
Antimicrobial resistance (AMR) is a leading 
threat to global health (1). An estimated 4.95 

million deaths were associated with bacterial AMR 
in 2019 worldwide (2), mostly caused by 6 patho-
gens: Escherichia coli, Staphylococcus aureus, Klebsiella 
pneumoniae, Streptococcus pneumoniae, Acinetobacter 
baumannii, and Pseudomonas aeruginosa. To limit the 
spread of antimicrobial-resistant organisms (AM-
ROs) and reduce AMR-related disease burden, im-
proved predictive intelligence is required to better 
estimate the emergence and spread of AMR within 
populations and healthcare facilities. However, ef-
forts to operationally forecast the burden of AM-
ROs (i.e., for real settings in real time) are not active 
as of January 2023. 

Real-time infectious disease forecasting aims to 
generate estimations of future disease incidence at the 
population or community level, which can be subse-
quently evaluated using the observed outcomes. Dur-
ing 2010–2020, predictive models for viral and acute 
infectious diseases such as influenza (3), dengue (4), 
and COVID-19 (5) have been put in place and tested 
in the real world. In contrast, no predictions have 
been generated and validated for AMROs. Here, we 
discuss the potential for AMRO forecasting at the 
population and facility scales, highlight challenges 
for this field, and suggest future research priorities.

Mathematical Modeling of AMR
Mathematical and statistical models have contributed 
to the fight against AMR (6) and may enable predic-
tions of AMR at different scales. Modeling studies of 
AMROs have been undertaken to clarify the factors 
associated with AMR at the population scale. For ex-
ample, time series analyses have been used to quan-
tify the association between antimicrobial use and 
prevalence of resistance in populations (7,8). Such 
analyses are valuable because they typically result 
in a set of coefficients representing the effect of an-
timicrobial use on future AMR outcomes; however, 
those models do not project AMR prevalence forward 
and rigorously evaluate future predictive accuracy. 
In parallel, process-based mathematical models have 
been developed to study the transmission of AMROs 
(9–11), simulate the competition between resistant 
and sensitive strains (12–16), and evaluate the effects 
of various policies (17–22). More recently, detailed in-
dividual-level models informed by historical patient 
movement or contact with healthcare workers have 
been used to represent transmission networks and 
heterogeneity in healthcare facilities (23–26). Those 
modeling studies have enriched understanding of 
the evolutionary dynamics of resistance and AMRO 
transmission dynamics but have not been used to 
produce operational AMR predictions.
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Antimicrobial resistance is a major threat to human 
health. Since the 2000s, computational tools for predict-
ing infectious diseases have been greatly advanced; 
however, efforts to develop real-time forecasting mod-
els for antimicrobial-resistant organisms (AMROs) have 
been absent. In this perspective, we discuss the utility 
of AMRO forecasting at different scales, highlight the 
challenges in this field, and suggest future research 
priorities. We also discuss challenges in scientific un-
derstanding, access to high-quality data, model calibra-
tion, and implementation and evaluation of forecasting 
models. We further highlight the need to initiate research 
on AMRO forecasting using currently available data and 
resources to galvanize the research community and ad-
dress initial practical questions.
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Forecasting AMROs at Different Scales
Operational forecasting of AMR could have implica-
tions for public health and patient care. Depending 
on the intended use, AMRO forecasting can be done 
at population-level and facility-level scales. Forecast-
ing at the population level aims to predict the trend of 
infection or carriage prevalence in the general popu-
lation for relatively long periods of months to years. 
For AMR pathogens, the forecast target might be the 
number of AMR infections or the proportion of iso-
lates exhibiting resistance. Those predictions would 
estimate future AMR burden (e.g., deaths, hospital-
ization, days of work lost, or direct and indirect eco-
nomic costs) and the evolution of resistance. If used in 
real time, those predictions would support situational 
awareness and inform public health policies such as 
antimicrobial drug stewardship and more targeted 
antimicrobial prescription guidelines to slow down 
AMR spread.

At the facility level, the forecast target of interest 
might be the number of AMR infections with clini-
cal symptoms within a hospital or hospital system. 
Such predictions would support control of nosoco-
mial AMRO transmission and resource planning for 
equipment, medications, staffing, and space in re-
sponse to potential patient surges. Depending on the 
clinical relevance, the forecast horizon might be days 
or months. Of note, predictive models connecting 
multiple healthcare facilities in a region could eluci-
date the risk for AMR introduction through interhos-
pital patient transfer and support decision making for 
preemptive measures in facilities without ongoing 
transmission.

Challenges in AMRO Forecasting
Although models and data differ considerably for 
forecasts at various scales, some common challenges 
impede the development and operational use of pre-
dictive models for AMR. Here we summarize these 
issues and highlight several research priorities to ad-
dress these challenges in future studies.

Scientific Understanding
For forecasting using mathematical and statisti-
cal models, it is critical to understand the key pro-
cesses affecting AMR spread. Those processes are 
often represented as nonlinear effects in forecasting 
models and, if not properly specified, will produce 
forecasts that quickly diverge from the truth. As of 
2023, many questions on AMR remain open (27). For 
instance, the role of antibiotic use in driving AMR is 
not fully understood, particularly the effects of co-
selection (i.e., selection of resistance that is broader 

than the specific target of an antimicrobial prescrip-
tion) (28) and the relationship between outpatient 
use of antimicrobial drugs and resistant infections 
of hospitalized patients. More generally, it is not yet 
known which type of antimicrobial drug use (e.g., 
community use, hospital use, or veterinary use) has 
the greatest effect on AMR emergence (29). After the 
emergence of AMROs, it is unclear how competition 
with susceptible strains affects the incidence of re-
sistant strains and how to explain their coexistence 
over long time periods (30). Likewise, the issue of 
spillover (i.e., transmission of AMR across locations) 
is arguably a substantial challenge for forecasting 
that has not been addressed (31).

In healthcare facilities, it is unknown how contact 
networks and heterogeneity of exposure to antibiot-
ics shape the spread of AMR; it is hard to disentangle 
the roles of community importation and nosocomial 
transmission; and it is difficult to quantify the relative 
transmissibility among classes of persons (patients, 
healthcare workers) and the environment. In addi-
tion, individual-level causal relationships between 
the type and duration of therapy and resistance 
emergence remain unknown in most instances. The 
human microbiome serves as a reservoir of antimicro-
bial resistance (32–34); however, many outstanding 
scientific questions on microbiome effects are still un-
der active research as of January 2023. Further studies 
are needed to examine the role of bystander selection 
(i.e., selection of resistance on microbes that are not 
the target pathogen) in AMR emergence (35,36), the 
reason treatment with cephalosporins is a risk factor 
for vancomycin-resistant Enterococcus colonization 
(37), and the difference between detectable coloniza-
tion and high-level colonization.

To date, infectious disease forecasting has pri-
marily focused on acute viral infections for which 
the pathogen and its disease or clinical outcome can 
be directly linked. For instance, viral load is gener-
ally correlated with infectivity and disease pheno-
type (mild to severe) and, therefore, with illness and 
death rates. Those correlations make definition of the 
forecasting target (e.g., incident rates of cases, hospi-
tal admissions, or deaths) relatively straightforward. 
However, for bacterial or fungal species, relationships 
between pathogen load and clinical outcomes are un-
clear. Because many bacterial species are commensal 
with their human host and have varying probabili-
ties of presence across body sites, it is challenging to 
definitively determine whether a person is colonized. 
Without accurate observation of colonization, AMR 
burden is not well resolved and, consequentially, is 
more difficult to forecast.
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Accessing High-Quality Data
Forecasting is fundamentally a data-driven task. 
Without sufficient data, predictive models cannot be 
properly trained and evaluated. As of 2023, data that 
can inform operationally useful forecasts of AMR re-
main scarce. At the population level, several surveil-
lance systems do exist. For instance, the US National 
Antimicrobial Resistance Monitoring System for En-
teric Bacteria tracks changes in antimicrobial suscep-
tibility for certain enteric bacteria in ill persons, retail 
meats, and food animals (38). However, consistent 
long-term records of AMR pathogen profiles are lack-
ing in most countries, particularly in low- and mid-
dle-income countries and for emerging AMROs with 
limited cases (39). In addition, several major patho-
gens responsible for healthcare-associated infections 
have not been included in surveillance.

At the facility level, AMR data from EHR have 
become increasingly available to researchers in recent 
years. In healthcare settings, more attention has been 
given to infected patients with clinical manifestations. 
Surveillance for asymptomatic AMRO carriage is not 
prioritized because it is not of immediate clinical in-
terest, although such carriers play an important role 
in onward transmission (20). Such incomplete obser-
vation hinders estimation of overall AMRO preva-
lence and may lead to biased prediction targets. In 
addition, data on nonbiologic processes driving AMR 
pathogen transmission, such as patient behavior and 
interactions with healthcare workers, are difficult to 
collect. In cases for which relevant data are available, 
data quality may be poor because records can include 
errors and misclassification. Even for structured EHR 
data, both predictive variables and outcomes (e.g., 
colonization) can suffer from missing data.

Model Calibration
Model calibration is the process by which a math-
ematical model is tuned to reproduce empirical ob-
servations. Although this process does not guaran-
tee accurate prediction, model calibration provides 
an initial check that the model can closely replicate 
historical data. Studies that calibrate AMR models 
to empirical data have been published (23,24,40–42). 
However, as the structure of AMR models becomes 
increasingly complex, computational difficulties arise 
in fitting these models to observations of different 
types and at various scales. For instance, population-
level prevalence, individual-level test results, and 
genomic sequences of pathogens convey different 
pieces of information on AMRO transmission, and 
calibrating AMR models to these observations si-
multaneously is a challenge. AMRO transmission is 

intrinsically stochastic with large uncertainty. Quan-
tifying the uncertainty of predictions generated by 
complex AMR models is difficult, especially for mod-
els that track individual persons and their contacts. 
Calibration approaches, and their success, usually 
depend on the specific model construct and the form 
of observations.

Implementation and Evaluation
One prominent challenge for AMRO forecasting is the 
operational implementation and prospective evalua-
tion of predictive models (i.e., generating forecasts in 
real time and evaluating those forecasts once predic-
tion targets are observed). There are no guidelines on 
such implementation for AMRO forecasting, such as 
appropriate data collection and forecast targets. Ques-
tions remain open on the proper time scale of forecast 
horizon, the frequency at which models need to be 
updated, and the fundamental limit of predictability 
of models. For long-lead forecasting, evaluation re-
quires data collection in a consistent manner over a 
long time period. In healthcare facilities, the practice 
of testing and reporting AMR infections may change 
over time, which further complicates using such data 
records and forecast evaluation. A collaborative effort 
that standardizes training datasets, forecast targets, 
forecast horizons, and proper scoring rules for evalu-
ating forecast performance (e.g., the FluSight influen-
za forecasting challenge [43–45], the dengue forecast-
ing challenge [4], and the RAPIDD Ebola forecasting 
challenge [46] can potentially stimulate advances in 
operational AMR forecasting.

A particular challenge for implementing AMRO 
forecasting is to handle uncertainty in predictions; 
uncertainty exists because of imperfect data and a 
notable degree of variability in many AMR-related 
processes. Quantifying such uncertainty is critical 
in other predictive fields, such as numerical weather 
prediction. For AMROs, whether at the facility level 
(e.g., determining which patients need to be on con-
tact precautions) or the community level (e.g., public 
health officials making recommendations for pre-
scribing guidelines because of AMR), decision mak-
ers must make decisions that leverage uncertain in-
formation. This truism holds for observations as well 
as forecasts. Designing optimal decision frameworks 
and architectures that best use forecasts, given their 
uncertainty, is a needed long-term goal.

Effective communications between modelers 
and stakeholders such as public health officials, 
healthcare institutions, and individual practitioners 
are critical to learn their practical needs from AMR 
modeling. However, formal reports recording such 
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communications are lacking in scientific journals, 
which is another factor limiting the generation and 
use of operational forecasts in real-world settings.

To illustrate the interconnected challenges faced 
by AMRO forecasting across scales, we use methicil-
lin-resistant Staphylococcus aureus (MRSA) as a con-
crete example (Figure). Several key issues on MRSA 
forecasting at the facility scale and population scale 
and across scales are unresolved; one is that the spe-
cific data needed for modeling at those different scales 
are unknown, as is the role of co-selection and com-
petition with methicillin-susceptible S. aureus (MSSA) 
in affecting the dynamics of MRSA. Answering those 
questions would improve methods to reduce MRSA 
burden in both community and hospital settings.

In this perspective, we focus on real-time fore-
casting of AMROs. A parallel line of research is sce-
nario-based simulations that project AMR infections 
conditional on postulated changes in prescribed inter-
ventions or expected conditions. Previous studies for 
HIV and tuberculosis control show that such scenario-
based projections can substantially affect health poli-
cies and save lives (47,48). For AMR, scenario-based 
projections should be designed to address practical 
questions in public health and inform operational 
policy decision-making in real time, possibly using 

ensemble approaches that combine multiple models 
to reflect cross-model variation. Real-time forecast-
ing and scenario-based projections complement each 
other and should be developed in tandem to control 
AMR burden and improve human health.

What Can Be Done Now?
Despite all those challenges, research can still be con-
ducted using currently available data and resources. For 
instance, the feasibility and utility of real-time forecast-
ing of population-level AMR prevalence could be tested 
using existing surveillance data. Such an exercise might 
galvanize the research community to address initial 
practical questions on forecast design (e.g., What vari-
ables should be included? What is an appropriate fore-
cast horizon? How forecast skill be evaluated?).

Increasing the availability of existing data could 
also accelerate progress. Electronic health records 
contain a wealth of AMR data, each of which reflects a 
certain aspect of AMR-related processes. Synthesizing 
previously siloed datasets into mathematical models 
can potentially answer scientific questions that are oth-
erwise challenging to address using each dataset sep-
arately. Privacy-preserved data sharing across facili-
ties can increase the amount of data for modeling and 
support the development of generalizable methods. 

PERSPECTIVE

Figure. Open questions for predictive modeling of MRSA. Example questions at the facility level, the population level, and across 
scales are listed. The upper left panel depicts population-level and facility-level MRSA transmission. The lower left panel represents the 
uncertainty about the roles of co-selection and competition with MSSA in affecting the dynamics of MRSA. MRSA, methicillin-resistant 
Staphylococcus aureus; MSSA, methicillin-susceptible S. aureus.
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When data sharing is not practical, models and algo-
rithms can be shared, trained, and implemented with 
defined standards and quality control.

Future Opportunities
Given existing gaps in forecasting AMR, predictive 
models are still not mature enough for operational ap-
plication. To push forward advances in this burgeon-
ing area, several research directions should be pri-
oritized. First, better communication among multiple 
sectors and stakeholders, including academic research-
ers, public health agencies, healthcare providers, and 
the public, will help identify key questions and the 
needs of end users of predictive models. Developing 
and applying AMR forecasting will be a collective ef-
fort that should address real-world questions in public 
health and patient care. Second, studies should make 
better use of existing data and guide the collection of 
new data that are essential to understand AMR. In-
vesting in consistent surveillance and data collection 
is of utmost importance for improving understand-
ing of the emergence, spread, and outcomes of AMR. 
Third, more effective, computationally efficient algo-
rithms are needed to calibrate complex AMR models 
to multitype and multiscale data. Better interpretabil-
ity of models can infuse confidence in clinicians when 
using those tools. Further, research on computational 
methods that are tailored to AMR prediction could 
help bridge theoretical models and real-world appli-
cations. Fourth, predictive AMR models should be 
implemented in real-world settings in real time so that 
operational utility can be assessed by validating real-
time operational predictions, as is done for numerical 
weather predictions. Forecasting skill, including fore-
cast accuracy and uncertainty, should be evaluated 
to confirm that predictive models can produce useful 
predictions despite noisy and incomplete data.

In summary, despite lessons learned from recent 
advances in forecasting for other acute infectious 
diseases, AMRO prediction has its own set of chal-
lenges, including wide and prolonged asymptomatic 
carriage, longer time scales, continuing evolution due 
to strain competition and antimicrobial drug use, and 
poorly observed disease burden. It will be critical to 
set appropriate expectations for the performance of 
AMRO predictions and establish sensible criteria for 
successful forecasting.
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etymologia revisited
Lassa Virus
[lah sə] virus

This virus was named after the town of Lassa at the south-
ern end of Lake Chad in northeastern Nigeria, where the 

first known patient, a nurse in a mission hospital, had lived 
and worked when she contracted this infection in 1969. The 
virus was discovered as part of a plan to identify unknown 
viruses from Africa by collecting serum specimens from pa-
tients with fevers of unknown origin. Lassa virus, transmitted 
by field rats, is endemic in West Africa, where it causes up to 
300,000 infections and 5,000 deaths each year.

Sources: 
  1	 Frame  JD, Baldwin  JM Jr, Gocke  DJ, Troup  JM. Lassa fever, a new 

virus disease of man from West Africa. I. Clinical description and 
pathological findings. Am J Trop Med Hyg. 1970;19:670–6.

  2.	 Mahy  BW. The dictionary of virology, 4th ed. Burlington (MA):  
Elsevier; 2009.


