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Germany has experienced repeated outbreaks of 
highly pathogenic avian influenza (HPAI) vi-

ruses (HPAIVs) of clade 2.3.4.4b of the H5 goose/
Guangdong lineage since 2016, causing devastat-
ing losses to wild bird biodiversity and the poultry 
production sector (1). Since 2016, seasonal outbreaks 
or cases increased during the winter season and de-
creased to zero in summer. Seasonality terminated in 
2021, when HPAIV H5 became endemic in wild birds 
in Germany and the rest of Europe (2). Along with 
an increasing incidence, genetic diversity expanded, 
resulting in a high number of new genotypes (3). 

During summer 2023, genotype Ger-02-23-N1.1 
(BB based on the European Union nomenclature 
[4,5]), a reassortment with a gull-derived H13 virus, 
dominated HPAI cases caused by outbreaks in colony 
breeders (6). Sporadically, older genotypes (Ger-10-
21-N1.5 and Ger-12-22-N1.1) were identified, accom-
panied by some viruses that could not be assigned to a 
proper genotype because of incomplete genome cov-
ering. After the breeding season ended, incidence de-
creased (84 cases in July, 16 in August, 10 in Septem-
ber, and 3 in October). In addition, increasing numbers 
of low pathogenicity avian influenza (LPAI) viruses 
(LPAIVs) were detected during active and passive 
wild bird monitoring, representing the autumnal, bird 
migration–related upsurge of avian influenza virus in-
fections in Germany. Since November, the number of 
HPAIV H5 cases has increased to a still moderate but 
substantially higher level (29 in November). 

We analyzed the genotypes of HPAI and LPAI 
viruses by using full-genome sequencing. Sequencing 

Several subtypes and many different genotypes of highly 
pathogenic avian influenza viruses of subtype H5 clade 
2.3.4.4b have repeatedly caused outbreaks in Germany. 
Four new highly pathogenic avian influenza genotypes 
emerged in November 2023 after reassortment with low 
pathogenicity precursors, replacing genotype BB, which 
had dominated in Europe since 2022.
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procedures of HPAI and LPAI viruses (7) and methods 
for genotype differentiation including the reference se-
quences have been described previously (8). We ana-
lyzed 244 sequences from 33 viruses collected from late 
May to late November 2023, of which 22 originated 
from wild birds, 5 from poultry, and 6 from captive 
birds. We found various LPAIVs and 16 HPAIVs of 
H5N1 subtype in the resulting sequences (Table). 

All HPAIV H5 sequences from viruses collected 
in November clustered differently from genotype 
Ger-02-23-N1.1 (BB) that dominated during the 
summer of 2023. None of those genotypes, includ-
ing genome segments from viruses that could not 
be sequenced to completion, were detected after 
November 2023. Instead, we identified 4 new geno-
types. Four viruses grouped with the HPAIV H5N1 
genotype Ger-11-23-N1.1 (DB) (reference A/her-
ring gull/Germany-NI/2023AI08764/2023) with a 
new reassorted polymerase basic 1 (PB1) gene simi-
lar to LPAIVs detected in a zoo in Germany (LPAI 
A/flamingo/Germany-ST/2023AI08233/2023 
[H5N2]). One virus (reference A/barnacle goose/
Germany-SH/2023AI08822/2023) was associated 
with genotype Germany Ger-11-23-N1.2 (AB) with 
a reassorted PB1 gene. Two viruses from Germany 
clustered with Ger-11-23-N1.3 (DG) (reference A/
chicken/Germany-NI/2023AI08838/2023) contain-
ing the PB1 gene of Ger-11-23-N1.2 and a new reas-
sorted polymerase basic 2 and polymerase acidic 
genes, which were also found in LPAIVs from a  
wild duck in Germany in October 2023 (type strain LPAI 
A/wild duck/Germany-NW/2023AI07895/2023 
[H3N8]) and November 2023 (LPAI A/Eurasian Wi-
geon/Germany-MV/2023AI08762/2023 [H5N2]). 
Two sequences formed a new reassortant for Ger-
many, Ger-11-23-N1.4 (DA) (reference A/common 
crane/Germany-HH/2023AI08835/2023) with new 
PB1, polymerase basic 2, and nonstructural gene seg-
ments (Appendix Figures 1, 2, https://wwwnc.cdc.
gov/EID/article/30/8/24-0103-App1.pdf). 

In conclusion, our study shows a high number of 
emerging new HPAIV H5 clade 2.3.4.4b genotypes 
in November 2023 and identified related LPAIVs 
circulating at the same time in the same area, which 
may have served as reassortment partners. These 
findings highlight the continued promiscuity of cur-
rently circulating HPAI H5 strains of clade 2.3.4.4b 
and the need for genotypic surveillance of both 
HPAIVs and LPAIVs.
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Table. Number of HPAI and LPAI virus subtypes identified from 
244 sequences from 33 viruses collected in Germany, late May 
to late November 2023* 
Subtype Wild birds Poultry Captive birds 
HPAI H5N1† 12 4 

 

LPAI H11N9 
  

1 
LPAI H2N3 1 

  

LPAI H3N8 3 
  

LPAI H4N6 
  

2 
LPAI H5N2† 1 

 
2 

LPAI H5N3 1 
  

LPAI H5N4 
 

1 
 

LPAI H6N4 1 
  

LPAI H9N2 3 
 

1 
*HPAI, highly pathogenic avian influenza; LPAI, low pathogenicity avian 
influenza. 
†Shared genome segments with HPAI virus subtype H5N1. 
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To the Editor: The study by Rios-Muñoz et al. 
reporting rat hepatitis E virus (HEV) RNA in swine 
feces contains intriguing findings with the potential 
to change our understanding of rat HEV transmission 
routes (1). One relevant aspect highlighted by the au-
thors is that limited prior evidence of rat HEV infec-
tion in swine might be partially explained by the lack 
of rat HEV serology tests for pigs. The low genomic 
homology between rat HEV and other HEV (<60%) 
makes most of the commercially available HEV-based 
tests ineffective in detecting rat HEV (2,3).

Such findings are exciting but must be inter-
preted with caution because some gaps remain to be 
addressed. Pigs can feed on small mammal remains 
and even prey on rodents, which means detecting rat 
HEV RNA in pig feces does not conclusively indicate 
an infection. To rule out the possibility of viral detec-
tion because of contaminated food, it is necessary to 
detect the virus in other tissues, such as blood or liver 
(3). Of note, a substantial proportion of the positive 
samples in the study by Rios-Muñoz et al. exhibited 
high cycle threshold values, which might be sugges-
tive of residual viral RNA. Furthermore, considering 
the hypothesis that both viruses could be transmitted 
through contaminated swine meat, it remains unclear 
why rat HEV infection in humans is uncommon when 
compared with other HEV.

Nevertheless, from our perspective, these find-
ings suggest the possibility of approaching swine 
as a sentinel species. If results are confirmed in ad-
ditional eco-epidemiologic studies, sampling swine 
stools could offer valuable public health information. 
Insights from other rodentborne diseases, such as 
bubonic plague, underscore the benefits of a surveil-
lance strategy focused on sentinel species rather than 
primary hosts (4). Sampling rodents is logistically 
more challenging and expensive than for domestic 
animals, but surveillance of sentinel species is typi-
cally more efficient in predicting the dissemination of 
zoonotic diseases at early stages.
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