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Chikungunya virus (CHIKV) is a mosquitoborne 
alphavirus that has caused >10 million cases in 

>125 countries and territories in the past 2 decades. 
Chikungunya disease is characterized by acute and 
chronic signs and symptoms in humans and can 
sometimes lead to neurologic complications and fatal 
outcomes (1). CHIKV is transmitted among humans 
mainly by Aedes aegypti and Ae. albopictus mosquitoes  
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We conducted a cross-sectional serosurvey for chikun-
gunya virus (CHIKV) exposure in fruit bats in Senegal 
during 2020–2023. We found that 13.3% (89/671) of 
bats had CHIKV IgG; highest prevalence was in Eidolon 
helvum (18.3%, 15/82) and Epomophorus gambianus 
(13.7%, 63/461) bats. Our results suggest these bats are 
naturally exposed to CHIKV.



in a human-amplified urban cycle (2). The virus is 
also transmitted in ancestral African enzootic cycles 
involving several species of arboreal mosquito vec-
tors that transmit among diverse, nonhuman pri-
mates and possibly other amplifying hosts (2,3). The 
role of Old World fruit bats (Pteropodidae) in CHIKV 
transmission in West Africa remains understudied. 
We investigated CHIKV exposure of these bats in 
the Kédougou region in Senegal, a CHIKV-enzootic 
region with a history of spillover epidemics but not 
human-amplified, Ae. aegypti–borne outbreaks (A. 
Padane et al., unpub. data).

During October 23, 2020–March 4, 2022, we col-
lected blood samples from fruit bats in 5 locations 
in the Kédougou region of southeastern Senegal 
(Figure, panel A). All bats were identified by ex-
ternal morphology. We tested all serum samples 
(dilution 1:100) in duplicate by an in-house ELISA 
for detection of IgG against CHIKV by using a re-
combinant envelope 2 protein and an anti-bat sec-
ondary antibody. We defined the cutoff value for 
positive results as the mean of negative controls 
(uninfected mice) plus 3 SDs (Appendix, https://
wwwnc.cdc.gov/EID/article/30/7/24-0055-App1.
pdf). All animals collected were adults and appar-
ently healthy at the time of sampling. All proce-
dures followed the approval of the National Ethical 
Committee for Research of Senegal and the Univer-
sity of Texas Medical Branch Institutional Animal 
Care and Use Committee.

We analyzed blood samples from 671 bats be-
longing to 13 species across 6 families. Epomophorus 
gambianus bats represented 68.7% (461/671) of cap-
tured specimens, followed by Micropteropus pusillus 

(13.1%) and Eidolon helvum (12.1%) bats. We detected  
IgG against CHIKV envelope 2 protein in 13.3% 
(89/671) of bats tested (Figure, panel B; Appendix Ta-
ble). Testing revealed the bat species most frequently 
seropositive in 4 of 5 sites analyzed to be E. helvum 
(18.3%, 15/82), E. gambianus (13.7%, 63/461), and M. 
pusillus (8%, 7/88) (Figure, panel B; Appendix Fig-
ure). The locations with the highest seroprevalence 
were Ndebou (20.9%, 18/86) and Samecouta (18.4%, 
58/316) (Figure, panel B). CHIKV seropositivity was 
consistent in bats collected in 2020 (13.7%, 17/124) 
and 2021 (13.2%, 72/325). Also, CHIKV seropositivity 
rates were similar between male (14.2%, 69/485) and 
female (13.2%, 19/144) bats.

We identified IgG specific for CHIKV in 5 species 
of fruit bats in several rural areas within the Kédougou 
region of southeastern Senegal before a 2023 outbreak 
(A. Padane et al., unpub. data). Bats are recognized 
to traverse wild, rural, and urban zones and possess 
favorable biologic features for hosting and amplify-
ing several emerging viruses, including viral spread 
across large geographic areas linked to migration (4). 
CHIKV has been previously isolated from Scotophi-
lus spp. bats in Senegal (5). Experimental infection of 
Eptesicus fuscus bats with CHIKV demonstrated per-
sistent viremia, followed by neutralizing antibody 
production without apparent clinical signs (6), com-
patible features for enzootic amplifying and reservoir 
host status. Of note, other domestic and wild animals 
(e.g., birds and livestock) appear unlikely to amplify 
CHIKV effectively (6). One study revealed that 36% 
(15/42) of fruit bats captured near human settlements 
tested positive for CHIKV after an initial outbreak in 
Grenada Island (7), suggesting that CHIKV can infect 
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Figure. Serosurvey of CHIKV in the Kédougou region, Senegal. A) Location of Kédougou region (dark yellow) within Senegal (light 
yellow). B) Colored bars show the proportion of bats testing positive for CHIKV IgG at each capture site. Each color corresponds to a 
specific bat species, as indicated in the key above the graph. CHIKV, chikungunya virus.



bats during human-amplified outbreaks. Another 
study found that 0.7% (2/303) of Rousettus aegyptiacus 
bats in Uganda have neutralizing antibodies against 
CHIKV (8).

Collectively, our findings suggest that E. gam-
bianus, E. helvum, and M. pusillus bats are exposed 
to CHIKV infection in the enzootic cycle in West 
Africa. Limitations of our study include the ab-
sence of more specific neutralizing antibody tests 
in bat samples because of  limited volumes of blood 
collected and the need for testing for antibodies 
against several other viruses. Thus, we recognize 
that some CHIKV-positive samples could have re-
sulted from cross-reactions with other alphaviruses 
circulating in the region, particularly o’nyong-
nyong virus (Appendix) (9). Nonetheless, E. gam-
bianus bats, unlike highly migratory E. helvum bats, 
are rarely observed to migrate or disperse long dis-
tances. This fact suggests that the high seropositiv-
ity we noted is unlikely due to cross-reaction with 
o’nyong-nyong virus, a virus rarely detected in 
West Africa. Limited blood sample volumes also 
prevented molecular testing (e.g., reverse tran-
scription PCR) to identify active CHIKV infections. 
Future investigations should prioritize direct virus 
detection and isolation from bats. In addition, al-
though our serologic data indicate past exposure, 
we could not ascertain the timing of CHIKV in-
fection in the bats we studied. Re-capturing bats, 
particularly during interepidemic periods, would 
offer valuable insights into infection dynamics and 
reservoir potential. Finally, experimental infec-
tion of the high-seropositive bat species is needed 
to determine if they develop viremia of adequate 
magnitude to participate in mosquito transmission. 
In conclusion, our study strengthens evidence for 
natural CHIKV exposure in some Old World fruit 
bat species in West Africa. 
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