- Neto Z, Martinez PA, Hill SC, Jandondo D, Thézé J, Mirandela M, et al. Molecular and genomic investigation of an urban outbreak of dengue virus serotype 2 in Angola, 2017-2019. PLoS Negl Trop Dis. 2022;16:e0010255. https://doi.org/10.1371/journal.pntd.0010255
- Marquetti Fernández M, Arletty T, Cani P, Flores Y. Longitudinal spatial distribution of *Aedes aegypti* (Diptera: Culicidae) during the yellow fever epidemic in Angola, 2016. Glob J Zool. 2019;4:001–6. https://doi.org/10.17352/ gjz.000011
- Soares PMM, Careto JAM, Lima DCA. Future extreme and compound events in Angola: CORDEX-Africa regional climate modelling projections. Weather Clim Extrem. 2024;45:100691. https://doi.org/10.1016/j.wace.2024.100691
- Kraemer MUG, Faria NR, Reiner RC Jr, Golding N, Nikolay B, Stasse S, et al. Spread of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo 2015-16: a modelling study. Lancet Infect Dis. 2017; 17:330-8. https://doi.org/10.1016/S1473-3099(16)30513-8
- Hill SC, Vasconcelos J, Neto Z, Jandondo D, Zé-Zé L, Aguiar RS, et al. Emergence of the Asian lineage of Zika virus in Angola: an outbreak investigation. Lancet Infect Dis. 2019;19:1138–47. https://doi.org/10.1016/ S1473-3099(19)30293-2

Address for correspondence: Joana Morais, Instituto Nacional de Investigação em Saúde, Rua Amílcar Cabral 96, Maianga, Luanda, Angola; email: jfm.morais9@gmail.com

Yellow Fever Virus in *Aedes* albopictus Mosquitoes from Urban Green Area, São Paulo State, Brazil

Eduardo S. Bergo, Juliana Telles-de-Deus, Luis F. Mucci, Vanessa C. Helfstein, Maria de Jesus C. Nascimento, Nubia R.M.F. Rocha, Anderson de Paula, Lucy S. Villas-Boas, Camila M. Romano, Luzia M.R. Passos, Vera Lucia F. de Camargo-Neves, Karin Kirchgatter

Author affiliations: Pasteur Institute, São Paulo, Brazil (E.S. Bergo, J. Telles-de-Deus, L.F. Mucci, V.C. Helfstein, M.J.C. Nascimento, N.R.M.F. Rocha, V.L.F. de Camargo-Neves, K. Kirchgatter); University of São Paulo, São Paulo (A. de Paula, L.S. Villas-Boas, C.M. Romano); Health Surveillance Department of the Municipality of Ribeirão Preto, São Paulo (L.M.R. Passos)

DOI: https://doi.org/10.3201/eid3111.250692

We detected yellow fever virus by using quantitative PCR in *Aedes albopictus* mosquitoes and isolated the virus in C6/36 cells in 4 of 18 pools, including 118 specimens collected in an urban green area in São Paulo State, Brazil. Additional monitoring to detect shifts in transmission of this species is warranted.

ellow fever is an infectious disease caused by an I RNA virus of the genus Orthoflavivirus, family Flaviviridae (1). Yellow fever virus (YFV) is transmitted to humans and nonhuman primates, the main vertebrate hosts, through bites of mosquitoes from genus Aedes in Africa and Haemagogus and Sabethes in the Americas. The sylvatic cycle occurs in both regions, where vectors, breeding and living in forests, infect nonhuman primates. Human infection is accidental (e.g., when persons enter the forest or stay at forest edges). The urban cycle, common in Africa, involves transmission between Ae. aegypti mosquitoes and humans. In the Americas, the last urban transmission occurred in the 1940s, when effective mass vaccination and vector-control campaigns were implemented in cities (2).

During 2014–2023, Brazil's main metropolitan regions, including areas with dense, unvaccinated populations, were affected by a major yellow fever epidemic, raising concerns about disease re-urbanization (3). In 2017, genetic studies confirmed a new wave spread to areas outside the Amazon rainforest (4).

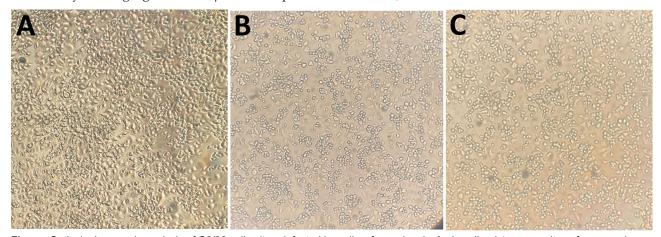
In São Paulo State, the current yellow fever epidemic (2022–2025) has reached 45 municipalities (5). The northwest region, which has seasonal climate and fragmented forests, reported fewer human cases and epizootics than the eastern region (5). YFV circulation has been documented repeatedly in 2000, 2008, 2016–2018, 2020, and 2024–2025 (5). In this northwest region, virus detection in secondary or potential vector species stands out, whereas in more forested regions with higher numbers of human cases and epizootics, *Haemagogus* sp. mosquitoes showed greater infectivity (6). We report results of an entomovirologic survey in Ribeirão Preto, São Paulo State, Brazil (≈700,000 inhabitants), conducted after epizootics occurred in nonhuman primates.

On December 25, 2024, four howler monkeys (*Alouatta caraya*) died in forest fragments on the University of São Paulo (USP) campus in Ribeirão Preto. Six days later, 2 more howler monkeys were found dead. All tested positive for YFV at the Adolfo Lutz Institute (São Paulo).

Following Brazil's Ministry of Health guidelines, we conducted entomovirologic surveillance after confirmation of human or epizootic cases to characterize

Table. Nonengorged adult female mosquitoes collected in entomovirologic surveillance for yellow fever virus from an urban green area (University of São Paulo, Ribeirão Preto campus), São Paulo State, Brazil, January 7–9, 2025

	No.	Pools	Positive
Species	mosquitoes	analyzed	pools
Aedes albopictus	118	18	4
Ae. scapularis	25	12	0
Ae. serratus	11	5	0
Ae. terrens	2	2	0
Culex (Culex) spp.	15	0	0
Haemagogus leucocelaenus	2	2	0
Limatus durhamii	2	2	0
Psorophora ferox	3	3	0
Sabethes albiprivus	30	11	0
Sa. glaucodaemon	1	1	0
Sa. gymnothorax	1	1	0
Sabethes spp.	2	2	0
Total	212	59	4


the eco-epidemiologic context. During January 7-9, 2025, four trained personnel collected adult mosquitoes by using hand nets and suction aspirators at ground level and from 10-m canopy platforms within forest fragments on the university campus during 9 AM-4 PM. We cryopreserved samples in liquid nitrogen, sent them to the Pasteur Institute (São Paulo) for morphologic identification under cold conditions, and then pooled them by species. We tested 59 female pools (197 mosquitoes from 10 species of Aedini and Sabethini tribes) (Table) for YFV RNA by quantitative reverse transcription PCR (qRT-PCR) by using a broad-range flavivirus assay (7) and a YFV-specific assay (8).

Four pools tested positive for YFV and had high viral loads (cycle threshold [Ct] 19–22 for YFV protocol and 23–25 for pan-flavivirus protocol). We used Sanger sequencing to analyze all PCR products and confirmed YFV by using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). All positive pools contained only nonengorged *Ae. albopictus* mosquitoes,

collected at ground level with hand nets during January 8–9, 2025 (Table).

To further confirm the virus viability, we performed virus isolation in a Biosafety Level 2 laboratory at the USP Institute of Tropical Medicine by using Ae. albopictus mosquito C6/36 cells (Figure, panel A). We cultured cells at 28°C in 5% CO, in Leibovitz's L-15 medium with 5% fetal bovine serum. We filtered YFV RNA-positive pool samples (the entire bodies of the insects homogenized in Hanks' balanced salt solution; GIBCO-BRL, https://www.thermofisher.com) through 0.22-um membranes and inoculated them (100 µL of the filtrate) onto confluent C6/36 monolayers in 24-well plates. After 1-hour adsorption, we added 1 mL medium with 2% fetal bovine serum, 1% streptomycin, and amphotericin B. We incubated cultures 5 days and then conducted 2 passages (P2, P3). We performed daily microscopic monitoring for cytopathic effects. We tested supernatants from P1-P3 for YFV RNA by using qRT-PCR. Virus isolation succeeded in all 4 pools. Pool B3693 showed early cytopathic effects at P1 (Figure, panel B) and had a lower YFV qRT-PCR Ct than the inoculum. The other 3 pools were positive at P2 (Figure, panel C). We confirmed virus isolation by observing cytopathic effects and the decreasing Ct values during passages.

Previous detections of YFV RNA in this species showed only low viral loads (Ct >35), and no virus was cultured (6). Our data suggest that *Ae. albopictus* mosquitoes played a central role in virus transmission among nonhuman primates at USP Ribeirão Preto, given its high detection rate (4 of 18 pools), abundance (55.7% of specimens), low *Haemagogus* sp. mosquito density, and no YFV found in *Sabethes albiprivus* mosquitoes (11 pools), a known secondary vector (9).

Figure. Optical microscopic analysis of C6/36 cell culture infected by yellow fever virus in *Aedes albopictus* mosquitoes from an urban green area (University of São Paulo, Ribeirão Preto campus), São Paulo State, Brazil. A) Mock (uninfected control cells). B) Yellow fever virus isolated in passage 1, five days postinfection. C) YFV isolated in passage 2, ≈10 days postinfection. Original magnification × 40.

The confirmed vector competence of *Ae. albopictus* mosquitoes for YFV under experimental conditions (10), combined with our findings, highlights its potential epidemiologic role at the sylvatic-urban interface. Our findings also underscore the importance of enhancing entomological surveillance in urban green areas to detect shifts in transmission dynamics early and prevent the re-urbanization of yellow fever in Brazil.

Acknowledgments

We thank the field teams at the Pasteur Institute involved in the mosquito collections.

This study was funded, in part, by the State Research Institutes Modernization Program, supported by São Paulo Research Foundation (grant no. 2017/50345-5). K.K. is a Conselho Nacional de Desenvolvimento Científico e Tecnológico research fellow (grant no. 309396/2021-2). C.M.R. received a grant from São Paulo Research Foundation (São Paulo Research Foundation Iniciativa Amazonia +10; grant no. 2022/10408-6).

About the Author

Dr. Bergo is a scientific researcher at the Vector Section of the Pasteur Institute, Araraquara Unit, São Paulo, Brazil. His research interests include public health, with an emphasis on the ecology of diseases transmitted by insect vectors.

References

- Postler TS, Beer M, Blitvich BJ, Bukh J, de Lamballerie X, Drexler JF, et al. Renaming of the genus *Flavivirus* to *Orthoflavivirus* and extension of binomial species names within the family Flaviviridae. Arch Virol. 2023;168:224. https://doi.org/10.1007/s00705-023-05835-1
- Monath TP, Vasconcelos PF. Yellow fever. J Clin Virol. 2015;64:160-73. https://doi.org/10.1016/j.jcv.2014.08.030
- Giovanetti M, Pinotti F, Zanluca C, Fonseca V, Nakase T, Koishi AC, et al. Genomic epidemiology unveils the dynamics and spatial corridor behind the yellow fever virus outbreak in southern Brazil. Sci Adv. 2023;9:eadg9204. https://doi.org/10.1126/sciadv.adg9204
- Andrade MS, Campos FS, Oliveira CH, Oliveira RS, Campos AAS, Almeida MAB, et al. Fast surveillance response reveals the introduction of a new yellow fever virus sub-lineage in 2021, in Minas Gerais, Brazil. Mem Inst Oswaldo Cruz. 2022;117:e220127. https://doi.org/ 10.1590/0074-02760220127
- Saad LDC, Chiaravalloti-Neto F. Reemergence of yellow fever in the state of São Paulo: the structuring role of surveillance of epizootics in non-human primates in a one health approach. Rev Bras Epidemiol. 2024;27:e240064. https://doi.org/10.1590/1980-549720240064.2
- Caleiro GS, Vilela LO, Nuevo KMB, Tubaki RM, de Menezes RMT, Mucci LF, et al. Yellow fever virus (YFV) detection in different species of culicids collected during

- an outbreak in southeastern Brazil, 2016–2019. Trop Med Infect Dis. 2025;10:118. https://doi.org/10.3390/tropicalmed10050118
- Patel P, Landt O, Kaiser M, Faye O, Koppe T, Lass U, et al. Development of one-step quantitative reverse transcription PCR for the rapid detection of flaviviruses. Virol J. 2013;10:58. https://doi.org/10.1186/1743-422X-10-58
- Domingo C, Patel P, Yillah J, Weidmann M, Méndez JA, Nakouné ER, et al. Advanced yellow fever virus genome detection in point-of-care facilities and reference laboratories. J Clin Microbiol. 2012;50:4054–60. https://doi.org/10.1128/ JCM.01799-12
- de Oliveira CH, Andrade MS, Campos FS, da C Cardoso J, Gonçalves-Dos-Santos ME, Oliveira RS, et al. Yellow fever virus maintained by *Sabethes* mosquitoes during the dry season in Cerrado, a semiarid region of Brazil, in 2021. Viruses. 2023;15:757. https://doi.org/10.3390/v15030757
- Couto-Lima D, Madec Y, Bersot MI, Campos SS, Motta MA, Santos FBD, et al. Potential risk of re-emergence of urban transmission of yellow fever virus in Brazil facilitated by competent *Aedes* populations. Sci Rep. 2017;7:4848. https://doi.org/10.1038/s41598-017-05186-3

Address for correspondence: Karin Kirchgatter, Laboratório de Bioquímica e Biologia Molecular, Instituto Pasteur, Rua Paula Sousa 166, São Paulo, São Paulo 01027-000, Brazil; email: karink@usp.br

Molecular Evidence of Dengue Virus Serotype 2 in Travelers Returning to Israel from the Sinai Peninsula

Neta S. Zuckerman,¹ Guy Choshen,¹ Yaniv Lustig, Anna Shoykhet, Keren Friedman, Tatyana Kushnir, Ora Halutz, Hovav Azulay, Victoria Indenbaum,¹ Eli Schwartz¹

Author affiliations: Tel-Aviv University, Tel Aviv, Israel (N.S. Zuckerman, G. Choshen, Y. Lustig, O. Halutz, E. Schwartz); Sheba Medical Center, Ramat-Gan, Israel (N.S. Zuckerman, Y. Lustig, K. Friedman, T. Kushnir, V. Indenbaum, E. Schwartz); Tel-Aviv University, Tel Aviv, Israel (G. Choshen, Y. Lustig, O. Halutz, E. Schwartz); Meir Medical Center, Kfar-Saba, Israel (G. Choshen, A. Shoykhet); Infectious Disease Institute, Soroka University Medical Center, Beer Sheba, Israel (H. Azulay)

DOI: https://doi.org/10.3201/eid3111.250991

¹These authors contributed equally to this article.