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Appendix 2 Table. Gene products of importance for oligodendrocyte function 

Host 
Protein 

Host Protein Function References 

Enpp6 This protein is a member of the nucleotide pyrophosphatase/phosphodiesterase family of enzymes 
that play an important role in regulating extracellular nucleotide metabolism. The encoded 
preproprotein undergoes proteolytic processing to generate a glycosylphosphatidylinositol (GPI)-
anchored membrane protein that hydrolyzes choline-containing lysophospholipids such as 
glycerophosphocholine. It is frequently described as a marker of myelinating oligodendrocytes, and 
its protein expression is down-regulated in various neurodegenerative conditions including chronic 
traumatic encephalopathy (CTE) as well as normal aging, which are both implicated with impaired 
oligodendrocyte function. Mice lacking the encoded protein develop fatty liver and myelin sheath 
abnormalities. NCBI Gene: 320981 

 (1–5) 
 

Gjb1 
(Cx32) 

This protein is a member of the gap junction protein family. The gap junction proteins are 
membrane-spanning proteins that assemble to form gap junction channels that facilitate the 
transfer of ions and small molecules between cells. Gjb1 is localized to oligodendrocytes and 
alterations in its expression and/or function have been implicated in numerous disorders of the 
central nervous system. According to sequence similarities at the nucleotide and amino acid levels, 
the gap junction proteins are divided into two categories, α and β. Mutations in this gene cause X-
linked Charcot-Marie-Tooth disease, an inherited peripheral neuropathy. NCBI Gene: 2705 

 (6–8) 
 

Opalin This protein is predicted to be involved in regulation of oligodendrocyte differentiation. Opalin, a 
central nervous system-specific myelin protein, has been suggested to play a role in mammalian-
specific myelin. NCBI Gene: 93377 

 (9,10) 
 

Pllp The plasmolipin protein is a main component of the myelin sheath and plays an important role in 
the development and normal function of the nervous system. It is known to be down-regulated in 
post-mortem examinations of brains from human patients experiencing Alzheimer’s disease and 
major depressive disorders. Pllp has also been a suggested biomarker of schizophrenia and 
possibly Alzheimer’s disease. NCBI Gene: 751090 

 (11–14) 
 

Sox10 This protein is a member of the SOX (SRY-related HMG-box) family of transcription factors 
involved in the regulation of embryonic development. This protein acts as a nucleocytoplasmic 
shuttle protein and is important for neural crest and peripheral nervous system development. 
Mutations in this gene are associated with Waardenburg-Shah and Waardenburg-Hirschsprung 
disease. Sox10 is a key regulator in differentiation of peripheral glial cells. In mice that carry a 
spontaneous or a targeted mutation of Sox10, neuronal cells form in dorsal root ganglia, but 
Schwann cells or satellite cells are not generated. At later developmental stages, this lack of 
peripheral glial cells results in a severe degeneration of sensory and motor neurons. NCBI Gene: 
6663 

 (15–17) 
 

Ugt8a The protein encoded by this gene belongs to the UDP-glycosyltransferase family. It catalyzes the 
transfer of galactose to ceramide, a key enzymatic step in the biosynthesis of galactocerebrosides, 
which are abundant sphingolipids of the myelin membrane of the central and peripheral nervous 
systems. Lower levels of Ugt8a expression have been observed in the LacQ140 transgenic mouse 
model, which is associated with changes in lipid biosynthesis and with it an array of myelin-related 
disorders. NCBI Gene: 7638 

 (18–20) 
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Appendix 2 Figure. Growth of K96243 and ATS2021 compared in several types of rich or defined media 

to assess differences with nutritional requirements.  
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