
Tuberculosis (TB) remains among the leading 
causes of death from infectious diseases world-

wide, killing 1.5 million persons in 2020 despite 
being preventable and curable (1). High-burden 
TB countries often contend with limited financial 
and labor resources and rely on generalized inter-
ventions that, although helpful, treat TB as a uni-
form epidemic (2–4). However, recent advances in 
molecular methods have shown that TB epidemics 
are composed of multiple simultaneous chains of 
transmission that could serve as distinct targets 
for intervention (4–7). Targeted interventions to 
interrupt transmission might be particularly ef-
fective for reducing TB in high-burden settings, 
where recent infections contribute substantially to  
disease incidence (3–6).

Genomic sequencing is a powerful tool for 
identifying discrete, but closely related, Mycobac-
terium tuberculosis strains, helping to reconstruct 
likely chains of recent transmission (3,8,9). Ge-
nomic and geospatial data can be integrated to in-
vestigate whether transmission chains fall within 
distinct geographic areas (3–6). For example, spa-
tial clusters of closely related M. tuberculosis strains 
may indicate localized areas of ongoing transmis-
sion, which could be targeted for public health in-
terventions, such as active case finding (3–5,10). A 
growing body of evidence suggests that geographi-
cally targeted interventions could be effective and 
cost-efficient in high-burden, low-resource settings 
and instrumental in accelerating progress toward 
eliminating TB (4,11–13). 
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Combining genomic and geospatial data can be useful 
for understanding Mycobacterium tuberculosis trans-
mission in high-burden tuberculosis (TB) settings. We 
performed whole-genome sequencing on M. tuber-
culosis DNA extracted from sputum cultures from a 
population-based TB study conducted in Gaborone, 
Botswana, during 2012–2016. We determined spatial 
distribution of cases on the basis of shared genotypes 
among isolates. We considered clusters of isolates 
with ≤5 single-nucleotide polymorphisms identified by 
whole-genome sequencing to indicate recent trans-
mission and clusters of ≥10 persons to be outbreaks. 
We obtained both molecular and geospatial data for 
946/1,449 (65%) participants with culture-confirmed 
TB; 62 persons belonged to 5 outbreaks of 10–19 per-
sons each. We detected geospatial clustering in just 
2 of those 5 outbreaks, suggesting heterogeneous 
spatial patterns. Our findings indicate that targeted 
interventions applied in smaller geographic areas of 
high-burden TB identified using integrated genomic 
and geospatial data might help interrupt TB transmis-
sion during outbreaks.
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In the Kopanyo Study, a population-based study 
of TB transmission in Botswana during 2012–2016, 
localized transmission events were characterized by 
detecting spatial clustering of participants belong-
ing to genotype-specific (genotypic) cluster groups 
identified by using MIRU-VNTR (mycobacterial in-
terspersed repetitive unit–variable number tandem 
repeat) genotyping (5,14). The objectives of our anal-
ysis were to build on data from the original study by 
incorporating higher resolution genomic data from 
whole-genome sequencing (WGS) and to investi-
gate the geographic distribution of distinct genotypic 
cluster groups representing potential recent trans-
mission chains. The Kopanyo Study was approved 
by the US Centers for Disease Control and Preven-
tion institutional review board (approval no. 6291), 
the Health Research and Development Committee of 
the Botswana Ministry of Health and Wellness, and 
institutional review boards of the University of Penn-
sylvania. We received written informed consent from 
all participants and mapped residential coordinates 
in sufficiently low resolution to prevent identification 
of participants.

Methods

Study Design and Setting
We analyzed data collected during August 2012–
March 2016 for the Kopanyo Study among persons 
with TB in Botswana, a country in southern Africa 
with a high burden of TB and TB/HIV co-infection 
(1,5,14). Nationwide TB incidence when the study 
began was 305 cases/100,000 persons (5,14). This 
analysis included participants residing in greater Ga-
borone, including the capital city and its surrounding 
suburbs. During the 5 years before the study, TB in-
cidence was 440–470 cases/100,000 persons in Gabo-
rone, which had a total population of 354,380 (5,14). 

Study participants included men and women of 
all ages with TB disease who were sequentially en-
rolled by date of diagnosis; those who had already 
received TB treatment for >14 days, prisoners, and 
patients who declined to participate were excluded 
(5,14). At least 1 sputum sample was collected from 
each participant for bacterial culture. Clinical and de-
mographic data, including residential address, were 
collected through in-person interviews and medical 
record review (5,14). We obtained residential geoco-
ordinates using global positioning system (GPS) de-
vices during site visits or by geocoding addresses us-
ing Google Maps (https://www.google.com/maps), 
OpenStreetMap (https://www.openstreetmap.org), 
and ArcGIS (Esri, https://www.esri.com) (5,14).

WGS
We conducted WGS on archived DNA samples 
from the original study with sufficient amounts of 
DNA (>0.05 ng/μL) for analysis. We initially pre-
pared DNA by crude extraction from liquid culture 
samples as described elsewhere (15). We prepared 
libraries for sequencing using an Illumina Nextera 
XT kit (https://www.illumina.com) to obtain 2 × 
150 bp fragments for paired-end sequencing using a 
Illumina NextSeq 500 platform (16,17). To assemble 
and analyze sequences, we used MTBseq pipeline 
(https://github.com/ngs-fzb/MTBseq_source), 
which incorporates several open-source programs, 
including Burrows-Wheeler Aligner (https://github.
com/lh3/bwa), Samtools (http://www.htslib.org), 
and Genome Analysis Toolkit version 3 (https://
github.com/broadinstitute/gatk/releases), to au-
tomate steps involved in sample-specific and com-
parative analyses (16,17). We mapped reads to the 
M. tuberculosis H37Rv reference genome (GenBank 
accession no. NC_000962.3) (16). We performed vari-
ant calling using default thresholds for coverage and 
quality (16). We identified phylogenetically informa-
tive single-nucleotide polymorphisms (SNPs) from 
existing literature (16). We annotated variants asso-
ciated with antimicrobial resistance on the basis of a 
built-in list of known mutations (16,17) and generated 
summaries to predict resistance for each genotype. 
As an indicator of recent TB transmission, we used a 
cluster-detection algorithm to identify closely related 
strains within each lineage (lineages 1–4) based on a 
distance threshold of ≤5 pairwise SNPs to establish 
bacterial genetic relatedness (8). The single linkage 
cluster detection algorithm used to identify genotype-
specific groups detects isolates within 5 SNPs from 
the next closest isolate, so not all members within a 
given group are necessarily within 5 SNPs of all other 
members (16).

Spatial Analysis
Our main analysis included participants residing in 
greater Gaborone who had both WGS data and GPS 
coordinates available. We excluded 29 participants 
with evidence of possible mixed-strain infection (18), 
which was detected using a method based on a bi-
nomial test procedure described elsewhere (19). For 
our analysis, we focused mainly on participants in 5 
outbreak groups, defined as groups of >10 persons 
infected with genotype-specific TB. To represent the 
underlying density of TB infection in the population, 
we included ungrouped participants (those not in an 
identified genotypic group of any size) as a compari-
son group.
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We conducted a preliminary analysis comparing 
the geographic distribution of participants with and 
without WGS data available to rule out geographic 
sampling bias. We estimated the geographic median 
center point and standard deviational ellipse (di-
rectional distribution at 2 SD) for both sets of par-
ticipants. The median center is a measure of central 
tendency that is robust to outliers and minimizes the 
distance from the central location to all other points 
being analyzed. The standard deviational ellipse 
encompasses most observed points along both geo-
graphic coordinates (latitude and longitude), provid-
ing a representation of geographic range and direc-
tional orientation. We then used those same methods 
to characterize the geographic distribution of par-
ticipants belonging to each outbreak, as well as un-
grouped participants. We used a Monte Carlo test of 
spatial segregation to measure geographic variation 
among the different outbreak groups (20).

We generated kernel density maps to visualize 
locations of potential spatial clusters. Estimating ker-
nel density provides an estimate of spatial concentra-
tion in terms of points per unit area using a moving 
window method with a weighting scheme and gener-
ating a smoothed map that displays areas of greater 
density (21). We generated maps for each outbreak 
group and for ungrouped strains using a 1-km buf-
fer window. For visual display, density is shown on a 
different scale for ungrouped (up to 35 persons/km2) 
and grouped participants (up to 5 persons/km2) be-
cause of differences in size of datasets.

To estimate spatial clustering among participants 
in each outbreak group, we used spatial K-function 

analysis, a method that measures whether points are 
located closer to one another on average than would 
be expected in a completely random spatial pattern 
(21). To account for potential clustering caused by 
underlying population density, we compared relative 
clustering in grouped and ungrouped participants 
by estimating the difference in K-functions over a 
range of distances (0–8,000 m) (21,22). We generated 
plots with distances indicated along the x axis and K-
function estimates along the y axis and examined the 
shape and behavior of the observed K-function values 
for interpretation (21). We used 999 random permuta-
tions to obtain 95% CIs. We assessed the magnitude 
of lines above or below 0 on the y axis to compare 
degree of clustering among groups and lines falling 
outside the upper or lower confidence intervals to de-
tect statistically significant differences. 

We calculated pairwise SNP and geographic 
distances of participants by outbreak group to as-
sess whether relationships between geographic 
and genetic difference varied by group and gener-
ated boxplots to display SNP distance summaries. 
We plotted geographic distance against SNP dis-
tance and tested for correlation using Spearman ρ. 
We investigated possible spatial-temporal trends by 
measuring the geographic distance between the first 
participant (based on dates documented during the 
original study) diagnosed with TB and subsequently 
diagnosed participants in each outbreak group. We 
plotted date of diagnosis against geographic dis-
tance to visualize possible patterns. In addition, we 
conducted a sensitivity analysis to assess geographic 
characteristics of genotypic groups obtained using a 
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Table 1. Characteristics of participants (N = 548) in study of high-resolution geospatial and genomic data to characterize recent 
tuberculosis transmission, by outbreak group (≤5 SNP), Gaborone, Botswana, 2012–2016* 

Category 

Group and lineage 
Ungrouped,  

n = 486 
A, n = 19 B, n = 12 C, n = 11 D, n = 10 E, n = 10 
4.1.1.3 4.1.1.3 4.1.2.1 4.1.1.3 4.3.4.1 

Median age, y (IQR) 29 (24–40) 35 (28–40) 33 (31–42) 31.5 (30–37) 39 (34–42) 35 (28–42) 
Gender       
 M 11 (58) 9 (75) 9 (75) 3 (30) 10 (100) 254 (52) 
 F 8 (42) 3 (25) 3 (25) 7 (70) 0 232 (48) 
HIV status       
 Positive 9 (47) 6 (50) 9 (82) 5 (50) 5 (50) 308 (64) 
 Negative 10 (53) 6 (50) 2 (18) 5 (50) 4 (40) 162 (33) 
 NA 0 0 0 0 1 (10) 16 (3) 
Income       
 Any 15 (79) 5 (42) 8 (73) 4 (40) 8 (80) 360 (74) 
 None 4 (21) 7 (58) 2 (18) 6 (60) 2 (20) 125 (25) 
 NA 0 0 1 (9) 0 0 1 (<1) 
Isoniazid       
 Susceptible 16 (84) 12 (100) 11 (100) 10 (100) 10 (100) 458 (94) 
 Resistant 3 (16) 0 0 0 0 28 (6) 
Rifampin       
 Susceptible 16 (84) 12 (100) 11 (100) 9 (90) 8 (80) 456 (94) 
 Resistant 3 (16) 0 0 1 (10) 2 (20) 30 (6) 
*Values are no. (%) except as indicated. NA, not available. 
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distance threshold of ≤2 SNPs. For groups defined in 
this additional analysis, we estimated median cen-
ter points, directional distributions, and differences 
in K-functions. We performed initial mapping and 
descriptive spatial analysis including median cen-
ter, directional distribution, and kernel density us-
ing ArcGIS version 10.7.1 and performed additional 
analysis and data visualization in R statistical soft-
ware version 4.1.2 (The R Project for Statistical com-
puting, https://www.r-project.org). We calculated 
pairwise geographic distances by using R package 
fields (https://cran.r-project.org/web/packages/
fields/index.html) and pairwise SNP distances 
by using ape (https://cran.r-project.org/web/ 

packages/ape/index.html) (23). We used splancs 
(https://cran.r-project.org/web/packages/splancs/
index.html) and smacpod (https://cran.r-project.
org/web/packages/smacpod/index.html) for K-
function analysis. Boxplots and scatter plots were dis-
played using ggplot2 (https://ggplot2.tidyverse.org) 
and egg (https://cran.r-project.org/package=egg) 
with the viridis (http://www.iqtree.org/https://
sjmgarnier.github.io/viridis) color palette. 

Phylogenetic Analysis
We generated a maximum-likelihood phylogenetic tree 
using IQ-TREE version 1.6.12 (http://www.iqtree.org) 
(24) to represent genetic relationships among M. tuber-
culosis strains. We specified a Hasegawa-Kishino-Yano 
substitution model, which allows for unequal base fre-
quencies and unequal transition rates, and corrected for 
ascertainment bias (25). To construct the phylogenetic 
tree, we used a midpoint rooting approach and ex-
panded our dataset to include all participants with M. 
tuberculosis strains belonging to lineage 4, after exclud-
ing isolates with evidence of possible mixed infection. 
We highlighted the location within the tree of the main 
outbreak groups in our analysis and vertically expand-
ed branches from the node representing the estimated 
most recent common ancestor for each group to enable 
detailed visualization. We then projected phylogenetic 
trees onto geographic maps for each of the groups, dis-
playing the location in the tree of each M. tuberculosis  
isolate linked with its corresponding geographic loca-
tion. We used R packages ggtree (https://github.com/
YuLab-SMU/ggtree) (26), phytools (https://cran.r-
project.org/web/packages/phytools/index.html) 
(27), rgdal (https://cran.r-project.org/package=rgdal), 
mapdata (https://cran.r-project.org/web/packages/ 
mapdata/index.html), and prettymapr (https://
cran.r-project.org/package=prettymapr) to annotate 
and visualize the tree.

Epidemiologic Links
We analyzed data on occupation, places of employ-
ment, and social gathering places (e.g., markets, plac-
es of worship, taverns) to provide additional context 
for interpreting WGS and geospatial data (28). We 
used common occupational groups and social gather-
ing places shared by >2 participants to identify poten-
tial epidemiologic links (28). 

Results 
A total of 1,449 participants with culture-confirmed 
TB and primary residence in greater Gaborone had 
valid GPS coordinates, of which 946 (65%) had WGS 
data available and were thus eligible for this analysis 
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Figure 1. Phylogenetic tree representation for Mycobacterium 
tuberculosis lineage 4 for selected genotypic cluster groups (≤5 
single-nucleotide polymorphisms) in study of high-resolution 
geospatial and genomic data to characterize recent tuberculosis 
transmission, Gaborone, Botswana, 2012–2016. Colors indicate 
the location of isolates in each genotypic cluster group. Branches 
within each of the groups are expanded for visualization.
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(5,14). We determined that participants with WGS data 
were geographically representative of participants 
overall and that distributions of age, sex, HIV status, 
and income were similar between participants with 
and without WGS data (Appendix Table 1; https://
wwwnc.cdc.gov/EID/article/29/5/22-0796-App1.
pdf). We excluded 29 participants with evidence of 
possible mixed-strain infections. There were 431 par-
ticipants that belonged to genotype-specific groups of 
2–19 persons, including 62 participants belonging to 
5 large groups of >10 persons, which we considered 
outbreaks. Data from the 62 participants comprising 
outbreak groups A–E and the 486 in a control group of 
participants who did not belong to any genotype-spe-
cific group, a total of 548 participants, were the focus of 
our primary analysis (Table 1). 

Median age among ungrouped participants was 
35 years (IQR 28–42 years); 52% were male, 25% re-
ported no income, and 64% had diagnosed TB/HIV 
co-infection (Table 1). On the basis of genotypic pre-
diction, we estimated that most had M. tuberculosis 
susceptible to first-line antimicrobial drugs isonia-
zid (94%) and rifampin (94%). Among participants 
in the 5 genotypic groups, median age ranged from 
29 years in group A to 39 years in group E (Table 1). 
Participants in group E were exclusively men; D was 
the only group with more women than men (70%); 
group C had the most participants with diagnosed  
TB/HIV coinfection (9/11; 82%). The percentage of 

participants reporting no income ranged from 18% 
in group C to 60% in group D. Three participants in 
group A had multidrug-resistant TB with predicted 
resistance to both isoniazid and rifampin.

The maximum-likelihood phylogenetic tree for 
lineage 4 (Figure 1) shows the genetic location of iso-
lates in each outbreak group, highlighted with dif-
ferent colors corresponding to each group. Groups 
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Figure 2. Kernel density map, median center point, and directional distribution for genotypic groups A–E (≤5 single-nucleotide 
polymorphisms) (panels A–E) and genotypically ungrouped Mycobacterium tuberculosis strains (F) in study of high-resolution geospatial 
and genomic data to characterize recent tuberculosis transmission, Gaborone, Botswana, 2012–2016. The blue ovals encompass the 
area within the SD ellipse, representing the geographic distance and directional orientation of participant locations within each group. 
Density is shown on a different scale (up to 35 cases/km2) for ungrouped participants than for participants in the genotypic cluster 
groups (up to 5 cases/km2) because of differences in size of the datasets.

Figure 3. Median center points for Mycobacterium tuberculosis 
genotypic groups A–E (≤5 single-nucleotide polymorphisms) 
and genotypically ungrouped strains in study of high-resolution 
geospatial and genomic data to characterize recent tuberculosis 
transmission, Gaborone, Botswana, 2012–2016. The median 
center represents a centralized geographic location that is 
estimated by minimizing the distance to all other participant 
locations being analyzed.



RESEARCH

A, B, and D all belonged to sublineage 4.1.1.3 (Euro-
American [X-type]) and were located near each oth-
er in the tree; group C belonged to sublineage 4.1.2.1 
(Euro-American [Haarlem]) and group E to 4.3.4.1 
(American [LAM]) (29) and were located at greater 
genetic distances from the other groups.

As displayed in maps showing kernel density 
estimations, median center points, and directional 
distributions for each outbreak group and for un-
grouped participants (Figure 2), we detected signif-
icant spatial segregation among outbreak groups (p 
= 0.038). There was also spatial segregation among 
center points for each group (Figure 3) and dif-
ferent directional distributions (Figure 2) among 
groups. For example, participants in group C were 
spread over 12 km in an elongated east–west distri-
bution, but groups B and D both had a more com-
pact (<10 km) north–south spread (Table 2; Figure 
2). In contrast, residential locations for ungrouped 
participants were widely spread across the study 
area (Table 2; Figure 2). The distance between the 
center points for ungrouped participants and each 
of the genotypic groups ranged from <0.5 km for 
group A to ≈5 km for group D (Table 2; Figure 3).

Locations of potential spatial clusters of par-
ticipants within each group were visually apparent 
from estimations of kernel density, especially for 
groups B and D in the south-central part of the map 
(Figure 2). The presence of spatial clustering in those 
groups was also supported by results of the K-func-
tion analysis (Figure 4). Differences in K-functions 
indicated participants in groups B and D had sig-
nificantly greater spatial clustering than participants 
with ungrouped strains at relatively close distances 
(up to ≈4 km). Geographic distance between the first 
and subsequent case diagnoses over time varied by 
group (Figure 5). Although group C had an overall 
pattern of increasing distance over time of detection, 
all subsequently diagnosed cases in group D were 
located relatively near the first participant; subse-
quent participants in group B were located at rela-
tively large but equal distances from the first diag-
nosed case-patient.

Median distance within groups was <5 SNPs for 
all groups except A, which had a median of 7 (Figure 
6). Group A also had higher variability in pairwise 
SNP distances compared with other groups. We ob-
served low positive correlation between geographic  
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Table 2. Spatial summary for each Mycobacterium tuberculosis outbreak group (≤5 SNP) in study of high-resolution geospatial and 
genomic data to characterize recent tuberculosis transmission, by distance rank from reference, Gaborone, Botswana, 2012–2016 
Distance rank Group Median center distance, m X span, m Y span, m Rotation, degrees 
1 Group A 458 9120 10,263 28 
2 Group E 1,633 9,597 5,983 134 
3 Group C 3,143 12,431 4,768 111 
4 Group B 3,788 6,251 9,077 15 
5 Group D 4,979 5,946 8,197 29 
Referent Ungrouped Referent 11,786 9,507 103 

 

Figure 4. K-function differences for Mycobacterium tuberculosis genotypic groups A–E (≤5 single-nucleotide polymorphisms) 
compared with ungrouped strains in study of high-resolution geospatial and genomic data to characterize recent tuberculosis 
transmission, Gaborone, Botswana, 2012–2016. Differences in K-functions were used to assess geospatial clustering among 
participants in each group relative to participants with ungrouped strains. Observations falling above the upper 95% envelope 
indicate significant spatial clustering.
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and SNP pairwise distances overall (ρ  =  0.1; p = 
0.06) (Figure 7). However, this correlation varied by 
group; groups A (ρ = 0.26; p = 0.001) and E (ρ = 0.3; 
p = 0.045) displayed low to modest positive correla-
tion, whereas group C showed negative correlation 
(ρ = −0.33; p = 0.015). 

Phylogenetic tree displays linked to spatial maps 
(Figure 8) show heterogenous genotypic and geo-
graphic patterns in the different groups. In group E, 
closely related M. tuberculosis isolates were generally 
located closer in space and separate areas of potential 
geographic clustering were visible. In group D, most 
isolates appeared to aggregate in a single geographic 
cluster, regardless of within-group genetic related-
ness. We observed a similar pattern in group B with 2 
potential spatial clusters. In groups A and C, closely 
related isolates were generally dispersed more broad-
ly over the geographic area. We visually identified 
distinct subclusters of spatially and phylogenetically 
linked cases in all groups. Potential epidemiologic 
links were identified in each of the outbreak groups. 
At least 2 participants in all groups but C had similar 
occupations (Appendix Table 2). Each group had >1 
participant associated with 3–6 social gathering plac-
es (Appendix Table 3). In group E, 2 participants with 
the same occupation also had 2 social gathering sites 
in common (alcohol-related venues).

Results of the sensitivity analysis indicated geno-
typic groups defined using a ≤2 SNP threshold also 
displayed distinct geographic characteristics. Fewer 
participants overall were identified as belonging to a 
genotype-specific group using the lower SNP thresh-
old. There were 50 participants total in the largest 
groups (labeled groups A2–G2, with 6–9 participants 
each), and 643 ungrouped participants (Appendix 
Table 2). Similar to our primary outbreak group anal-
ysis, those groups displayed significant spatial segre-
gation (p = 0.049), different directional distributions, 
and spatially varied median center points (Appendix 
Figure 1). Groups A2, B2, D2, and F2 had significant 
spatial clustering at shorter distances (0.5–4.0 km).

Discussion
In our analysis, outbreak groups of patients infected 
with closely related M. tuberculosis strains displayed 
distinct geospatial characteristics. Less genetic and 
spatial heterogeneity among participants in 2 of the 
outbreak groups might indicate localized areas of 
more recent transmission compared with outbreak 
groups that were less closely spatially clustered, which 
might reflect a more advanced stage in the transmis-
sion trajectory. Geographic distance between first and 
subsequent cases varied by group. The first case in 
group B was located at a relatively large but equal 
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Figure 5. Incident tuberculosis by geographic distance from first study participant by genotypic cluster group (≤5 single-nucleotide 
polymorphisms) in study of high-resolution geospatial and genomic data to characterize recent tuberculosis transmission, Gaborone, 
Botswana, 2012–2016. Plots represent each participant by date of tuberculosis diagnosis and by geographic distance (based on 
participant’s primary residence) from the first participant (shown in each plot at a distance of 0 km) in each genotypic cluster group.
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distance from all subsequent cases. Further mapping 
efforts could incorporate direction as well as distance 
to subsequent cases to help examine whether the first 
case may have potentially introduced TB to >1 areas 
of localized transmission. However, this observation 
could alternatively be explained by timing of recorded  

sampling, missed cases, or incomplete spatial data. A 
location-based approach using the most recently di-
agnosed instead of the first diagnosed case has been 
suggested as an alternative, high-yield approach for 
active case finding (30).

Our results support findings from a previous 
analysis (5) that found evidence of localized trans-
mission by detecting spatial clustering of genotypic 
groups identified using MIRU-VNTR typing. Al-
though overall areas of spatial aggregation were 
similar, our analysis incorporated higher-resolution 
genomic sequencing data to detect finer-scale spatial 
patterns and describe the geographic distribution 
of distinct genotypic groups. Our results also align 
with recent studies combining spatial and WGS 
data to study TB transmission in several other high-
burden settings, including China (31,32), Ghana 
(33), and along the Thailand-Myanmar border (34). 
Observed spatial patterns among related M. tuber-
culosis strains have included local and regional dis-
tributions of outbreak groups (31,33) and lineages 
(34), and associations between residential proximity 
and genetic similarity (31,32). In contrast, a study in 
China found that the majority of genotypic groups 
included participants from separate geographic dis-
tricts (28). However, that study differed from ours 
because it specifically analyzed multidrug-resistant 
TB, and 70% of participants had migrated from oth-
er provinces (28).

984	 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 29, No. 5, May 2023

Figure 7. Correlation between pairwise single-nucleotide polymorphisms (SNP) distance and pairwise geographic distance for 
genotypic cluster groups ≤5 SNP (A–E) and ungrouped cases (F) in study of high-resolution geospatial and genomic data to 
characterize recent tuberculosis transmission, Gaborone, Botswana, 2012–2016. Points represent measurements for within-group pairs. 
There was low positive correlation between pairwise geographic and SNP distances overall (Spearman ρ = 0.1; p = 0.06). SNP, single-
nucleotide polymorphism.

Figure 6. Pairwise SNP distances by ≤5 single-nucleotide 
polymorphism (SNP) genotypic cluster group in study of high-
resolution geospatial and genomic data to characterize recent 
tuberculosis transmission, Gaborone, Botswana, 2012–2016. Box 
plots with individual data points superimposed display SNP distance 
summaries by group. Median within-group SNP distance was 
<5 SNPs for all groups except group A, which had a median of 7 
SNPs. Horizontal lines within boxes indicate medians; box tops and 
bottoms indicate interquartile ranges; error bars indicate 95% CIs.
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Phylogenetic trees and geographic maps are often 
presented as complementary but separate displays of 
data. We generated phylogenetic trees linked to spa-
tial maps that produced a high-resolution display 
for each genotypic cluster that could guide public 
health activities. For example, potential subgroups of 
closely related strains within outbreak groups could 
be linked with corresponding geographic locations 
to help identify high-risk areas for targeted interven-
tions, including active case finding for early diagno-
sis and treatment, contact investigations, and TB-pre-
vention therapies. 

Multiple strata of data are missing from our 
analysis that might have affected results on detection 
and geospatial characterization of outbreak groups. 
Although the original study had relatively high en-
rollment (4,331/5,515 persons diagnosed during the 
study period), not every person with TB was cap-
tured, including those diagnosed but not enrolled 
and an unknown number of undetected cases. We 
excluded participants not culture-confirmed (n = 
2,169), which reduced the sample size but helped 
ensure persons misdiagnosed with TB were not in-
cluded in the analysis. WGS results were available for 
culture-confirmed participants with samples contain-

ing sufficient DNA (n = 1,426). We further excluded 
participants for whom we had no geographic coordi-
nates and those with possible mixed-strain infections 
(18,35). More complete data could have led to detect-
ing larger or additional outbreak groups or alternate 
geospatial patterns. However, we believe that the 
data available are representative of the largest geno-
typic clusters in the study area and reflect real geo-
graphic patterns. We also did not have detailed social 
contact data. Although we did analyze occupational 
and social gathering data to identify potential epide-
miologic links, additional WGS and epidemiologic 
data incorporating spatial and social network analy-
sis might have helped us better reconstruct potential 
transmission chains (36).

In conclusion, integrating genomic and geospa-
tial data presents a promising approach for studying 
TB transmission in high-burden settings. We used 
this approach to identify heterogeneity among mul-
tiple M. tuberculosis transmission chains. We identi-
fied geographically clustered strains of M. tuberculosis 
representing localized areas of recent transmission. 
Although barriers remain, substantial progress has 
been made toward increasing capacity for genomic 
technologies in low- and middle-income countries 
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Figure 8. Representation 
of phylogenetic trees for 
Mycobacterium tuberculosis 
genotypic cluster groups 
A–E (≤5 single-nucleotide 
polymorphisms) projected onto 
geographic maps in study of 
high-resolution geospatial and 
genomic data to characterize 
recent tuberculosis transmission, 
Gaborone, Botswana, 2012–
2016. The location of each M. 
tuberculosis isolate in the tree 
is displayed with a link drawn 
to its corresponding geographic 
location. Tree tips on the same 
bifurcating branches represent 
the most closely related isolates.
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(37,38). Integrated genomic/geospatial combined ap-
proaches used in near real time could help TB-pre-
vention programs identify emerging outbreaks and 
plan and mobilize interventions to interrupt ongoing 
transmission (37,38).

Acknowledgments
We acknowledge the contributions of study participants 
and the research team involved in data collection who 
made this study possible.

Research reported in this publication was supported by 
the US National Institute of Allergy and Infectious  
Diseases of the National Institutes of Health under award 
no. R01AI147336 and R01AI097045 and the President’s 
Emergency Plan for AIDS Relief through the Centers for 
Disease Control and Prevention.

About the Author
Ms. Baker is a predoctoral student at the Sue and Bill Gross 
School of Nursing at the University of California, Irvine. 
Her research interests include infectious disease  
epidemiology, spatial analysis, and global health.

References
  1.	 World Health Organization. Global tuberculosis report 2021 

[cited 2021 Oct 19]. https://www.who.int/publications-
detail-redirect/9789240037021

  2.	 Auld SC, Kasmar AG, Dowdy DW, Mathema B, Gandhi NR, 
Churchyard GJ, et al. Research roadmap for tuberculosis 
transmission science: where do we go from here and 
how will we know when we’re there? J Infect Dis. 
2017;216(suppl_6):S662–8. https://doi.org/10.1093/infdis/
jix353

  3.	 Auld SC, Shah NS, Cohen T, Martinson NA, Gandhi NR. 
Where is tuberculosis transmission happening? Insights 
from the literature, new tools to study transmission and 
implications for the elimination of tuberculosis. Respirology. 
2018;23:807–17. https://doi.org/10.1111/resp.13333

  4.	 Shaweno D, Trauer JM, Doan TN, Denholm JT, McBryde ES. 
Geospatial clustering and modelling provide policy guidance 
to distribute funding for active TB case finding in Ethiopia. 
Epidemics. 2021;36:100470. https://doi.org/10.1016/ 
j.epidem.2021.100470

  5.	 Zetola NM, Moonan PK, Click E, Oeltmann JE, Basotli J,  
Wen XJ, et al. Population-based geospatial and molecular 
epidemiologic study of tuberculosis transmission  
dynamics, Botswana, 2012–2016. Emerg Infect Dis. 
2021;27:835–44. https://doi.org/10.3201/eid2703.203840

  6.	 Vesga JF, Hallett TB, Reid MJA, Sachdeva KS, Rao R, 
Khaparde S, et al. Assessing tuberculosis control priorities 
in high-burden settings: a modelling approach. Lancet Glob 
Health. 2019;7:e585–95. https://doi.org/10.1016/ 
S2214-109X(19)30037-3

  7.	 Gardy JL, Johnston JC, Ho Sui SJ, Cook VJ, Shah L,  
Brodkin E, et al. Whole-genome sequencing and social-
network analysis of a tuberculosis outbreak. N Engl J Med. 
2011;364:730–9. https://doi.org/10.1056/NEJMoa1003176

  8.	 Guthrie JL, Gardy JL. A brief primer on genomic  

epidemiology: lessons learned from Mycobacterium  
tuberculosis. Ann N Y Acad Sci. 2017;1388:59–77.  
https://doi.org/10.1111/nyas.13273

  9.	 Shaweno D, Karmakar M, Alene KA, Ragonnet R,  
Clements AC, Trauer JM, et al. Methods used in the spatial 
analysis of tuberculosis epidemiology: a systematic review. 
BMC Med. 2018;16:193. https://doi.org/10.1186/ 
s12916-018-1178-4

10.	 Trauer JM, Dodd PJ, Gomes MGM, Gomez GB,  
Houben RMGJ, McBryde ES, et al. The importance of  
heterogeneity to the epidemiology of tuberculosis. Clin Infect 
Dis. 2019;69:159–66. https://doi.org/10.1093/cid/ciy938

11.	 Dowdy DW, Golub JE, Chaisson RE, Saraceni V.  
Heterogeneity in tuberculosis transmission and the role of 
geographic hotspots in propagating epidemics. Proc Natl 
Acad Sci U S A. 2012;109:9557–62. https://doi.org/10.1073/
pnas.1203517109

12.	 Shrestha S, Reja M, Gomes I, Baik Y, Pennington J, Islam S,  
et al. Quantifying geographic heterogeneity in TB  
incidence and the potential impact of geographically targeted 
interventions in South and North City Corporations of 
Dhaka, Bangladesh: a model-based study. Epidemiol Infect. 
2021;149:e106. https://doi.org/10.1017/S0950268821000832

13.	 Reid MJA, Arinaminpathy N, Bloom A, Bloom BR,  
Boehme C, Chaisson R, et al. Building a tuberculosis-free 
world: The Lancet Commission on tuberculosis.  
Lancet. 2019;393:1331–84. https://doi.org/10.1016/ 
S0140-6736(19)30024-8

14.	 Zetola NM, Modongo C, Moonan PK, Click E, Oeltmann JE, 
Shepherd J, et al. Protocol for a population-based  
molecular epidemiology study of tuberculosis transmission 
in a high HIV-burden setting: the Botswana Kopanyo study. 
BMJ Open. 2016;6:e010046. https://doi.org/10.1136/ 
bmjopen-2015-010046

15.	 Click ES, Finlay A, Oeltmann JE, Basotli J, Modongo C,  
Boyd R, et al. Phylogenetic diversity of Mycobacterium  
tuberculosis in two geographically distinct locations in 
Botswana—The Kopanyo Study. Infect Genet Evol. 2020; 
81:104232. https://doi.org/10.1016/j.meegid.2020.104232

16.	 Kohl TA, Utpatel C, Schleusener V, De Filippo MR,  
Beckert P, Cirillo DM, et al. MTBseq: a comprehensive  
pipeline for whole genome sequence analysis of  
Mycobacterium tuberculosis complex isolates. PeerJ. 2018; 
6:e5895. https://doi.org/10.7717/peerj.5895

17.	 Grobbel HP, Merker M, Köhler N, Andres S, Hoffmann H, 
Heyckendorf J, et al. Design of multidrug-resistant  
tuberculosis treatment regimens based on DNA sequencing. 
Clin Infect Dis. 2021;73:1194–202. https://doi.org/10.1093/
cid/ciab359

18.	 Baik Y, Modongo C, Moonan PK, Click ES, Tobias JL,  
Boyd R, et al. Possible transmission mechanisms of mixed 
Mycobacterium tuberculosis infection in high HIV  
prevalence country, Botswana. Emerg Infect Dis. 
2020;26:953–60. https://doi.org/10.3201/eid2605.191638

19.	 Dreyer V, Utpatel C, Kohl TA, Barilar I, Gröschel MI,  
Feuerriegel S, et al. Detection of low-frequency resistance- 
mediating SNPs in next-generation sequencing data of  
Mycobacterium tuberculosis complex strains with binoSNP. Sci 
Rep. 2020;10:7874. https://doi.org/10.1038/s41598-020-64708-8

20.	 Diggle P, Zheng P, Durr P. Nonparametric estimation of 
spatial segregation in a multivariate point process: bovine 
tuberculosis in Cornwall, UK. J R Stat Soc Ser C Appl Stat. 
2005;54:645–58. https://doi.org/10.1111/ 
j.1467-9876.2005.05373.x

21.	 Waller L. Detection of clustering in spatial data. In: Rogerson 
P, Fotheringham S, editors. The SAGE handbook of spatial 

986	 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 29, No. 5, May 2023



Tuberculosis Transmission, Botswana

analysis. London: SAGE Publications, Ltd; 2009.
22.	 Wheeler DC. A comparison of spatial clustering and  

cluster detection techniques for childhood leukemia  
incidence in Ohio, 1996–2003. Int J Health Geogr. 2007;6:13. 
https://doi.org/10.1186/1476-072X-6-13

23.	 Paradis E, Schliep K. ape 5.0: an environment for modern 
phylogenetics and evolutionary analyses in R. Bioinformatics. 
2019;35:526–8. https://doi.org/10.1093/bioinformatics/
bty633

24.	 Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ.  
IQ-TREE: a fast and effective stochastic algorithm for  
estimating maximum-likelihood phylogenies. Mol Biol Evol. 
2015;32:268–74. https://doi.org/10.1093/molbev/msu300

25.	 Crispell J, Zadoks RN, Harris SR, Paterson B, Collins DM,  
de-Lisle GW, et al. Using whole genome sequencing to  
investigate transmission in a multi-host system: bovine 
tuberculosis in New Zealand. BMC Genomics. 2017;18:180. 
https://doi.org/10.1186/s12864-017-3569-x

26.	 Yu G. Using ggtree to visualize data on tree-like structures. 
Curr Protoc Bioinformatics. 2020;69:e96. https://doi.org/ 
10.1002/cpbi.96

27.	 Revell LJ. phytools: An R package for phylogenetic  
comparative biology (and other things). Methods Ecol Evol. 
2012;3:217–23. https://doi.org/10.1111/ 
j.2041-210X.2011.00169.x

28.	 Jiang Q, Liu Q, Ji L, Li J, Zeng Y, Meng L, et al. Citywide 
transmission of multidrug-resistant tuberculosis under 
China’s rapid urbanization: a retrospective population-based 
genomic spatial epidemiological study. Clin Infect Dis. 
2020;71:142–51. https://doi.org/10.1093/cid/ciz790

29.	 Coll F, McNerney R, Guerra-Assunção JA, Glynn JR,  
Perdigão J, Viveiros M, et al. A robust SNP barcode for  
typing Mycobacterium tuberculosis complex strains. Nat  
Commun. 2014;5:4812. https://doi.org/10.1038/ncomms5812

30.	 Moonan PK, Zetola NM, Tobias JL, Basotli J, Boyd R,  
Click ES, et al. A neighbor-based approach to identify 
tuberculosis exposure, the Kopanyo Study. Emerg Infect Dis. 
2020;26:1010–3. https://doi.org/10.3201/eid2605.191568

31.	 Zhou Y, Anthony R, Wang S, Ou X, Liu D, Zhao Y,  
et al. The epidemic of multidrug resistant tuberculosis in 
China in historical and phylogenetic perspectives.  

J Infect. 2020;80:444–53. [Erratum in J Infect. 2022;85:609.] 
https://doi.org/10.1016/j.jinf.2019.11.022

32.	 Yang C, Lu L, Warren JL, Wu J, Jiang Q, Zuo T, et al. Internal 
migration and transmission dynamics of tuberculosis in 
Shanghai, China: an epidemiological, spatial, genomic  
analysis. Lancet Infect Dis. 2018;18:788–95. https://doi.org/ 
10.1016/S1473-3099(18)30218-4

33.	 Asare P, Otchere ID, Bedeley E, Brites D, Loiseau C,  
Baddoo NA, et al. Whole genome sequencing and spatial 
analysis identifies recent tuberculosis transmission hotspots in 
Ghana. Front Med (Lausanne). 2020;7:161. https://doi.org/ 
10.3389/fmed.2020.00161

34.	 Maung HMW, Palittapongarnpim P, Aung HL, Surachat K, 
Nyunt WW, Chongsuvivatwong V. Geno-spatial  
distribution of Mycobacterium tuberculosis and drug  
resistance profiles in Myanmar–Thai border area. Trop  
Med Infect Dis. 2020;5:153. https://doi.org/10.3390/ 
tropicalmed5040153 

35.	 Lee RS, Proulx JF, McIntosh F, Behr MA, Hanage WP. 
Previously undetected super-spreading of Mycobacterium  
tuberculosis revealed by deep sequencing. eLife. 
2020;9:e53245. https://doi.org/10.7554/eLife.53245

36.	 Hatherell HA, Colijn C, Stagg HR, Jackson C, Winter JR, 
Abubakar I. Interpreting whole genome sequencing for 
investigating tuberculosis transmission: a systematic review. 
BMC Med. 2016;14:21. https://doi.org/10.1186/ 
s12916-016-0566-x

37.	 Inzaule SC, Tessema SK, Kebede Y, Ogwell Ouma AE,  
Nkengasong JN. Genomic-informed pathogen surveillance 
in Africa: opportunities and challenges. Lancet Infect 
Dis. 2021;21:e281–9. https://doi.org/10.1016/S1473-3099 
(20)30939-7

38.	 Gardy JL, Loman NJ. Towards a genomics-informed,  
real-time, global pathogen surveillance system. Nat Rev 
Genet. 2018;19:9–20. https://doi.org/10.1038/nrg.2017.88

Address for correspondence: Sanghyuk Shin, Associate Professor, 
Sue & Bill Gross School of Nursing, Director, UCI Infectious 
Disease Science Initiative, University of California Irvine, 106F 
Berk Hall, Irvine, CA 92697, USA; email: ssshin2@uci.edu

	 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 29, No. 5, May 2023	 987


