TY - JOUR AU - Blanco, David R. AU - Miller, James N. AU - Lovett, Michael A. T1 - Surface Antigens of the Syphilis Spirochete and Their Potential as Virulence Determinants T2 - Emerging Infectious Disease journal PY - 1997 VL - 3 IS - 1 SP - 11 SN - 1080-6059 AB - A unique physical feature of Treponema pallidum, the venereally transmitted agent of human syphilis, is that its outer membrane contains 100-fold less membrane-spanning protein than the outer membranes of typical gram-negative bacteria, a property that has been related to the chronicity of syphilitic infection. These membrane-spanning T. pallidum rare outer membrane proteins, termed TROMPs, represent potential surface-exposed virulence determinants and targets of host immunity. Only recently has the outer membrane of T. pallidum been isolated and its constituent proteins identified. Five proteins of molecular mass 17-, 28-, 31-, 45-, and 65-kDa were outer membrane associated. The 17- and 45-kDa proteins, which are also present in greater amounts with the T. pallidum inner membrane protoplasmic cylinder complex, had been previously characterized lipoproteins and are, therefore, not membrane-spanning but rather membrane-anchored by their lipid moiety. In contrast, the 28-, 31-, and 65-kDa proteins are exclusively associated with the outer membrane. Both the purified native and an Escherichia coli recombinant outer membrane form of the 31-kDa protein, designated Tromp1, exhibit porin activity, thereby confirming the membrane-spanning outer membrane topology of Tromp1. The 28-kDa protein, designated Tromp2, has sequence characteristics in common with membrane-spanning outer membrane proteins and has also been recombinantly expressed in E. coli, where it targets exclusively to the E. coli outer membrane. The 65-kDa protein, designated Tromp3, is present in the least amount relative to Tromps1 and 2. Tromps 1, 2, and 3 were antigenic when tested with serum from infection and immune syphilitic rabbits and humans. These newly identified TROMPs provide a molecular foundation for the future study of syphilis pathogenesis and immunity. KW - United States DO - 10.3201/eid0301.970102 UR - https://wwwnc.cdc.gov/eid/article/3/1/97-0102_article ER - End of Reference