
Chronic wasting disease (CWD) has been identi-
fied in North America, Asia, and Scandinavia 

(1–4) and is the only known prion disease in wildlife. 
CWD is often considered the most infectious of all 
prion diseases, but how CWD spreads so efficiently 
remains unclear. It is generally accepted that facile 
CWD transmission results from robust prion repli-
cation in target tissues, leading to shedding of infec-
tious prions into saliva, urine, and feces (i.e., secreta). 
Cervids are likely exposed to infectious prions via di-
rect animal-to-animal contact or indirect contact with 
the agent shed into the environment.

Landscapes previously housing CWD-infected 
cervids are contaminated with sufficient infectious 
prions to initiate subsequent infections (5,6). Fomi-
te-only exposure of uninfected deer to buckets and 
bedding from suites housing CWD-positive animals 
resulted in CWD infections in disease-naive deer 
within 19 months after exposure (7). Studies in 
white-tailed deer (WTD; Odocoileus virginianus) also 
revealed that large oral doses of saliva, urine, or fe-
ces contained adequate concentrations of the CWD 
agent to initiate infections (8,9). Additional studies 
in WTD established a minimum oral CWD infec-
tious dose equivalent to 100–300 ng CWD-positive 
brain tissue (10). Yet, equivalent saliva doses (16.5–
30 mL) seem large compared with a dose expected in 
nature. Nevertheless, taken together, those studies 
indicate doses of CWD prions in saliva and exposure 
to shed prions in the environment are sufficient for 
CWD transmission.

The temporal shedding profile of CWD prions in 
secreta remains poorly understood. Little is known 
about the onset and duration of the complete prion 
shedding profile during the asymptomatic phase of 
CWD infection. It is suspected that prion levels in 
shed secreta are low, and inhibitors or nonspecific 
substrate activators in secreta can constrain the use 
of sensitive in vitro amplification assays, such as se-
rial protein misfolding amplification (sPMCA) and 
real-time quaking-induced conversion (RT-QuIC) 
(11–14). To enhance detection capabilities of those 
assays, sodium phosphotungstic acid or iron oxide 
bead capture techniques have been used to concen-
trate prions and reduce or bypass interfering factors 
(15–26). Thus, continued in vitro assay optimization 
has improved CWD antemortem detection.
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Chronic wasting disease (CWD) affects cervids in North 
America, Asia, and Scandinavia. CWD is unique in its 
efficient spread, partially because of contact with infec-
tious prions shed in secreta. To assess temporal pro-
files of CWD prion shedding, we collected saliva, urine, 
and feces from white-tailed deer for 66 months after ex-
posure to low oral doses of CWD-positive brain tissue 
or saliva. We analyzed prion seeding activity by using 
modified amyloid amplification assays incorporating iron 
oxide bead extraction, which improved CWD detection 
and reduced false positives. CWD prions were detected 
in feces, urine, and saliva as early as 6 months postin-
fection. More frequent and consistent shedding was ob-
served in deer homozygous for glycine at prion protein 
gene codon 96 than in deer expressing alternate geno-
types. Our findings demonstrate that improved amplifi-
cation methods can be used to identify early antemor-
tem CWD prion shedding, which might aid in disease 
surveillance of cervids.
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In addition to the route and dose by which CWD 
prions are transmitted, the sequence of the prion pro-
tein gene PRNP is another factor affecting disease 
pathogenesis. The prion protein is highly conserved 
between cervids (27), although single-nucleotide 
polymorphisms within the gene sequence can lead to 
reduced susceptibility (28), slower disease progres-
sion (29,30), and prolonged survival (31,32), all of 
which might affect prion shedding (18,33). Specific 
codon polymorphisms known to influence cervid 
CWD susceptibility are codons 132 in elk (M→L) (28), 
225 in mule deer (S→F) (31), and 96 in WTD (G→S) 
(34). As additional polymorphisms are identified (35), 
the role they play in CWD susceptibility, pathogen-
esis, and shedding will need to be explored.

We used iron oxide bead (IOB) capture in combi-
nation with sPMCA and RT-QuIC to profile longitu-
dinal (66 months) prion shedding in urine, saliva, and 
feces collected from WTD exposed to low oral doses 
of CWD prions. Because dose and PRNP genotype af-
fect initial detection of infection and disease onset, we 
correlated those factors with prion shedding consis-
tency and duration. Our goal was to provide a more 
complete understanding of prion shedding onset and 
duration that contributes to CWD pathogenesis and 
transmission and aid in early antemortem detection 
by using minimally invasive methods.

Methods

Animals
We obtained CWD-free WTD fawns from the Univer-
sity of Georgia Warnell School of Forestry and Natural 
Resources (Athens, GA, USA). At 4 months of age, the 
fawns were transported to the indoor CWD research 
facility at Colorado State University (Fort Collins, 
CO, USA), where we conducted studies under strict 
guidelines according to protocols approved by the In-
stitutional Animal Care and Use Committee (protocol 
nos. 18-8396A and 1242). We housed cohorts of deer 
in separate suites. We housed mock-infected con-
trol deer in different suites within the same facility; 
they served as sentinels to ensure that no unexpected 
pathogen exposures occurred during the long course 
of CWD prion infections.

Inoculations
We exposed 12 WTD to low oral doses of CWD-pos-
itive brain tissue (n = 8) or saliva (n = 4); seeding ac-
tivities were equivalent to 1 mg (n = 4) or 300 ng (n = 
4) CWD-positive brain tissue or 300 ng (n = 4) CWD-
positive saliva. Deer number, inoculum source, dose, 
regimen, and genotypes were described previously 

(10,36). Because access to WTD is limited and to con-
serve animals, 2 sham-inoculated deer served as nega-
tive controls. Each sham-inoculated deer received a 
total of 300 ng CWD-negative brain material and 300 
ng CWD-negative saliva that had been preincubated 
with 600 mg of montmorillonite clay. We administered 
the sham inocula as 3 doses of 200 ng CWD-negative 
material (100 ng brain + 100 ng saliva + 200 mg mont-
morillonite clay) 1 time/week for 3 consecutive weeks.

PRNP Genotype
We determined the PRNP genotype of the deer at co-
don 96 before beginning the study; 7 deer expressed 
96GG and 5 expressed 96GS polymorphisms. The 
negative control deer were both 96GG. One 96GG 
deer also had a rare polymorphism at codon 103 
(103NT). In an unrelated study (N.D. Denkers, un-
pub. data), we identified another deer expressing 
codon 103NT; both deer had disease courses similar 
to deer expressing the 96GS polymorphism. Because 
a previous low-dose study demonstrated no observ-
able clinical differences (10), we compared animals 
with wild-type codon 96GG genotypes (cohort 1; n = 
6) with deer expressing PRNP gene polymorphisms 
96GS or 103NT that delayed CWD infection (cohort 2; 
n = 6). Cohort 1 consisted of 5 male and 1 female deer; 
cohort 2 had 3 male and 3 female deer.

Sample Collections
We performed tonsil and recto-anal mucosa-asso-
ciated lymphoid tissue biopsies at 3 months postin-
oculation (mpi) and analyzed the tissue for amyloid 
seeding activity by using RT-QuIC and for CWD pri-
on protein (PrPcwd) deposition by using immunohis-
tochemistry. We considered deer to be infected with 
CWD prions when 2 consecutive tonsil biopsies were 
RT-QuIC positive (36).

We collected saliva, urine, and feces in conjunc-
tion with lymphoid biopsy tissue (Table 1). We col-
lected urine from male deer for 21 months by free 
catch, then manually by bladder expression. We cath-
eterized female deer and obtained urine via syringe 
aspiration. We collected saliva by syringe aspiration 
of the buccal pouch. We collected feces directly from 
the rectum and placed it into specimen cups. We col-
lected all samples by using clean single-use syringes 
or containers, which we then aliquoted and stored at 
–80°C until analysis.

Sample Preparation and CWD Status Analysis
We subjected fecal samples to IOB capture before 4 
rounds of sPMCA. We used RT-QuIC as a readout 
for the sPMCA product; that procedure is hereafter  
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designated as IPQ. In brief, we prepared fecal 
samples as 10% wt/vol homogenates in 1× phos-
phate-buffered saline (PBS; 20 mmol/L NaPO4,  
150 mmol/L NaCl; Sigma-Aldrich, https://www.
sigmaaldrich.com). We diluted the homogenates 
1:10 to a final volume of 1 mL (100 μL sample:900 
μL 1× PBS) and added 2 μL IOB suspension (Bangs 
Laboratories, Inc., https://www.bangslabs.com) di-
rectly to each sample. We incubated the tubes con-
taining the feces/bead mixture by using end-over-
end rotation for 30 minutes at room temperature. 
We transferred each tube to a magnetic separator 
for 5 minutes, removed the supernatants, and resus-
pended the demagnetized beads in 10 µL 1× PBS. We 
added resuspended beads to 90 µL of Tg(CerPrP-
E226)5037+/− normal brain homogenate (37) and per-
formed 4 rounds of sPMCA. After each round, we 
froze the sPMCA sample at –20°C until analysis. We 
prepared 1:100 dilutions of sPMCA samples from 
rounds 2–4 in 0.1% sodium dodecyl sulfate (SDS; 
Sigma-Aldrich) and assayed them in quadruplicate 
(2 µL/well) by using RT-QuIC in >2 plates/sample 
to achieve a minimum of 8 replicates/sample. We 
used this method to monitor sequential amplifica-
tion in each round. We only analyzed round 4 prod-
ucts to determine statistical significance for amyloid 
seeding activity.

We processed individual saliva and urine samples 
by using IOB capture and subsequent RT-QuIC, here-
after abbreviated as IQ (23). In brief, we added 2 μL 
IOB suspension to 1 mL of saliva diluted 1:20 in 1× PBS 
(50 µL saliva:950 µL PBS) or to 1 mL undiluted urine. 
We placed samples on an end-over-end rotator for 30 
minutes at room temperature, transferred the tubes to 

a magnetic separator for 5 minutes, removed superna-
tants, and resuspended the demagnetized beads in 10 
μL of 0.1% SDS. We added 2 µL of each bead/sample 
suspension into Greiner Bio-One black optical-bottom 
microtiter plate wells (VWR, https://www.vwr.com) 
containing 96 μL RT-QuIC master mix. We assayed a 
total of 8 replicates/sample in >2 microtiter plates. 

sPMCA
We performed sPMCA as previously described 
(13). In brief, we combined 90 µL of 10% (wt/vol) 
Tg(CerPrP-E226)5037+/− normal brain homogenate in 
1× PBS containing 1% Triton X-100 (37) with 10 µL 
of each IOB-captured sample in 0.2 mL PCR tubes 
(ThermoFisher Scientific, https://www.thermofish-
er.com) containing 2.38 mm and 1.59 mm polytetra-
fluoroethylene beads (McMaster-Carr, https://www.
mcmaster.com). We exposed round 1 sPMCA sam-
ples to 30 second pulse sonication followed by 29.5 
minutes of rest (1 cycle) for 72 hours (144 cycles total). 
For rounds 2–4, we added 30 µL of sPMCA product 
from the previous round to 60 µL of 10% normal brain 
homogenate and exposed those samples to 24 hours 
(48 cycles) of the same pulse sonication conditions 
used for round 1.

RT-QuIC
We produced, purified, and refolded truncated Syrian 
hamster recombinant prion protein (rPrP; codons 90–
231) as previously described with minor modifications 
(15,38,39). In brief, we expressed rPrP in Escherichia 
coli BL21-Star cells, harvested inclusion bodies, and 
solubilized the protein before binding to Ni-agarose  
resin (GE Healthcare, https://www.gehealthcare.com). 
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Table 1. Summary of collected tissues and secreta in longitudinal study of temporal characterization of prion shedding in white-tailed 
deer with chronic wasting disease, United States* 

mpi 
96GG genotype   96GS/103NT genotypes  

No. deer Tonsil RAMALT Urine Saliva Feces No. deer Tonsil RAMALT Urine Saliva Feces 
6 6 1/6 0/6 ND 0/6 1/5  6 0/6 0/6 ND 0/6 1/2 
9 6 3/6 2/6 0/1 2/6 1/4  6 0/6 1/6 0/3 0/6 0/3 
12 6 3/6 3/6 0/3 2/6 2/5  6 0/6 1/6 0/6 0/6 0/5 
15 6 4/6 4/6 0/1 1/6 4/6  6 1/6 0/6 0/4 0/6 0/4 
18 6 6/6 5/6 1/2 1/6 4/5  6 1/6 1/6 0/3 0/6 0/5 
21 6 6/6 6/6 1/1 2/5 5/5  6 3/6 1/6 0/5 1/6 0/6 
24 5 5/5 5/5 3/4 2/4 4/5  6 5/5 4/6 0/5 1/6 1/4 
27 3 3/3 3/3 1/1 1/3 2/3  6 6/6 5/6 1/5 1/6 1/4 
29 2 2/2 2/2 1/1 2/2 1/1  6 6/6 6/6 0/5 3/6 1/4 
32 1 1/1 1/1 0/0 1/1 1/1  3 3/3 3/3 0/2 0/3 0/2 
35 1 1/1 1/1 1/1 1/1 1/1  3 3/3 3/3 0/2 0/3 1/2 
39 1 1/1 1/1 1/1 0/1 1/1  3 3/3 3/3 0/3 0/3 2/3 
42 0 0 0 0 0 0  2 2/2 2/2 0/2 0/2 1/2 
45 0 0 0 0 0 0  2 2/2 2/2 0/2 1/2 1/2 
48 0 0 0 0 0 0  2 2/2 2/2 0/2 1/2 1/2 
66 0 0 0 0 0 0  1 1/1 1/1 0/1 0/1 0/1 
*Values are number of positive samples over total number of samples collected at each timepoint. Tissues and secreta from deer with wild-type genotype 
96GG or alternative genotypes 96GS or 103NT of the prion protein gene were compared. mpi, months postinoculation; ND, not done; RAMALT, recto-
anal mucosa-associated lymphoid tissue. 
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We refolded, eluted, and dialyzed the rPRP before ali-
quoting and storing at 4°C until use.

For RT-QuIC reactions, we loaded each well of a 
96-well plate with 96 µL substrate master mix (0.10 
mg/mL rPrP, 10 μmol/L thioflavin T [Sigma], 320 
mmol/L NaCl [Sigma], 1 mmol/L EDTA [Sigma], and 
1× PBS). We diluted each sample in 0.1% SDS and then 
added 2 µL of the sample to each well. We performed 
RT-QuIC reactions in a FLUOstar Omega microplate 
reader (BMG Labtech, https://www.bmglabtech.
com) programmed to alternate between 1 minute 
shaking (double-orbital program at 700 rpm) and 1 
minute rest cycles. We measured thioflavin T fluores-
cence every 15 minutes at 450-nm excitation and 480-
nm emission wavelengths and used a fluorescence 
gain of 1,700. We conducted RT-QuIC experiments at 
42°C for 62.5 hours for all IQ studies and 36 hours for 
all IPQ studies. We displayed RT-QuIC data as 1/lag 
phase; we defined lag phase as the time (hours) when 
each replicate fluorescence reached 5 SD above the av-
erage baseline fluorescence. We considered samples 
to be positive if total reaction rate–positive replicates 
were significantly different (p<0.05) compared with 
total reaction rate replicates from negative controls by 
using Mann-Whitney U tests.

Immunohistochemistry
We confirmed CWD status by using immunohisto-
chemical detection of PrPCWD deposition in tonsil and 
recto-anal mucosa-associated lymphoid tissue biopsy 
samples as previously described (40). In brief, we 
treated rehydrated 5 µm tissue sections with 88% for-
mic acid, then citrate buffer for heat-induced epitope 
retrieval, and blocked with 3% hydrogen peroxide 
in methanol followed by TNB buffer (0.5% blocking 
powder; Perkin Elmer, https://www.perkinelmer.
com). We incubated slides overnight with monoclo-
nal antibody BAR-224 (1 mg/mL; Cayman Chemi-
cal, https://www.caymanchem.com) diluted 1:750 
in TNB buffer, followed by Dako Envision+ System 
horseradish peroxidase–labeled secondary antibody 
(Agilent, https://www.agilent.com) and 3-amino-
9-ethylcarbazole substrate (Abcam, https://www.
abcam.com) for visualization. We tested negative 
control tissues simultaneously in each experiment.

Results
We report temporal shedding profiles in secreta col-
lected from WTD exposed orally to CWD prion con-
centrations that might more closely resemble those 
experienced in nature (10). We correlated the shedding 
profiles with PRNP polymorphisms known to modu-
late CWD infection and disease progression (34,41).

Prion Extraction Approach for Feces, Saliva, and Urine
Amplification assays continue to be modified to 
overcome assay inhibitors or spurious constituents 
in secreta (18,19,21,22). We found that enriching for 
prions in fecal samples by incorporating IOB cap-
ture or phosphotungstic acid precipitation alone 
often resulted in high nonspecific seeding back-
ground in known CWD-negative controls (Figure 1, 
panel A). To eliminate false-positive backgrounds, 
fecal samples underwent dilution and IOB capture 
followed by 4 rounds of sPMCA. The sPMCA prod-
ucts were read out by using RT-QuIC rather than 
Western blot analysis, thus building upon previous 
in vitro amplification assay modifications (13,24). 
The combination of sPMCA and RT-QuIC readout 
eliminated false positives in fecal samples and led 
to enhanced prion seeding activity detection in fe-
ces, indicated by higher reaction rates (Figure 1, 
panel B).

We assayed prion seeding activity in urine and 
saliva by using IQ and detected positive seeding 
activity in infected deer compared with negative 
controls (Figure 2, panel A). Because enhanced de-
tection sensitivity was observed in feces by incorpo-
rating IPQ, we used IPQ to measure seeding activity 
in urine and saliva samples. IQ-positive urine and 
saliva samples were strongly amplified by using 
IPQ (Figure 2, panel B). In a separate subset of urine 
and saliva longitudinal samples, IPQ identified only 
1 additional positive saliva sample; the remaining 
sample results were concordant with IQ results. IPQ 
did not appreciably increase sensitivity and sPMCA 
adds 7 days to the analysis protocol. Therefore, we 
completed analysis of all urine and saliva samples 
by using IQ.

Temporal Detection of CWD Shedding in Feces
We observed CWD prion shedding in feces collect-
ed from all 6 deer expressing the 96GG genotype. 
The earliest detection was at 6 mpi, coinciding with 
the first positive tonsil biopsy (Table 1; Figure 3). 
Detectable shedding occurred in all deer within 6 
months of the initial RT-QuIC–positive tonsil bi-
opsy (Figure 3). Seeding activity was consistently 
detected (>4 consecutive positive timepoints) in 4 
(66%) of 6 deer and infrequently detected (<3 con-
secutive positive timepoints) in 2 (33%) of 6 deer. 
For deer with alternate polymorphisms (96GS or 
103NT), >1 positive fecal result was recorded in 4 
(66%) of 6 deer during 9–15 months after the first 
RT-QuIC–positive tonsil biopsy (Table 1; Figure 4). 
In 1 (17%) of 6 deer, seeding activity was detected 
in 3 consecutive fecal samples.
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Overall, prion shedding was detected in 27 (64%) 
of 42 fecal samples from the 96GG cohort (Table 2) 
and 10 (19%) of 52 fecal samples collected from the 
96GS/103NT cohort. All 21 fecal samples from sham-
inoculated control deer remained negative. Thus, CWD 
shedding in feces was more frequently detected by IPQ 
in deer expressing the 96GG genotype than in those ex-
pressing alternate polymorphisms (96GS or 103NT).

Temporal Detection of CWD Shedding in Urine
CWD prion shedding was observed in urine samples 
collected from 1 (50%) of 2 deer expressing the 96GG 
genotype at 18 mpi, 9 months after the first RT-QuIC–
positive tonsil biopsy (Table 1; Figure 3). Shedding 
persisted in 3 (50%) of 6 deer from 18 months until 
deer were euthanized; 2 (33%) of 6 were positive only 

at the terminal sample collection. One (17%) of 6 deer 
had CWD prion–negative urine throughout disease 
course. Among deer in the 96GS/103NT cohort, CWD 
prion seeding activity was detected in urine from only 
1 (17%) of 6 deer at 27 mpi, coinciding with the first RT-
QuIC–positive tonsil biopsy (Table 1; Figure 4).

In total, CWD prion shedding was detected in 9 
(56%) of 16 urine samples collected from deer in the 
96GG cohort and in 1 (2%) of 50 urine samples col-
lected from deer in the 96GS/103NT cohort (Table 2). 
All 28 urine samples collected from sham-inoculated 
control deer remained negative. We show that CWD-
infected deer expressing the 96GG genotype shed 
prions in their urine during later disease stages and 
did so more frequently and consistently than deer ex-
pressing alternate polymorphisms.

2122	 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 30, No. 10, October 2024

Figure 1. Amyloid formation rates 
in fecal samples from white-tailed 
deer with chronic wasting disease 
in longitudinal study of temporal 
characterization of prion shedding 
in secreta, United States. A) 
Amyloid formation rates measured 
by using iron oxide bead capture 
and subsequent real-time quaking-
induced conversion. Rates were 
measured for serial dilutions 
of fecal samples. B) Amyloid 
formation rates measured by 
using iron oxide bead capture, 4 
rounds of serial protein misfolding 
amplification, and subsequent 
real-time quaking-induced 
conversion. Rates were measured 
for 1:100 dilutions of fecal samples 
from each round of amplification. 
Black indicates prion-negative 
feces; red indicates prion-positive 
feces. Horizontal lines in each 
grouping indicate median values. 
Rd, round.
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Temporal Detection of CWD Shedding in Saliva
CWD prion shedding occurred in saliva as early as 9 
mpi in 2 (33%) of 6 deer expressing the 96GG geno-
type, coinciding with the first RT-QuIC–positive ton-
sil biopsy (Table 1; Figure 3). Intermittent shedding 
occurred throughout the disease course in 5 (83%) of 
6 deer during 0–6 months after the first positive tonsil 
biopsy. In the 96GS/103NT cohort, prion shedding 
was detected in 3 (50%) of 6 deer starting at 21 mpi, 
ranging from 3 to 9 months after the first positive ton-
sil biopsy. Prion detection was infrequent in saliva 
throughout the disease course (Table 1; Figure 4).

Seeding activity was detected in 15 (32%) of 47 sa-
liva samples collected from deer expressing the 96GG 
genotype and 8 (11%) of 70 saliva samples collected 
from deer expressing the 96GS or 103NT genotypes 
(Table 2). No seeding activity was detected in any of 

the 28 saliva samples from sham-inoculated control 
deer. Prion shedding in saliva occurred more fre-
quently than in urine throughout the disease course.

CWD Initiation and Progression According  
to WTD PRNP Polymorphism
PRNP codon 96 polymorphisms are known to affect 
relative CWD susceptibility and the rate of disease 
progression in WTD (10,29,30,42–44). After low-dose 
oral CWD prion exposure, deer expressing the 96GG 
genotype had RT-QuIC–positive lymphoid biopsies 
at 6 (1/6; 17%) to 18 (6/6; 100%) mpi (Table 1; Fig-
ure 3). In contrast, deer expressing 96GS or 103NT 
polymorphisms had delayed CWD-positive status by 
an additional 9 months; the first RT-QuIC–positive 
tonsil biopsies occurred at 15–27 mpi (Table 1; Figure 
4). Differences in clinical disease kinetics were also  
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Figure 2. Amyloid formation rates 
in urine and saliva samples from 
white-tailed deer with chronic 
wasting disease in longitudinal 
study of temporal characterization 
of prion shedding in secreta, United 
States. A) Amyloid formation rates 
measured by using iron oxide bead 
capture and subsequent real-time 
quaking-induced conversion. Black 
indicates prion-negative samples; 
red indicates prion-positive 
samples. B) Amyloid formation 
rates measured by using iron oxide 
bead capture, 4 rounds of serial 
protein misfolding amplification, 
and subsequent real-time quaking-
induced conversion in the same 
samples as those in panel A. 
Rates were measured for samples 
after amplification rounds 2–4. 
Horizontal lines in each grouping 
indicate median values. Rd, round.
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observed between the 2 cohorts. All deer with the 
96GG genotype were euthanized by 39 mpi because 
of progressive clinical CWD, whereas 3 (50%) of 6 
deer with 96GS or 103NT genotypes remained as-
ymptomatic when euthanized at 48 (n = 2; 96GS) and 
66 (n = 1; 103NT) mpi (Table 1). Those results support 
both slower disease kinetics and reduced prion shed-
ding for WTD expressing the PRNP gene encoding 
96GS or 103NT polymorphisms.

Discussion
CWD continues to affect cervid populations in North 
America, Asia, and Europe (1–4). The extended as-
ymptomatic phase of disease, during which the in-
fectious CWD prion is shed, appears to be central to 
environmental contamination and efficient transmis-
sion. Yet, little is known about the temporal profiles 
of CWD shedding in secreta or the role PRNP might 

play in prion shedding. We found consistent prion 
shedding profiles throughout the disease course (39 
mpi) in WTD that had a wild-type PRNP genotype at 
codon 96 (96GG). CWD shedding in secreta was less 
frequent during the disease course (66 mpi) in deer 
with alternate polymorphisms (96GS or 103NT), fac-
tors that delay CWD infection and progression. Ongo-
ing efforts to establish breeding programs for farmed 
WTD that have alternate PRNP polymorphisms have 
been initiated (45). Our findings suggest that deer ex-
pressing alternative PRNP polymorphisms might live 
longer and, although they shed fewer prions through-
out CWD course, might over their extended lifespan 
increase CWD prions in the environment.

We pursued options to improve prion seeding 
activity detection in fecal samples by combining IOB 
capture with sPMCA and RT-QuIC readout (IPQ). 
High-speed centrifugation, sodium phosphotungstic 
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Figure 3. Percentage of prion-
positive samples from white-
tailed deer with chronic wasting 
disease that had the prion protein 
genotype 96GG in study of prion 
shedding in secreta, United 
States. Tissue samples and 
secreta were collected from deer 
after exposure to low oral doses 
of chronic wasting disease–
positive brain tissue or saliva. 
RAMALT, recto-anal mucosa-
associated lymphoid tissue.

Figure 4. Percentage of prion-
positive samples from white-
tailed deer with chronic wasting 
disease that had prion protein 
genotypes 96GS or 103NT 
in study of prion shedding 
in secreta, United States. 
Tissue samples and secreta 
were collected from deer after 
exposure to low oral doses 
of chronic wasting disease–
positive brain tissue or saliva. 
RAMALT, recto-anal mucosa-
associated lymphoid tissue.
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acid, or IOB have previously been used in combina-
tion with either PMCA or RT-QuIC to detect prions in 
feces of CWD-infected animals (14,17–23). However, 
those using PMCA analyzed products by Western 
blots rather than RT-QuIC. IPQ eliminated spurious 
nonspecific amplification that has been noted with 
fecal samples (17,20,22), providing a much clearer 
longitudinal CWD fecal shedding profile. We found 
that the incorporation of IPQ to enhance prion detec-
tion sensitivity in urine and saliva samples was not 
advantageous over the use of IQ.

Feces have been shown to contain low yet suf-
ficient CWD infectivity to initiate infection (9,46). 
We observed higher prion concentrations in fecal 
samples collected from deer expressing the wild-type 
96GG genotype than deer expressing alternate poly-
morphisms. Fecal prions were detected in wild-type 
deer shortly after biopsy positivity and were consis-
tent throughout disease course, whereas shedding 
was delayed and inconsistent in deer expressing the 
alternate polymorphisms. We observed higher prion 
concentrations in feces than in saliva or urine collect-
ed from the 2 deer cohorts, possibly suggesting the 
prion load in feces is higher than previously recog-
nized (18,21) or IPQ removes inhibitors that permit 
enhanced detection in feces not attained in urine or 
saliva samples Further assay development will be 
needed to address this question and to establish prion 
titers across all 3 secreta types.

Bioassay studies in WTD and cervid PrP–ex-
pressing transgenic mice have revealed low levels of 
prion infectivity in urine and saliva collected at vari-
ous stages of CWD (8–10,47). In vitro detection has 
been challenging, presumably because of low concen-
trations or inhibitors in those bodily secretions (11–
13,15,16,23). By combining IOB capture and RT-QuIC 
amplification, we found consistent CWD prion shed-
ding in urine and saliva collected from WTD express-
ing wildtype PRNP compared with those expressing 
alternate PRNP polymorphisms. Our findings sup-
port an earlier study that showed CWD shedding 
in urine occurred less frequently in deer with more 
CWD-resistant genotypes (18).

Overall, our results support the tenet that prion 
shedding in secreta occurs more frequently and con-
sistently in WTD expressing PRNP genotype 96GG 
and less frequently in deer with PRNP 96GS or 103NT 
polymorphisms. We also found more consistent CWD 
prion shedding in saliva than urine for both cohorts, 
suggesting that saliva might be a plausible vector for 
efficient disease transmission. This finding reinforces 
previous studies reporting that saliva is more infec-
tious than urine or feces after experimental CWD 

prion inoculation (8,10,47,48). It would be advanta-
geous to determine which secreta is responsible for 
the efficient CWD transmission dynamics. However, 
many variables exist that might influence infection, 
such as infection route, genotype, environmental/soil 
factors, CWD prion strain, and dose, and it might be 
misleading to suggest one secretum contributes more 
to CWD spread than another.

In conclusion, our findings indicate the role prion 
shedding might have on CWD transmission, particu-
larly given the presumed low prion content in secreta. 
We conducted our study with an overarching eye on 
the potential advances, limitations, and opportunities 
that remain to fully exploit ultrasensitive prion seed-
ing assays used to examine amyloid development in 
complex milieus and matrices. Our findings demon-
strate improved amplification methods can be used 
to identify early antemortem CWD prion shedding in 
cervids that might aid in disease surveillance. 
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Table 2. Total prion seeding activity detected in each sample 
type in longitudinal study of temporal characterization of prion 
shedding in secreta of white-tailed deer with chronic wasting 
disease, United States* 

Sample 96GG genotype 
96GS/103NT 

genotype 
Negative 
controls 

Urine 9/16 (56) 1/50 (2) 0/28 (0) 
Saliva 15/47 (32) 8/70 (11) 0/28 (0) 
Feces 27/42 (64) 10/52 (19) 0/21 (0) 
*Values are number of positive samples over total number of samples (%). 
Secreta from deer with wild-type genotype 96GG or alternative genotypes 
96GS or 103NT of the prion protein gene were compared. 
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