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From early 2013 through October 2017, a total of 
5 outbreaks of avian influenza A(H7N9) virus 

infection occurred, resulting in 616 human deaths 
(1). In particular, the fifth wave of the epidemic 
saw a substantial increase in human fatalities. By 
late 2017, a total of 1,568 laboratory-confirmed 
cases of H7N9 virus infection in humans had 
been reported according to International Health  
Regulations guidelines (https://www.who.int/
emergencies/disease-outbreak-news/item/26- 
october-2017-ah7n9-china-en). The rapid emer-
gence, prevalence, and pandemic potential of 
H7N9 virus were suddenly of great concern. Since 
2017, low-pathogenicity avian influenza H7N9 vi-
rus transformed into the highly pathogenic avian 
influenza (HPAI) A(H7N9) virus (2–5). In response, 
China initiated a large-scale vaccination program in 
the poultry industry, effectively limiting the H7N9 
epidemic. Although no human H7N9 infections 
have been reported since February 2019, the virus 
is still circulating in poultry, particularly in lay-
ing hens, and remains a potential threat to poultry  

industry and public health (6–8). Furthermore, 
since 2017, the H7N9 virus has undergone multiple 
instances of antigenic drift to evade immune pres-
sure from vaccines (9–11). We investigated the ge-
netic evolution and antigenic differentiation of the 
H7N9 virus in China to provide information to bet-
ter control the epidemic, ensure the safety of the 
poultry industry, and protect public health.

The Study
Through continuous monitoring of markets and 
breeding farms in several provinces, we successive-
ly isolated 23 H7N9 viruses. Using the sequences of 
those viruses and a reference sequence from the GI-
SAID database (12), we conducted a phylogenetic 
analysis to study the evolution of H7N9 virus over 
the past decade (Figure 1).

 We rooted the maximum-likelihood phylo-
genetic tree with A/Anhui/1/2013 and identified 
the branches as Group.y.0. During 2013–2017, the 
5 low-pathogenicity avian influenza H7N9 virus 
waves formed Group.y.0–Group.y.2 branch. The 
first wave was mainly prevalent in the Yangtze 
River Delta. In 2014, the second wave spread to 
the Pearl River Delta and gradually expanded to 
all parts of the country in the subsequent 3 waves. 
Around 2017, or even as early as mid-2016, re-
searchers successfully isolated an HPAI variant of 
H7N9 virus (6). That variant was found to contain 
alkaline amino acids inserted into the cleavage site 
of the hemagglutinin protein (6,13). The discovery 
of that variant in live poultry markets in Guang-
dong Province indicated an increased pathogenic-
ity to poultry and potentially posed a greater threat 
to human health. We found that those HPAI H7N9 
virus variants clustered within the Group.y.2.1 
branch and its subordinate branch. 
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We characterized the evolution and molecular character-
istics of avian influenza A(H7N9) viruses isolated in China 
during 2021–2023. We systematically analyzed the 10-
year evolution of the hemagglutinin gene to determine the 
evolutionary branch. Our results showed recent antigenic 
drift, providing crucial clues for updating the H7N9 vac-
cine and disease prevention and control.
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After implementation of a universal immuni-
zation program in 2017, the H7N9 virus outbreak 
was effectively controlled. However, some H7N9 
viruses evolved to evade the vaccine. Those virus-
es continued to evolve and formed a new branch, 
Group.y.2.2, which is mainly found in northern 
China (Figure 1). Further investigation revealed 
that H7N9 virus is prevalent in the Bohai Rim re-
gion. Of note, we found no great differences in geo-
graphic, temporal, or host distribution between the 
2 newly differentiated branches, Group.y.2.3 (A/
Chicken/Hebei/1009/2020-like) and Group.y.2.4 
(A/Chicken/Yunnan/1001/2021-like) (Figure 1). 
Those branches showed an average of 2.41% pair-
wise nucleotide distances between 2021 and 2023. 
That finding suggests that the evolutionary differ-
ences between those clades might not be influenced 
by geographic isolation, period, or host species, but 
rather by the adaptation of a new virus to natural 
selection. Positive selection pressure, which encour-
ages mutations that contribute to the virus’ adapta-
tion to the environment, can play a role in viral evo-
lution. Our analysis confirmed that an increase in 
positive selection pressure in H7N9 virus occurred 
at some sites after 2017 (Appendix Table 1, https://

wwwnc.cdc.gov/EID/article/23-0530-App1.pdf). 
To examine whether mutation and evolution of 

H7N9 viruses are a result of antigenic drift and dis-
continuous variation, we used serologic methods to 
assess the antigenicity of the more evolved viruses 
from different clades (Appendix Table 2). Using 
the H7-Re4 and rHN7901 vaccine viruses for com-
parison, we found a weak cross-reaction titer be-
tween the vaccine viruses and the epidemic viruses 
in Group.y.2.3 (Table). The antigenic map demon-
strated that the Group.y.2.3 viruses were distantly 
located from the vaccine serum (Figure 2), imply-
ing a consistent antigenic drift and greater antigen-
ic divergence from Group.y.2.4 viruses. However, 
the distance between the vaccine virus and certain 
Group.y.2.4 viruses was relatively close (Figure 
2), suggesting minimal differences. Furthermore, 
some Group.y.2.4 viruses, including A/Chicken/
BJ/732-1/2022 and A/Quail/HeN/621/2022, both 
originating from northern China, also exhibited an-
tigenic drift.

Changes in antigenicity often are caused by 
accumulation of amino acid mutations in anti-
genic sites. Therefore, we compared virus se-
quences and observed that the cleavage sites were 

Figure 1. Phylogenetic analysis of evolution and antigenic differentiation of avian influenza A(H7N9) virus, China. Colors in columns at 
left show locations, timeframes, hosts, and pathogenicity of virus strains. The maximum-likelihood phylogenetic tree of the hemagglutinin 
gene depicts viruses corresponding to epidemic waves 1–5. Tree on right shows detail of Group.y.2.3 (red rectangles) and Group.y.2.4.4 
(red circles) in comparison with vaccine strains. Scale bar indicates nucleotide substitutions per site. LPAI, low-pathogenicity avian 
influenza; HPAI, highly pathogenic avian influenza; Other-N, sites in the northern region; Other-S, sites in the southern region.
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KRKRTAR↓GLF or KRKRIAR↓GLF, both of which 
exhibited the characteristics of HPAI viruses. How-
ever, we noted no substantial differences between 
Group.y.2.3 and Group.y.2.4 at positions 86, 129, 
134, 141, 145, 148, 151, 159, 208, 284, and 319 of H7 
(Appendix Table 3). Those findings demonstrated 
the high genetic diversity of the H7N9 virus. Except 
for position 208 in H7, all sites were antigenic sites, 
and positions 141, 145, and 148 were both antigenic 
sites and receptor-binding sites. For the Group.y.2.4 
branch, we compared the hemagglutinin 1 peptide 
of the vaccine viruses against antigenically distant 
viruses A/Chicken/SD/1301-2/2022, A/Chicken/
HeB/B363-4/2022, A/Chicken/BJ/B732-1/2022, 
and A/Quail/HeN/621/2022. We observed dif-
ferent amino acids that could affect H7N9 virus 
antigenicity (Appendix Table 4). Among the ana-
lyzed viruses, A/Quail/HeN/621/2022 exhibited 
the highest number of mutations compared with 
the vaccine viruses, followed by A/Chicken/BJ/
B732-1/2022 and A/Chicken/HeB/B363-4/2022; 
A/Chicken/SD/1401-2/2022 displayed the few-
est mutations. Moreover, the previously reported 
Q226L and G228S sites of H3 viruses (Appendix Ta-
ble 5), which have the potential to enhance mamma-
lian adaptation, remained unchanged in all H7N9 
viruses. Those sites still showed a preference for 
avian receptors, except A/Quail/HeN/621/2022, 

 
Table. Hemagglutination inhibition titers of 23 H7N9 epidemic viruses and vaccine viruses in a study of evolution and antigenic 

differentiation of avian influenza A(H7N9) virus, China* 

Group Antigen 
Antiserum, log2 

H7N9-Re4 rHN7901 229–2 257–3 320–1 363–4 
Referent H7N9-Re4 10 10 5 5 10 10 
Referent  rHN7901 9 10 3 2 9 10 
y.2.3 A/Chicken/HeB/229–2/2022 5 5 10 10 9 8 
y.2.3 A/Chicken/HeB/257–3/2022 5 3 10 10 9 8 
y.2.3 A/Quail/HeN/782–2/2022 4 4 10 9 8 6 
y.2.3 A/Chicken/LN/976–3/2022 5 4 10 9 8 6 
y.2.3 A/Duck/HeB/976–2/2022 5 4 10 9 7 5 
y.2.3 A/Chicken/HeB/199–1/2022 7 5 10 10 9 8 
y.2.3 A/Chicken/GX/J17/2022 7 7 10 10 8 9 
y.2.3 A/Chicken/HeB/526/2022 6 5 8 8 7 7 
y.2.3 A/Chicken/HeB/229–4/2022 6 6 10 10 9 8 
y.2.3 A/Chicken/SX/B1323–1/2022 7 7 9 10 9 6 
y.2.3 A/Chicken/SX/B22–2/2023 7 8 9 10 9 7 
y.2.4 A/Chicken/HeB/363–4/2022 5 5 6 5 9 10 
y.2.4 A/Chicken/HeB/320–1/2022 8 9 6 2 10 7 
y.2.4 A/Quail/HeN/621/2022 5 3 3 4 6 6 
y.2.4 A/Chicken/BJ/732–1/2022 5 5 5 3 6 9 
y.2.4 A/Chicken/HuB/J15/2022 9 8 7 6 7 10 
y.2.4 A/Chicken/BJ/470–6/2022 8 9 4 3 7 9 
y.2.4 A/Chicken/SC/468–2/2022 8 8 6 5 8 10 
y.2.4 A/Chicken/HeB/J94/2022 8 8 6 5 8 10 
y.2.4 A/Chicken/YN/415–2/2022 9 9 8 6 8 9 
y.2.4 A/Chicken/SD/1401–2/2021 7 7 6 4 8 9 
y.2.4 A/Chicken/JSu/B14–3/2023 9 9 6 6 9 10 
y.2.4 A/Chicken/HeB/B14–1/2023 10 10 6 6 9 9 
*Bold text indicates the cross titers of sera with corresponding antigens. BJ, Beijing; GX, Guangxi; HeB, Hebei; HeN, Henan; HuB, Hubei; JS, Jiangsu; LN, 
Liaoning; SC, Sichuan; SD, Shandong; SX, Shanxi; YN, Yunnan. 

 

Figure 2. Antigenic map of avian influenza A(H7N9) virus, China, 
2021–2023. The map was plotted using hemagglutinin inhibition 
assay results of 26 antigens (green, blue, and yellow dots), serum 
from 2 vaccine virus strains, H7N9-Re4 and rHN7901 (purple 
dots), and in-house designed serum of 4 circulating viruses 
(CK for chicken). The antigen map was constructed using the 
online website of the Antigenic Cartography Group, University of 
Cambridge (https://acmacs-web.antigenic-cartography.org). A/
Chicken/HeB/257-3/2022 and A/Chicken/HeB/229-2/2022 belong 
to the Group.y.2.3 branch, whereas A/Chicken/HeB/320-1/2022 
and A/Chicken/HeB/363-4/2022 belong to the Group.y.2.4 branch 
(indicated by white dots). The distance between the figures 
represents the antigen distance.
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which mutated to P at position 160. All V125T H3 
sites were replaced, indicating that the receptor-
binding capacity and immune escape of the virus 
might be affected, making the virus more compat-
ible with avian receptors (14,15).

Conclusions
This study explored the evolution and antigenic dif-
ferentiation characteristics of H7N9 virus over the 
past decade through continuous monitoring and 
selection of representative sequences from all pub-
licly available H7N9 virus sequences. However, our 
research still had certain limitations, and further 
investigation is needed to understand the relation-
ship between the evolution of viruses under positive 
selection pressure and the underlying cause of anti-
genic variation. 

In summary, influenza A viruses are high-
ly prone to mutation and evolution, making the 
H7N9 virus epidemic more complex and challeng-
ing to control. This study offers vital insights into 
the genetic evolutionary branches and recent anti-
genic drift, providing crucial clues for updating the 
H7N9 vaccine seed virus and for disease preven-
tion and control.
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