Emerging Invasive Group A
Streptococcus M1^UK^ Lineage Detected by Allele-Specific PCR,
England, 2020

Xiangyun Zhi, Ho Kwong Li, Hanqi Li, Zuzanna Loboda, Samson Charles, Ana Vieira, Kristin Huse,
Elita Jauneikaitė, Lucy Reeves, Kai Yi Mok, Juliana Coelho, Theresa Lamagni, Shiranee Sriskandan

Increasing reports of invasive *Streptococcus pyogenes* infections mandate surveillance for toxigenic lineage M1^UK^. An allele-specific PCR was developed to distinguish M1^UK^ from other emm1 strains. The M1^UK^ lineage represented 91% of invasive emm1 isolates in England in 2020. Allele-specific PCR will permit surveillance for M1^UK^ without need for genome sequencing.

Upsurges in invasive group A *Streptococcus* (GAS) infections have been widely reported in England and elsewhere (1), emphasizing the need to examine the relationship between circulating *S. pyogenes* that cause pharyngitis and scarlet fever and cases of invasive disease. Although many factors, such as exposure history, underlying conditions, viral co-infection, and genetic susceptibility, might increase susceptibility to *S. pyogenes* infection, strain-specific virulence might also be crucial.

In England, where both scarlet fever and invasive *S. pyogenes* infections are notifiable, pronounced upsurges in scarlet fever were recorded over an 8-year period (2,3) but subsided during the COVID-19 pandemic. During the 2015–16 season, a notable increase in invasive infections was observed that had not been evident previously (4). Both scarlet fever and invasive infections were associated with the emergence of M1^UK^, a new sublineage of emm1 *S. pyogenes* (4) that appeared to outcompete the highly successful, contemporary epidemic emm1 M1^global^ strain, which emerged and spread globally during the 1980s (5,6). Despite an unchanged phage repertoire, M1^UK^ strains produce more superantigenic scarlet fever toxin SpeA (streptococcal pyrogenic exotoxin A) than contemporary M1^global^ *S. pyogenes* strains (4).

emm1 *S. pyogenes* strains are highly virulent (5) and disproportionately associated with invasive infections; any increase in the prevalence of emm1 strains in persons with pharyngitis or scarlet fever is, therefore, a public health concern. Known distribution of M1^UK^ is largely limited to those countries undertaking and reporting genome sequencing (Figure 1). M1^UK^ has been identified in other countries in Europe, from a single isolate in Denmark (4) to dominant status in the Netherlands (7). The lineage has also been reported in North America; the Public Health Agency of Canada reported that 17/178 (10%) of emm1 isolates from 2016 were M1^UK^ (8). This finding contrasts with a reported M1^UK^ frequency of just 0%–2.8% of emm1 isolates in the United States, according to the Active Bacterial Core surveillance system of the US Centers for Disease Control and Prevention; however, the low US frequency was associated with severe infections (9).

Of note, most reports used genomic data that were >5 years old, so a reappraisal of prevalence is needed. A recent study in Australia using data through 2020 indicated expansion of M1^UK^ in Queensland and Victoria (10). The authors identified acquisition of an additional phage encoding superantigen genes ssa and spec and a single-nucleotide polymorphism (SNP) implicated in SpeA upregulation in the M1^UK^ lineage. Multicountry increases in GAS infections (1) since pandemic restrictions were lifted underscore the importance of increasing global surveillance.
surveillance of lineages that have potentially enhanced fitness, such as M1\textsubscript{UK}.

The Study
Genetic distinction between M1\textsubscript{UK} and M1\textsubscript{global} strains is possible by using whole-genome sequencing to detect the 27 SNPs that characterize the M1\textsubscript{UK} lineage (4), but sequencing technology is not available in all countries. We designed an allele-specific PCR (AS-PCR) method to detect M1\textsubscript{UK}-specific SNPs in the \textit{rofA}, \textit{gldA}, and \textit{pstB} genes. We chose amplification targets to separate M1\textsubscript{UK} and M1\textsubscript{global} strains but also to identify strains from less common intermediate sublineages that had only 13 or 23 of the 27 M1\textsubscript{UK}-specific SNPs (4). We optimized PCR conditions for each pair of amplicons by using DNA from control strains for each lineage (Table; Appendix Figure, https://wwwnc.cdc.gov/EID/article/29/5/22-1887-App1.pdf). Collecting bacterial samples from patients was part of routine clinical care; collecting surplus samples after anonymizing patient information was approved by the West London National Research Ethics Committee (approval no. 06/Q0406/20).

To evaluate allele-specific PCR, we tested whether the \textit{rofA} and \textit{pstB} primers correctly identified lineages of 27 newly genome-sequenced \emph{noninvasive} \emph{emm1} strains.

Table. PCR primers and conditions used to differentiate M1\textsubscript{global} and M1\textsubscript{UK} \textit{Streptococcus pyogenes} lineages in study of emerging invasive group A \textit{Streptococcus} M1\textsubscript{UK} lineage detected by allele-specific PCR, England, 2020

<table>
<thead>
<tr>
<th>Target gene</th>
<th>Primer type†</th>
<th>Sequences‡</th>
<th>PCR cycle conditions</th>
<th>Product, bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{rofA}</td>
<td>WT sequence</td>
<td>TGTTAATTGCTTGTTAAAATCA</td>
<td>30 cycles of 95°C for 3 min, 45 s; 59.2°C for 30 s; 72°C for 1 min (final cycle: 5 min)</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>Forward-SNP</td>
<td>5′-TGTTAATTGCTTGTTAAAATA−3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forward-WT</td>
<td>5′-TGTTAATTGCTTGTTAAAAT−3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5′-GCTCATCTCCTAACGGATTCTT−3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WT sequence</td>
<td>AGATGGGTTAGCAACATGG</td>
<td>30 cycles of 95°C for 3 min, 45 s; 61.8°C for 30 s; 72°C for 1 min (final cycle: 5 min)</td>
<td>292</td>
</tr>
<tr>
<td></td>
<td>Forward-SNP</td>
<td>5′-AGATGGGTTAGCAACATAG−3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forward-WT</td>
<td>5′-AGATGGGTTAGCAACACAG−3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5′-GAATAGCACCTGTCAGCG−3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{gldA}</td>
<td>WT sequence</td>
<td>GATAAATCAATCTTAGACCA</td>
<td>30 cycles of 95°C for 3 min, 45 s; 50°C for 30 s; 72°C for 1 min (final cycle: 5 min)</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>Forward-SNP</td>
<td>5′-GATAAATCAATCTTAGACT−3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forward-WT</td>
<td>5′-GATAAATCAATCTTAGAT−3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5′-CGTGAGGCTTGCTGCATTGAG−3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*SNP, single-nucleotide polymorphism; WT, wild-type.
†Forward primers were designed to detect either the targeted SNP (M1\textsubscript{UK}) or WT (M1\textsubscript{global}) sequences.
‡Lowercase bold letters in primer sequences denote the base complementary to the targeted SNP in the M1\textsubscript{UK} sequence. Underlined uppercase letters indicate an additional mismatched base introduced into primer sequences to increase primer specificity.
S. pyogenes strains isolated during 2017–18 and collected by the infection bioresource at Imperial College. We artificially enriched the isolates for M1\textsubscript{global} strains to ensure adequate numbers of each lineage: 8/27 isolates were M1\textsubscript{global} and 19/27 were M1\textsubscript{UK}. PCR amplification of \textit{rofA} and \textit{pstB} alleles from those isolates assigned 100% of strains to the correct lineage previously identified by sequencing (Appendix Table 1).

To evaluate the ability of AS-PCR to identify \textit{emm}1 isolates from M1\textsubscript{global}, M1\textsubscript{UK}, and intermediate sublineages (4), we tested 16 strains from 2013–2016 that comprised 4 isolates each of M1\textsubscript{global}, M1\textsubscript{13snp}, M1\textsubscript{23snp}, and M1\textsubscript{UK} lineages (Appendix Table 2). SNPs were correctly detected in the \textit{rofA} gene from all M1\textsubscript{13snp}, M1\textsubscript{23snp}, and M1\textsubscript{UK} isolates (Appendix Table 3). SNPs were also correctly detected in \textit{gldA} from all M1\textsubscript{23snp} and M1\textsubscript{UK} isolates but not M1\textsubscript{global} or M1\textsubscript{13snp} isolates. Finally, SNPs in \textit{pstB} were only identified in M1\textsubscript{UK} isolates. Thus, in all cases, SNP profiles determined by AS-PCR were consistent with strain-specific genome sequences.

In England, submission of all isolates from invasive infection is requested by the UK Health Security Agency reference laboratory for \textit{emm} genotyping. \textit{emm}1 isolates are routinely the dominant genotype among invasive sterile-site isolates, typically representing 20%–30% of invasive infections. During 2020, when incidence of common respiratory infections was reduced by COVID-19–related public health interventions, \textit{emm}1 \textit{S. pyogenes} frequency varied each month from 0%–24% of all invasive infections and decreased toward the end of the year. We subjected all 305 invasive \textit{emm}1 \textit{S. pyogenes} isolates from 2020 that were available for this study to AS-PCR (Appendix Table 4). AS-PCR identified M1\textsubscript{UK}-specific SNPs in \textit{rofA}, \textit{gldA}, and \textit{pstB} in 278/305 (91.1%) of isolates, which were, therefore, assigned to the M1\textsubscript{UK} lineage. No SNPs were detected in the remaining 27 isolates, which were assigned to M1\textsubscript{global}; no intermediate lineage \textit{emm}1 strains were identified in isolates collected during 2020 by using AS-PCR.

We performed Western blot analysis of 10 M1\textsubscript{UK} isolates identified by AS-PCR. We confirmed that SpeA production was similar to M1\textsubscript{UK} strains tested previously; however, we did not quantify SpeA production.

Conclusions

The longevity of emergent \textit{S. pyogenes} lineages in a population is difficult to predict. Although an \textit{emm}89\textsubscript{emergent} acapsular lineage has disseminated globally (11), an emergent \textit{emm}3 SpeC-producing lineage, associated with upsurges in scarlet fever and invasive infections, ceased to be detectable within a few years (12). Taken together with previously reported genome-sequenced \textit{emm}1 isolates (Figure 2), AS-PCR results indicated that the M1\textsubscript{UK} lineage continued to expand among invasive \textit{S. pyogenes} isolates from 2016 to the end of 2020 in England.

Increased invasive GAS activity in several countries (1) indicates a need for ongoing surveillance of novel lineages, given the potential public health effects. AS-PCR provides a readily available method to detect M1\textsubscript{UK} that is straightforward and, for screening purposes only, can be simplified by using only \textit{rofA} primers to identify M1\textsubscript{UK} or associated sublineages. A limitation of our study is that the assay requires validation in reference laboratory settings. AS-PCR does not replace genome sequencing as the preferred method for surveillance of highly pathogenic bacteria, but sequencing is not widely available and is expensive.

\textit{emm}1 strains have accounted for >50% of invasive infections in children in England during the 2022–23 season (13). Our results indicate that the M1\textsubscript{UK} lineage remained dominant in England and expanded to the end of 2020, and contact tracing in 2018 demonstrated a high frequency of secondary acquisition of M1\textsubscript{UK} in school outbreak settings (14). Given the recognized association between \textit{emm}1 \textit{S. pyogenes} and fatal outcome of invasive infections (15), enhanced surveillance for the M1\textsubscript{UK} sublineage is warranted. We conclude that AS-PCR is a readily available method to determine whether \textit{emm}1 \textit{S. pyogenes} isolates belong to the M1\textsubscript{UK} clade without need for genome sequencing and will improve surveillance of invasive GAS strains.
Acknowledgments
We thank the National Institute for Health Research (NIHR) Imperial Biomedical Research Centre (BRC); NIHR Health Protection Research Unit (HPRU) in Healthcare-associated Infection and Antimicrobial Resistance at Imperial College London; Medical Research Council Centre for Molecular Bacteriology and Infection; scientific and biomedical staff from the NIHR BRC Colebrook laboratory, NIHR HPRU, NIHR BRC Imperial Genomics Facility, and Northwest London Pathology/Imperial College Healthcare Trust Diagnostic laboratory for contributing to the collection, biobanking, typing, and sequencing of bacterial isolates; and staff at the UK Health Security Agency reference laboratory who genotyped emm-invasive isolates used in this study.

This study was funded by UK Research and Innovation Medical Research Council (MR/P022669/1) and NIHR Imperial Biomedical Research Centre.

About the Author
Dr. Zhi is a postdoctoral research associate at Imperial College London. Her research focuses on pathogenesis and vaccine prevention of Streptococcus pyogenes disease.

References

Address for correspondence: Shiranee Sriskandan, Section of Adult Infectious Diseases, Department of Infectious Disease, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK; email: s.sriskandan@imperial.ac.uk