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Neonatal Gonococcal Conjunctivitis Caused 
by Fluoroquinolone-Resistant Neisseria 

gonorrhoeae 

Appendix 

Patient findings on admission 

Vital signs 

Axillary temperature 37.0°C, respiratory rate 36 breaths/min, heart rate 133 bpm, and 

oxygen saturation 98% on room air. 

Laboratory blood tests 

Leukocyte counts of 10,740/µL, Platelet count of 380000/µL, Total bilirubin 5.4mg/dL, 

Creatinine 0.26mg/dL, Aspartate aminotransferase 32IU/L, Alanine aminotransferase 20IU/L, 

CRP of 0.13 mg/dL 

Serologic tests for syphilis (RPR <0.4), Treponema pallidum antibody (<1.0), HIV 

(<1.0), hepatitis B surface antigen (<0.03 IU/mL), and hepatitis C antibody (<1.0) were all 

negative. 

Urine tests 

Protein (-), Glucose (-), Occult blood (2+), Nitrite (-), Leukocytes (-), Bacteria (-). 

https://doi.org/10.3201/eid3110.250895
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Methods 

Neisseria gonorrhoeae B196-JP22 strain culture, genome DNA isolation, sequencing and analysis 

The Neisseria gonorrhoeae isolated from the patient (designated B196-JP22) was 

cultured in chocolate blood agar at 37°C in a 5% CO2 humid environment incubator. After DNA 

extraction with the Nucleospin Microbial DNA kit, we prepared a genome library with the 

Oxford Nanopore Technologies Native Bar Coding kit and sequenced it with a FLO-MIN114 

v.R10 flow cell set on the MinION Mk1C device. Sequences for MLST typing were confirmed 

by Sanger sequencing. Genome analysis was performed using tools from: MLSTVERSE (1) to 

obtain the fastq file, BV-BRC (2) to assemble the draft genome contig fasta file, Proksee (3) to 

annotate the genome, Pathogenwatch (https://pathogen.watch), pubMLST (4), NCBI, BV-BRC 

databases to gather previously reported Neisseria gonorrhoeae strain genomes and to generate 

the phylogenetic tree and the SNP matrix analysis, ResFinder4.7.2 (5,6) and AMRprofiler (7) to 

analyze antimicrobial resistance genes. 

Molecular characterization of the Neisseria gonorrhoeae B196-JP22 strain 

The draft whole genome sequence was 2234371bp long encompassing 3 contigs: the 

smallest contig had 3529bp and the largest, contig1, had 2222712bp covering the whole 

chromosome. The quality and contiguity of the assembly was reflected in the N50: 2222712 

value. The GC content was 52.3%. Genome blast comparison with the WHO 2024 Reference 

strain Alpha (8), revealed the presence of a 4143bp cryptic plasmid (NZ_CP145058.1) in 

contig3. 

MLST typing 

Initial uploading of B196-JP22 draft whole genome sequence onto the MLST-2.0 typing 

platform at the CGE revealed that the closet ST type was 7371. However, the adk, aroE and 
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pdhC loci did not share 100% identity with the adk_39, aroE_170 and pdhC_153 alleles 

corresponding to the ST7371. Thus, we amplified these loci by PCR and performed Sanger 

sequencing to verify the sequences using specific primers (Appendix Table 1). The obtained 

sequences were uploaded onto CGE and the allele types matched 100% with those of the ST7371 

(Appendix Table 2). 

Genetic analysis of antibiotic susceptibility 

The B196-JP22 genome contained SNPs and acquired genes mediating antimicrobial 

resistance (9,10) consistent with the antibiotic susceptibility test results (Table, 

https://wwwnc.cdc.gov/EID/article/31/10/25-0895-T1.htm). Apart from that, the B196-JP22 

genome contained sulfonamide and tetracycline resistance determinant SNPs: an arginine to 

serine substitution at position 228 in the protein encoded by the folP gene (folP_R228S) and a 

valine to methionine substitution at position 57 in the protein encoded by rpsJ (rpsJ_V57M) gene 

respectively (11). 

B196-JP22 lineage relation to worldwide Neisseria gonorrhoeae strains 

In an effort to trace the origin and spread of B196-JP22 we performed a phylogenetic tree 

analysis on Pathogenwatch (Appendix Figure). We input our B196-JP22 isolate and 1368 

worldwide Neisseria gonorrhoeae including strains that out of the 7 house-keeping genes used in 

MLST typing, had at least 4 loci sharing 100% identity with B196-JP22 (MLST types: ST7371, 

ST1583, ST1921, ST1922, ST 8109, ST12078, ST12242, ST12243, ST14421, ST14591); 2024 

WHO Neisseria gonorrhoeae reference strains (8) and publicly available Japanese strains 

(regardless of MLST ST type). The analysis showed that B196-JP22 had a direct shared ancestry 

with the SAMN12591021 People’s Republic of China strain, however it was allocated in a long 

branch. The SNPs matrix revealed 1175 differences between these 2 strains. Interestingly, B196-
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JP22 was closer related to strains reported in Australia (13), Hong Kong Special Administrative 

Region, People’s Republic of China (14), Vietnam (15) and the U.S (16,17), than to strains 

reported in Japan (18,19). Future genome sequencing applied to the majority of Neisseria 

gonorrhoeae strains collected in Japan may help assess whether B196-JP22 is a new strain in our 

country. 
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Appendix Table 1. PCR primers for amplification and sequencing of house-keeping genes 

Primer type  Primer 

Amplification primer  

 adk-P1B * 5-CCAAGCCGTGTAGAATCGTAAACC-3 

 adk-P2B * 5-TGCCCAATGCGCCCAATAC-3 

 aroE-P1B * 5-TTTGAAACAGGCGGTTGCGG-3 

 aroE-P2B * 5-CAGCGGTAATCCAGTGCGAC-3 

 pdhC-B196F † 5-GGCATTCGGTTTTCAGACGG-3 

 pdhC-B196R † 5-TTCCAACGTATCGGCGACTT-3 

Sequencing primers  

 adk-S1A * 5′-AGGCWGGCACGCCCTTGG-3′ 

 adk-S2 * 5′-CAATACTTCGGCTTTCACGG-3′ 

 aroE-S1A * 5-GCGGTCAAYACGCTGRTK-3 

 pdhC-S2 * 5′-ATCGGCTTTGATGCCGTATTT-3′ 

* Primers designed by Birtles A. are published on the pubMLST Web site. 

† Primers designed by the authors. 

 

Appendix Table 2. B196-JP22 MLST allele types analyzed on MLST-2.0 

Locus Identity % Coverage % Alignment Length Allele Length Gaps Allele 

abcZ 100 100 433 433 0 abcZ_59 

adk 100 100 465 465 0 adk_39 

aroE 100 100 490 490 0 aroE_170 

fumC 100 100 465 465 0 fumC_111 

gdh 100 100 501 501 0 gdh_148 

pdhC 100 100 480 480 0 pdhC_153 

pgm 100 100 450 450 0 pgm_65 
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Appendix Figure. Phylogenetic tree. Above are color keys of countries where strains closely related to 

B196-JP22 were isolated. Below are color keys of countries where the rest of the strains where isolated. 

Scale bar represents branch length corresponding to the number of SNP differences. Visualization of 

strain country origin was performed using Microreact (12). 
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