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Since the emergence of the highly pathogenic avian 
influenza (HPAI) A(H5N1) virus (A/chicken/

Scotland/59) in Scotland, UK, several outbreaks of 
H5Nx viruses have been reported in poultry world-
wide (1). In 1996, an HPAI H5N1 virus, A/goose/
Guangdong/1/1996 (Gs/GD), was identified, and 
the Gs/GD lineage H5 viruses have been circulating 
in poultry and wild aquatic bird reservoirs for >25 
years (1,2). HPAI H5N1 viruses pose a global threat 
to the poultry industry and public health because of 

frequent outbreaks in chicken, ducks, and other poul-
try (3). According to the World Health Organization, 
882 cases of avian influenza A(H5N1) infections in 
humans have been reported globally from January 1, 
2003, to December 21, 2023, resulting in 461 deaths 
(52% mortality rate) (4).

Since 2005, HPAI H5N1 viruses have diversified 
genetically, forming numerous genotypes through re-
assortment with other avian influenza A viruses (5). 
HPAI H5N1 clade 2.3.4.4b viruses of the Gs/GD lin-
eage emerged in Europe in 2020, causing outbreaks 
in wild birds and poultry in many countries (5). The 
spread of clade 2.3.4.4b viruses was reported in 26 
countries worldwide; the virus infected >48 mam-
mal species (2,5–7). In 2022, mass deaths of >20,000 
sea lions from HPAI H5N1 infections were confirmed 
along the coast of South America, including coastal 
Peru, Chile, Argentina, Uruguay, and Brazil. In ad-
dition, in 2023, unusual deaths of cats were reported 
in Poland (8–10). Therefore, concerns about the risk 
for interspecies transmission and human-to-human 
spread of H5N1 viruses have been growing because 
of the acquisition of interhost transmission capabil-
ity and the increase in HPAI H5N1 viruses found  
in mammals (11).

In South Korea, HPAI H5N1 clade 2.3.4.4.b vi-
ruses were identified in wild birds in 2021, which 
was followed by infection outbreaks in poultry farms 
(12). During autumn 2022, introductions of >2 types 
of HPAI H5N1 clade 2.3.4.4b viruses that originated 
from Eurasian breeding grounds and North Ameri-
ca occurred simultaneously, and various genotypes 
were subsequently detected in wild birds and domes-
tic poultry (13,14). During July 2023, unusual deaths 
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The prevalence of highly pathogenic avian influenza 
(HPAI) A(H5N1) viruses has increased in wild birds and 
poultry worldwide, and concomitant outbreaks in mam-
mals have occurred. During 2023, outbreaks of HPAI 
H5N1 virus infections were reported in cats in South 
Korea. The H5N1 clade 2.3.4.4b viruses isolated from 2 
cats harbored mutations in the polymerase basic protein 
2 gene encoding single amino acid substitutions E627K 
or D701N, which are associated with virus adaptation in 
mammals. Hence, we analyzed the pathogenicity and 
transmission of the cat-derived H5N1 viruses in other 
mammals. Both isolates caused fatal infections in mice 
and ferrets. We observed contact infections between fer-
rets, confirming the viruses had high pathogenicity and 
transmission in mammals. Most HPAI H5N1 virus infec-
tions in humans have occurred through direct contact with 
poultry or a contaminated environment. Therefore, One 
Health surveillance of mammals, wild birds, and poultry is 
needed to prevent potential zoonotic threats.
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of cats at animal shelters occurred in the Yongsan 
and Gwanak Districts of Seoul, South Korea, caused 
by HPAI H5N1 viruses (15,16); viruses isolated from 
cats were obtained from each animal shelter. We ana-
lyzed the pathogenicity and transmission characteris-
tics of 2 cat-derived virus isolates by using molecular 
methods and by conducting experiments in mouse 
and ferret infection models. We performed all animal 
experiments in strict accordance with general animal 
care guidelines mandated under the Guidelines for 
Animal Use and Care of the Korea Disease Control 
and Prevention Agency (KDCA).

Materials and Methods

Cells
We grew and maintained MDCK cells (American 
Type Culture Collection, https://www.atcc.org) in 
Eagle’s Minimum Essential Medium (WELGENE, 
https://www.welgene.com) containing 5% fetal bo-
vine serum, 1 mmol/L l-glutamine, and penicillin/
streptomycin (Thermo Fisher Scientific, https://
www.thermofisher.com). We incubated the cells at 
37°C in 5% CO2 until use.

Virus Distribution
The Animal and Plant Quarantine Agency (APQA), 
South Korea, provided 3 HPAI H5N1 virus isolates 
and deposited their whole-genome sequences in the 
GISAID EpiFlu database (http://www.gisaid.org). 
We propagated the isolates in specific pathogen-
free embryonated chicken eggs (second passage) 
and confirmed that their sequences were identi-
cal to those provided by the APQA (Table 1). A/
duck/Korea/H493/2022(H5N1) (GISAID acces-
sion no. EPI_ISL_15647834) originated from a duck 
farm in the Yecheon area in October 2022. A/feline/
Korea/M302–6/2023(H5N1) (accession no. EPI_
ISL_18819809) was from the Yongsan District, and 
A/feline/Korea/M305–7/2023(H5N1) (accession no. 
EPI_ISL_18819807) was from the Gwanak District; 
both of those viruses from cats were obtained from 
animal shelters during July 2023.

Genetic and Phylogenetic Analysis
We extracted virus RNA by using the RNeasy Mini 
Kit (QIAGEN, https://www.qiagen.com) and per-
formed gene amplification and library preparation 
by using the Illumina Microbial Amplicon Prep-In-
fluenza A/B kit (Illumina, https://www.illumina.
com). Subsequently, we sequenced whole genomes 
of the viruses on a MiSeq instrument by using MiSeq 
Reagent Kit v2 (Illumina) to obtain 2 × 150-bp read 

lengths. For phylogenetic analysis, we searched for 
sequences, other than those analyzed in this study, in 
the GISAID database. We inferred phylogenetic rela-
tionships of sequences obtained in this study by us-
ing the maximum-likelihood method, 1,000 bootstrap 
values, and MEGA 7 software (17). 

Virus Titrations
We determined virus titers of oropharyngeal and clo-
acal swab samples, nasal washes, and homogenized 
tissue samples by performing endpoint titrations in 
MDCK cell monolayers. We inoculated MDCK cells 
with 10-fold serial dilutions of each sample pre-
pared in fetal bovine serum–free medium containing 
L-1-tosylamido-2-phenylethyl chloromethyl ketone–
treated trypsin and penicillin/streptomycin. After a 
72-hour incubation at 37°C, we detected viruses in a 
standard hemagglutination assay by using 0.5% tur-
key erythrocytes. We expressed mean virus titers as 
log10 50% tissue culture infectious dose (TCID50). The 
detection limit was 0.5 log10 TCID50/mL. We estimat-
ed virus titers by using t-tests and 2-way analysis of 
variance in GraphPad Prism 9 (GraphPad Software 
Inc., https://www.graphpad.com).

Neuraminidase Inhibitor Resistance
We used the neuraminidase (NA) inhibitors oseltami-
vir and peramivir (Cayman Chemical, https://www.
caymanchem.com) and zanamivir (Sigma-Aldrich, 
https://www.sigmaaldrich.com) to assess drug  
susceptibility of the 3 virus isolates. We used a fluores-
cence assay containing the 2′-(4-methylumbelliferyl)-
α-D-N-acetylneuraminic acid substrate (Sigma-Al-
drich) (18,19). We normalized influenza viruses to 
equivalent NA activities and incubated virus samples 
with 10-fold serial dilutions (0–30,000 nmol/L) of os-
eltamivir, zanamivir, or peramivir. We measured the 
fluorescence signal by using a Mithras LB 940 read-
er (Berthold Technologies, https://www.berthold.
com) at excitation/emission wavelengths of 355/460 
nm. We estimated the 50% inhibitory concentration 
(IC50) for each sample from dose-response curves by 
using the sigmoidal, 4-parameter, logistic nonlinear 
regression equation in GraphPad Prism 9. To assess 
neuraminidase inhibitor (NAI) resistance, we divided 
the IC50 value of the virus being analyzed by the IC50 
value of the NAI-sensitive influenza A(H1N1)pdm09 
virus strain, which has the amino acid H274 in neur-
aminidase, making it NAI susceptible.

Experimental Infections of Mice and Ferrets
We anesthetized groups of 6-week-old BALB/c mice 
(SAMTAKO, http://www.samtako.com) (n = 5/
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group) with ketamine and intranasally inoculated 
them with 50 µL of 100–106 TCID50/mL of virus. After 
virus inoculation, we weighed the mice and moni-
tored them for clinical signs and death for 14 days. For 
virus replication studies, we intranasally inoculated 
15 mice per group with 50 µL of 103 50% median lethal 
dose (MLD50)/mL. We euthanized 5 mice per group 
on days 3, 5, and 7 postinoculation and assessed virus 
titers in brain, trachea, nasal turbinate, lung, heart, 
liver, kidney, spleen, and intestinal samples.

We anesthetized 20–22-week-old ferrets (IDBio, 
http://www.idbio.co.kr) (n = 12/group) with ket-
amine and intranasally inoculated them with 1 mL of 
103 MLD50/mL of virus. After virus inoculation, we 
weighed and monitored 3 ferrets per virus group for 
clinical signs and death for 14 days. We used the re-
maining 9 ferrets per group for virus replication stud-
ies. We euthanized 3 ferrets per virus group on days 
3, 5, and 7 postinoculation and assessed virus titers in 
brain, trachea, nasal turbinate, lung, heart, liver, kid-
ney, spleen, and intestinal samples. To assess virus 
transmission via contact infection, we intranasally in-
oculated 1 ferret (per virus) with 1 mL of 103 MLD50/
mL virus and then housed serologically-naive ferrets 
(n = 2) in the same cage the next day (1 cage/virus). We 
collected nasal wash samples from each ferret on days 
3, 5, and 7 postinoculation and measured virus titers. 
We euthanized mice and ferrets showing >20% body 
weight loss, which we considered a humane endpoint.

Serologic Tests
We collected blood samples from ferrets in the infec-
tion groups 14 days postinfection and in the transmis-
sion groups 14 days after contact with a virus-infect-
ed ferret. We determined seroconversion by using a 
microneutralization assay.

Results

Genetic Characterization of H5N1 Viruses  
Isolated from Cats
The Korea Disease Control and Prevention Agency 
(KDCA) received 2 different HPAI H5N1 viruses 
from cats in animal shelters that were collected by 
APQA, which we used to characterize infections in 
other mammals. We used the 2 H5N1 viruses, A/

feline/Korea/M302–6/2023(H5N1) from Yong-
san (abbreviated as YS/2023) and A/feline/Korea/
M305–7/2023(H5N1) from Gwanak (abbreviated as 
GA/2023), to determine how the pathogenicity and 
transmission of those H5N1 viruses differed from 
previously prevalent H5N1 viruses. We also ana-
lyzed the virus isolated from a duck, A/duck/Korea/
H493/2022(H5N1) (abbreviated as YC/2022), repre-
senting the first poultry outbreak in autumn 2022.

We conducted whole-genome sequence analy-
sis to confirm genetic characteristics of the YC/2022, 
YS/2023, and GA/2023 viruses and observed poly-
basic residues (REKRRKR/GLF) within the cleavage 
sites of hemagglutinin (HA), classifying all 3 viruses 
as HPAI. Phylogenetic analysis confirmed the viruses 
belonged to clade 2.3.4.4b (Table 1; Appendix Figure, 
https://wwwnc.cdc.gov/EID/article/30/10/24-
0583-App1.pdf). YS/2023 and GA/2023 viruses 
shared 99.9%–100% genetic similarity (Appendix 
Table). They also showed close genetic relatedness to 
H5N1 viruses that have been circulating in wild birds 
and poultry in Asia since 2022, including in South Ko-
rea, China, and Japan (15).

We identified amino acid substitutions related to 
mammal adaptation in both YS/2023 and GA/2023 
viruses. In both viruses, we found mutations S123P, 
S133A, and T156A (H5 numbering), which enhance 
binding affinity of the HA protein to α2,6-sialic acid 
on the host cell surface and contribute to increased 
mammal receptor tropism (20; J. Yang et al., unpub. 
data, https://doi.org/10.1101/2024.07.09.602706). In 
addition, in the polymerase basic 2 (PB2) gene seg-
ment, we identified mutations encoding D701N in 
YS/2023 and E627K in GA/2023; both substitutions 
are mammal-adapting mutations known to increase 
polymerase activity and virulence in mammals (Table 
2) (21–23). However, mutations associated with anti-
viral drug resistance, such as H274Y in NA and S31N 
in the matrix protein, were not detected (21,24).

Virus Pathogenesis in a Mouse Model
We intranasally inoculated 10-fold serial dilutions of 
infectious dose for each virus into 6-week-old BALB/c 
mice. After a 2-week observation period, the MLD50 
values were 101.5 TCID50/mL for YS/2023 and 100.5 
TCID50/mL for GA/2023, whereas the MLD50 was 

 
Table 1. Characteristics of highly pathogenic avian influenza A(H5N1) viruses isolated from cats, South Korea, 2023* 
Virus Origin Passage no.†  Clade MLD50‡ Abbreviation 
A/duck/Korea/H493/2022 Trachea from duck carcass 2 2.3.4.4b 104.8 YC/2022 
A/feline/Korea/M302-6/2023 Trachea from cat carcass 2 2.3.4.4b 101.5 YS/2023 
A/feline/Korea/M305-7/2023 Nasal swab sample from cat 2 2.3.4.4b 100.5 GA/2023 
*MLD50, 50% median lethal dose. 
†Passage number of virus in embryonated eggs. 
‡MLD50 was determined by measuring 50% tissue culture infectious dose/mL. 
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104.8 TCID50/mL for YC/2022. The 2 viruses isolated 
from cats had ≈10-fold difference in MLD50 values be-
tween them, but their MLD50 values were >1,000-fold 
lower than that of the duck isolate (Table 1; Figure 1).

To assess detailed clinical symptoms and virus 
replication in internal organs, we intranasally inocu-
lated 50 µL of 103 MLD50/mL (YS/2023, 104.5 TCID50/
mL; GA/2023, 103.5 TCID50/mL; YC/2022, 107.8 
TCID50/mL) of each virus into 6-week-old BALB/c 
mice (n = 15 in each group). All infected mice exhib-
ited clinical symptoms, such as weight loss, ruffled 
fur, lethargy, and ataxia, within 5 days postinfection. 
Virus infection was confirmed in the respiratory tract 
of all mice on day 3 postinfection, and only viruses 
isolated from cats were detected in all organs (includ-
ing the brain) by day 5 postinfection (Figure 2). Fur-
thermore, all virus-infected mice had virus titers in 
lung, trachea, and nasal turbinate samples beginning 
on day 3 during the early stage of infection (Figure 
2). By day 5, only mice infected with both cat isolates 
(YS/2023 and GA/2023) had virus titers in 9 organs; 
we observed high virus titers in brain, nasal turbi-
nate, trachea, lung, and heart samples. In particular, 
mice infected with GA/2023 exhibited high titers in 
lung (105.4 TCID50/mL) and trachea (105.1 TCID50/mL) 
tissue on day 3 and in lung (104.9 TCID50/mL) and 
brain (104.7 TCID50/mL) tissue on day 5, but all mice 
died before day 7. Mice infected with YS/2023 had 

high titers (103.9–104.9 TCID50/mL) in lung, trachea, 
and brain tissues on day 5 and in brain (104.8 TCID50/
mL) and nasal turbinate (104.25 TCID50/mL) tissue on 
day 7. Both cat-derived virus isolates used to infect 
mice showed a systemic infection pattern and high 
lethality; high virus titers occurred in most organs, 
including the brain. The duck isolate, YC/2022, was 
detected only in the brain and respiratory organs (na-
sal turbinate, trachea, and lungs) by day 7; virus titers 
were lower than those for the cat isolates (Figure 2).

Virus Pathogenesis and Transmission in a Ferret Model
Ferrets intranasally infected with the 2 cat-derived 
H5N1 virus isolates showed severe clinical symptoms, 
including sneezing, nasal discharge, diarrhea, and 
neurologic complications. They also exhibited a mean 
peak reduction in bodyweight of 5.5%–25.7% and fe-
ver of 0.7°C–2.6°C above baseline temperature. All fer-
rets died by day 8 in the GA/2023 infection group and 
by day 9 in the YS/2023 group (100% mortality rate) 
(Figure 3). The ferrets infected with the GA/2023 and 
YS/2023 viruses showed a systemic infection pattern. 
In ferrets infected with GA/2023, the virus was detect-
ed in all organs except the kidneys by day 5, and vi-
rus titers of 100.8–102.9 TCID50/mL were detected in the 
brain and respiratory organs. Those titers were lower 
than titers observed in ferrets infected with YS/2023 
(102.3–103.4 TCID50/mL) that survived longer (Figure 4). 

 
Table 2. Comparisons of major amino acid substitutions in protein segments from highly pathogenic avian influenza A(H5N1) viruses 
isolated from cats, South Korea, 2023* 

Virus 
HA† 

 
PB2‡ 

 
NA§ 

 
M¶ 

123 133 156 222 224 526 591 627 701 274 31 
A/duck/Korea/H493/2022 P A A Q G  K Q E D  H  S 
A/feline/Korea/M302-6/2023 P A A Q G  K Q E N  H  S 
A/feline/Korea/M305-7/2023 P A A Q G  K Q K D  H  S 
*Bold letters indicate substitutions in each virus protein. HA, hemagglutinin; M, matrix protein; NA, neuraminidase; PB2, polymerase basic protein 2. 
†H5 numbering was used. S123P, S133A, T156A, Q222L, and G224S affect α2,6-sialic acid receptor binding affinity. 
‡K526R, Q591K, E627K, and D701N enhance virus replication in mammals. 
§H274Y affects inhibition of NA. 
¶S31N affects matrix protein inhibition. 

 

Figure 1. Survival of mice infected with highly pathogenic avian influenza A(H5N1) viruses isolated from cats in South Korea, 2023. 
Viruses were isolated from 2 cats and 1 duck. A) A/feline/Korea/M302-6/2023; B) A/feline/Korea/M305-7/2023; C) A/duck/Korea/
H493/2022. BALB/c mice (n = 5/group) were intranasally inoculated with 10-fold serial dilutions (50 µL of 10° to 106 TCID50/mL) of each 
H5N1 virus. PBS was used as a negative control inoculant. Mice were monitored for 14 days, and survival rates were compared. PBS, 
phosphate-buffered saline; TCID50, 50% tissue culture infectious dose.
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The ferrets infected with YC/2022 showed the highest 
virus titers in the respiratory tract (102.3–105.4 TCID50/
mL) until day 5, and infection was observed in all or-
gans. However, 1 ferret died in the YC/2022 group on 
day 11, resulting in a survival rate of 66.6% (Figure 3).

To assess virus transmission via contact with 
YS/2023, GA/2023, and YC/2022, each virus was in-
tranasally inoculated into 1 ferret and 2 serologically 
naive ferrets were moved into the same cage as the in-
fected animal. The ferrets inoculated with either cat-de-
rived virus died on day 8 postinoculation. In contrast, 
only 1 of 2 ferrets in contact with the YS/2023-infected 
ferret died on day 13; no seroconversion was observed 
in the surviving ferret. The 2 ferrets in contact with the 
GA/2023-infected ferret died by day 9 (100% mortality 
rate) (Figure 5). Virus concentrations increased (102.3–
105.5 TCID50/mL) in nasal wash samples collected from 
ferrets exposed to the cat-derived viruses on days 3, 
5, and 7, confirming transmission and infection in na-
ive ferrets through contact with infected animals (Fig-
ure 6). In contrast, the ferret infected intranasally with 

YC/2022 did not die, although the virus was detected 
in nasal washes. Both ferrets in that contact group sur-
vived; no virus was detected in nasal washes and no 
seroconversion was observed, inferring that contact 
transmission of YC/2022 did not occur.

Antiviral Drug Susceptibility of Influenza A(H5N1) 
Viruses Isolated from Cats
We experimentally analyzed NAI susceptibility to 
evaluate the effectiveness of existing influenza anti-
viral drugs against YS/2023, GA/2023, and YC/2022 
viruses. We compared the IC50 values of the 3 viruses 
with that of an antiviral drug–susceptible human 
influenza A(H1N1)pdm09 reference virus. The high 
sensitivity of YS/2023, GA/2023, and YC/2022 vi-
ruses to NAIs confirmed the effectiveness of specific 
antiviral drugs (Table 3).

Discussion
HPAI H5N1 outbreaks continue worldwide, posing con-
siderable threats to humans and animals. HPAI H5N1 

Figure 2. Virus titers in organs of mice infected with highly pathogenic avian influenza A(H5N1) viruses isolated from cats in South Korea, 
2023. Viruses were isolated from 2 cats (YS/2023 and GA/2023) and 1 duck (YC/2022). BALB/c mice (n = 15/virus) were inoculated with 
50 µL of 103 50% median lethal dose/mL of each virus; 5 mice/day from each virus group were euthanized on days 3 (A), 5 (B), and 7 (C) 
postinfection to measure and compare virus titers in organ tissues. GA/2023 virus titers were not measured on day 7 because all of those mice 
died by day 6 postinfection. p values were calculated by using 2-way analysis of variance. dpi, days postinoculation; GA/2023, A/feline/Korea/
M305-7/2023; TCID50, 50% tissue culture infectious dose; YC/2022, A/duck/Korea/H493/2022; YS/2023, A/feline/Korea/M302-6/2023. 
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clade 2.3.4.4b viruses have been detected in wild birds 
and domestic poultry in South Korea (14). In addition, 
infection outbreaks in cats caused by HPAI H5N1 clade 
2.3.4.4b viruses occurred in 2 animal shelters in South 
Korea during July 2023. Both H5N1 viruses isolated  

from cats had genetic constellations similar to that of the 
predominant influenza virus circulating in wild birds 
and poultry in South Korea during 2022–2023. An in-
vestigation of the source of infection found that the cats 
were infected by ingesting raw duck feed contaminated 
with the prevalent circulating virus. The raw feed–de-
rived viruses were genetically identical to the poultry 
virus; however, the APGA found 2 mutations related to 
mammal adaptation (E627K and D701N) in PB2 of the 
isolates from cats (Y.M. Kang et al., onpub.data). There-
fore, it is critical to prevent HPAI virus infections in 
mammals because avian-derived influenza viruses have 
been found to mutate after infecting mammals. We per-
formed genetic analysis and animal model experiments 
to assess the potential mammal-to-mammal transmis-
sion and pathogenicity of HPAI H5N1 clade 2.3.4.4b 
viruses isolated from cat outbreaks in other mammals.

We analyzed 5 amino acids encoded by the HA 
gene segment (S123P, S133A, T156A, Q222L, and 
G224S). S123P, S133A, and T156A have been reported 
to increase mammal receptor affinity by enhancing  
binding to α2,6-sialic acid (21); however, S123P  
increased the affinity for α2,6-sialic acid only in the 

Figure 3. Survival of ferrets infected with highly pathogenic avian 
influenza A(H5N1) viruses isolated from cats in South Korea, 2023. 
Viruses were isolated from 1 duck (YC/2022) and 2 cats (YS/2023 
and GA/2023). Ferrets (n = 3/group) were intranasally inoculated 
with 1 mL of 103 50% median lethal dose of each H5N1 virus; PBS 
was used as a negative control inoculant. Ferrets were monitored 
for 14 days, and survival rates were compared. GA/2023, A/feline/
Korea/M305-7/2023; PBS, phosphate-buffered saline; YC/2022, A/
duck/Korea/H493/2022; YS/2023, A/feline/Korea/M302-6/2023.

Figure 4. Virus titers in organs of ferrets infected with highly pathogenic avian influenza A(H5N1) viruses isolated from cats in South Korea, 
2023. Viruses were isolated from 1 duck (YC/2022) and 2 cats (YS/2023 and GA/2023). Ferrets (n = 9/virus) were inoculated with 1 mL of 103 
50% median lethal dose of each virus, and 3 ferrets/day from each virus group were euthanized on days 3 (A), 5 (B), and 7 (C) postinfection 
to measure and compare virus titers in organ tissues. p values were calculated by using 2-way analysis of variance. GA/2023, A/feline/Korea/
M305-7/2023; TCID50, 50% tissue culture infectious dose; YC/2022, A/duck/Korea/H493/2022; YS/2023, A/feline/Korea/M302-6/2023.
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presence of E75K, N193K, or R437K substitutions 
(20). YC/2022, YS/2023, and GA/2023 viruses did 
not have E75K, N193K, or R437K substitutions. Clade 
2.3.4.4b viruses have not shown increased affinity 
for α2,6-sialic acid, even with S133A and T156A sub-
stitutions in HA (J. Yang et al., unpub. data). We did 
not find the Q222L and G224S substitutions, which 
are associated with strong affinity for α2,6-sialic 
acid, in YC/2022, YS/2023, and GA/2023 viruses 
(20,25). Consequently, we do not consider the effects 
of HA mutations to be substantial for those viruses.

The H5N1 PB2 substitution E627K was observed 
in cats in Poland, and the PB2 D701N substitution was 
observed in sea lions in Argentina (10,26). Accord-
ing to sequence data registered in GISAID, >50% of 
human HPAI virus isolates exhibit E627K or D701N 
substitutions in PB2. Those mammal-adaptive muta-
tions are critical factors that increase replication and 
virulence of H5N1 viruses in cell culture and animal 
experiments (27–30).

Ferrets are useful animal models to study influ-
enza virus transmission and are frequently used for  

influenza pathogenicity evaluation because they ex-
hibit influenza-like symptoms after infection, includ-
ing fever, malaise, anorexia, sneezing, and nasal dis-
charge (31–33). The H5N1 viruses isolated from cats 
exhibited high virus replication levels and systemic 
infection along with severe symptoms and high mor-
tality rates in mice and ferrets; in addition, contact 
transmission among ferrets was confirmed. Therefore, 
it was inferred that YS/2023 and GA/2023 are highly 
pathogenic in mammals and are capable of mammal-
to-mammal transmission. It was also presumed that 
the amino acid substitutions E627K and D701N in PB2, 
previously associated with increased replication and 
virulence in mammals (29), might be responsible for 
the pathogenicity and transmission of H5N1 viruses 
in mammals. YS/2023 and the GA/2023 are geneti-
cally similar, except for the PB2 substitutions D701N 
in YS/2023 and E627K in GA/2023. The GA/2023 
virus with the E627K substitution showed stronger 
contact transmission in ferrets than the YS/2023 virus 
with the D701N substitution. It has been reported that 
the E627K substitution in PB2 of H5N1 viruses affects  

Figure 6. Virus titers after ferret-
to-ferret contact transmission in 
study of pathogenicity of highly 
pathogenic avian influenza 
A(H5N1) viruses isolated from 
cats, South Korea, 2023. Virus 
titers were measured in nasal 
washes from ferrets initially 
inoculated with virus (A) and 
naive ferrets exposed to the 
infected ferret (B). Viruses were 
isolated from 2 cats (YS/2023 and 
GA/2023) and 1 duck (YC/2022). 
We intranasally inoculated 1 ferret with 1 mL of 103 50% median lethal dose of each virus (1 ferret/virus) and then housed serologically 
naive ferrets (n = 2) in the same cage the next day (1 cage/virus). To evaluate transmission of virus to naive animals, nasal wash 
samples were collected over time, and virus titers were measured. GA/2023, A/feline/Korea/M305-7/2023; TCID50, 50% tissue culture 
infectious dose; YC/2022, A/duck/Korea/H493/2022; YS/2023, A/feline/Korea/M302-6/2023.

Figure 5. Survival rates after ferret-to-ferret contact transmission in study of pathogenicity of highly pathogenic avian influenza A(H5N1) 
viruses isolated from cats, South Korea, 2023. Viruses were isolated from 2 cats and 1 duck. A) A/feline/Korea/M302-6/2023; B) A/feline/
Korea/M305-7/2023; C) A/duck/Korea/H493/2022. We intranasally inoculated 1 ferret with 1 mL of 103 50% median lethal dose of each 
virus (1 ferret/virus) and then housed serologically naive ferrets (n = 2) in the same cage the next day (1 cage/virus). Survival rates for 
the inoculated and naive ferrets were measured.
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airborne transmission in ferrets (34). Therefore, the 
E627K mutation might have a greater effect on trans-
mission of the cat-derived viruses than D701N, al-
though this possibility requires further investigation.

We compared the 2 cat-derived viruses with a 
duck-derived virus that occupied the same clade as 
the H5N1 virus circulating in poultry during 2022. 
However, the first limitation of our study is that di-
rect comparisons of pathogenicity between isolates 
could not be completely assessed because of virus 
gene segmental differences. Nevertheless, it was clear 
that the H5N1 viruses isolated from cats were more 
pathogenic and transmissible among mammals than 
the duck-derived virus. Second, we analyzed mouse 
infections and contact transmission in ferrets, but we 
did not include an aerosol droplet transmission ex-
periment to analyze the potential for human-to-hu-
man transmission. Consequently, assessing the pub-
lic health risk to humans was also limited.

Increasing transmission of H5N1 viruses among 
mammals has been observed in countries in South 
America and in the United States. Most cases of 
spillover into humans have involved direct con-
tact with infected poultry or a contaminated envi-
ronment. The risk for human infection from recent 
outbreaks of HPAI influenza viruses in mammals, 
including tigers, leopards, domestic cats, domestic 
dogs, sea lions, and seals, has been assessed as low 
by the World Health Organization and other experts 
because of the lack of evidence for human-specific 
adaptive changes (6,8,11).

In conclusion, the increased pathogenicity and 
transmission among mammals observed in ferrets 
exposed to cat-derived HPAI H5N1 viruses indicate 
a need to conduct surveillance for H5N1 viruses in 
wild birds and mammals to prepare for potential 
zoonotic threats. A One Health surveillance ap-
proach is crucial, and sharing and integrating infor-
mation, such as sequencing data, reference viruses, 
and experimental data, during outbreaks in birds 
and mammals are essential to prevent human HPAI 
H5N1 virus infections.
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