 
the literature search were insufficient to categorize the 
bushmeat by taxonomic groups because the species of 
bushmeat hunted was not consistently mentioned in 
the studies (45). Finally, we chose to exclude the urban 
sites for model calibration because they contained few 
locations (28 sites) with geographic coordinates of wet 
markets and chop shops, because different covariates 
may be associated with bushmeat activities between 

urban and rural sites, and because of overestimation of 
model prediction based on population density. How-
ever, we mitigated the exclusion of the urban sites by 
developing the necessity for additional surveillance 
map that detects urban areas that would benefit from 
future surveillance efforts (Figure 3; Appendix Table 
19). A limitation of this map is that it is dependent on a 
single demographic variable, population density, and 
does not consider other factors, such as accessibility to 
the nearest city of population size.

Although geographic bushmeat data are limited, 
we attempted to characterize the distribution of bush-
meat activities at a global scale to help identify priori-
ties for action. Our study illustrates how environmen-
tal covariates, such as mammal richness, deforestation, 
and precipitation, affect bushmeat activities. Our find-
ings highlight the increased need for conservation ef-
forts, including prevention of habitat fragmentation 
and action against climate change. In addition to driv-
ing the bushmeat crisis, those factors also play a major 
role in the transmission of zoonoses (48). 

In conclusion, our findings contribute to the mod-
eling and prediction of emerging zoonoses at global 
scale. The modeled findings can help target surveil-
lance of bushmeat and bushmeat-related zoonotic 
spillovers by local reference laboratories established 
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Table 4. Comparison performance for a map of global bushmeat activities to improve zoonotic spillover surveillance* 

Model 
Area under the curve 

% Relative contribution of bushmeat activity Without bushmeat activity raster With bushmeat activity raster 
EVD MaxENT 0.893 0.899 44.23 
EVD BRT 0.880 0.887 17.06 
*We compared area under the curve with and without bushmeat activities (hunting, preparing, and selling bushmeat) as predictor variable for EVD. BRT, 
boosted regression tree; EVD, Ebola virus disease.

Figure 3. Predicted priority regions for future survey efforts in urban areas as determined by a model of global bushmeat activities 
(hunting, preparing, and selling bushmeat) to improve zoonotic spillover surveillance. The 100 priority locations identified are indicated 
by the necessity for surveillance, a previously described measure (30). Color and size of dots indicate high to low priority of needed 
surveillance efforts.
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by the World Organization for Animal Health (49) 
and global outbreak prevention and preparedness 
initiatives like the Global Health Security Agenda 
(50). Our efforts to geographically synthesize bush-
meat-related data could help prioritize future surveil-
lance of bushmeat activities and forecast emerging 
zoonoses at a global scale.
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