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Classical scrapie affects sheep and goats. To control
prevalence in sheep, the European Union initiated
breeding programs targeting resilient genotypes. Al-
though certain goat polymorphisms, such as Q,,,K, are
linked to resistance, specific breeding programs have
not been implemented. Hemizygous transgenic mice
carrying the goat K,,, cellular prion protein (PrP) allele
(K,,,-Tg516) exhibited resistance to several classical
scrapie isolates. We inoculated homozygous K,,,-Tg516
and Q,,,-Tg501 mice with various scrapie isolates. Ho-
mozygous K, -Tg516 mice reached the end of their
lifespan without exhibiting clinical signs; we observed
brain proteinase K—resistant PrP accumulation in those
mice that was lower than in Q,,,-Tg501 mice. Histologi-
cally, K,,,-Tg516 brains lacked prion-related lesions,
except for the presence of few isolated scrapie PrP
plaques in cases of isolates highly adapted to the K-
PrP¢ environment. Our findings caution against includ-
ing that polymorphism in breeding programs, because
it could lead to emergence of asymptomatic silent prion
carriers of classical scrapie among goat populations.

Scrapie is a fatal infectious neurodegenerative dis-
ease inherent to sheep and goats that falls within
the spectrum of transmissible spongiform encepha-
lopathies (TSEs) or prion diseases. Of note, various
mammals, including cattle with bovine spongiform
encephalopathy (BSE), mink with transmissible
mink encephalopathy, cervids with chronic wast-
ing disease, and humans with Creutzfeldt-Jakob
disease, can also succumb to TSEs. The hallmark of
those diseases is posttranslational conversion of the
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host cellular prion protein (PrP), PrP<, into a mis-
folded pathologic isoform causing scrapie, PrPS,
which accumulates within the central nervous sys-
tem of affected individuals (1).

Infection with TSEs in an organism is influenced
by 2 main factors: the similarity between the primary
PrP sequence of the host (recipient) and the donor
(inoculum), and the prion strain (2). Together, those
factors define the concept of the transmission barrier.
Sheep and goats share the same PrP primary sequence,
although polymorphisms differ between the animals.
In sheep, high susceptibility to classical scrapie is as-
sociated with the V., R . Q and A, R Q . alleles,
whereas the A , R R, genotype is linked to resis-
tance (3-8). To control and decrease classical scrapie
in sheep, European Union member states have estab-
lished breeding programs on the basis of the selection
of the resistant A , R .,R, allele, although the variant
does not confer resistance against the atypical/Nor98
scrapie strain (9). In goats, some polymorphisms,
such as [,,,M (10-13) and N, S (14), have been associ-
ated with resistance to scrapie infection.

The most promising results of studies were in
regard to goat-resistant polymorphisms for the goat
Q,,,K polymorphism. The lysine allele (K,,,) was first
reported to confer resistance in Italy (15,16), and simi-
lar results were later found in France (10) and Greece
(17,18). Cell-free conversion assays also indicated
that K ,, provides protection against the ME7 scrapie
strain (19). Experimental studies in goats found that
heterozygous Q/K,,, and homozygous K,,, goats ei-
ther showed resistance to classical scrapie or exhibit-
ed clear delays in incubation times after intracerebral
or oral inoculation (20-23) and reduced contribution
of K,,, to proteinase K-resistant PrP (PrP™) formation
in Q/K,,, heterozygous goats infected with scrapie
(24). In addition, Q/K,,, heterozygous goats were
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found to harbor a relative abundance of the natural
a-cleaved PrP¢ fragment C1, which has also been
detected in classical scrapie-resistant R, sheep (25).
Furthermore, Q/K,,, heterozygous goats inoculated
with goat BSE showed neither evidence of clinical
prion disease nor PrP* accumulation in the brain or
peripheral tissues (26,27), but low infectivity was de-
tected after long postinoculation times (26). Finally,
1 goat harboring the K, -PrP¢ variant tested positive
for atypical/Nor98 scrapie, indicating that the geno-
type may still be susceptible to this scrapie strain (28).
All those results were replicated using a hemizygous
transgenic mouse line expressing the K, ,-PrP< allele,
which was found to be resistant to several classical
scrapie isolates and cattle BSE, while susceptible to
goat or sheep BSE and atypical scrapie (29,30).

We conducted our study on the transgenic ho-
mozygous mouse line, along with its control coun-
terpart harboring the wild-type glutamine allele
(Q,,,)- We intracranially inoculated the mice with
several isolates representative of different categories
of classical scrapie strains to test whether animals
still remained uninfected, as previously reported
(29), or if they mimicked the results found in homo-
zygous goats (22).

Methods

Ethics Considerations

We performed animal experiments in strictaccordance
with the recommendations included in the guidelines
of European Community Council 2010/63/UE and
made all efforts to minimize animal suffering. The
Committee on the Ethics of Animal Experiments of
the Instituto Nacional de Investigacién y Tecnologia
Agraria y Alimentaria and the General Directorate of
the Madrid Community Government approved the
study (permit nos. CEEA 2011-050, PROEX 263/15).

Prion Transmission Studies
We intracranially inoculated 20 puL of 10% (wt/vol)
brain homogenate from previously characterized
classical scrapie isolates (Table 1) into the right pa-
rietal lobe of 5-7 transgenic mice (6-7 weeks old),
which expressed either the wild-type goat PrP“ (Q,,,-
Tg501) or the K,, -PrP¢ variant (K,,,-Tg516) (29,30) in
homozygosity. PrP¢ expression levels of both mice
lines were 2- to 4-fold the physiologic levels found in
goat brain (29). We used a 25-gauge disposable hypo-
dermic needle to inoculate animals while they were
anesthetized with isoflurane.

After inoculation, we monitored mice daily and
assessed their neurologic status twice a week. We
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euthanized animals when the progression of pri-
on disease was evident, at the end of their lifespan
(around 650 days postinoculation), or at previously
established endpoints as part of a kinetic study. We
harvested mouse brains and sliced them sagittally.
We fixed half of each brain in 10% buffered forma-
lin for histopathologic analysis and homogenized the
remaining portion as 10% (wt/vol) in 5% glucose to
detect PrP by Western blot.

We calculated survival time as the mean number
days postinoculation for all mice that tested positive
for PrPrs in the brain, with the SD included. We ex-
pressed attack rate as the proportion of PrP™-positive
mice among all the inoculated mice.

Western Blotting

We homogenized mouse brain tissue in 5% glucose
solution in distilled water using grinding tubes (Bio-
Rad Laboratories, https://www.bio-rad.com) and
adjusted to 10% (wt/vol) using a TeSeE Precess 48TM
homogenizer (Bio-Rad) according to the manufac-
turer’s instructions. We determined PrP™ presence
in transgenic mouse brains by Western blot analysis
of 10-100 pL of 10% (wt/vol) brain homogenate, as
previously described (32). We incubated membranes
with the Sha31 monoclonal antibody (mAb) (33),
which recognizes the |, YEDRYYRE ; epitope of the
goat PrP sequence. We detected immunocomplexes
with horseradish peroxidase-conjugated mouse IgG
(GE HealthCare, https://www.gehealthcare.com)
after 1 hour of incubation. We visualized immunore-
activity by chemiluminescence with ECL Select (GE
HealthCare). We captured images using ChemiDoc
XRS + System (Bio-Rad) and processed them using
Image Lab 5.2.1 software (Bio-Rad).

Histologic Analysis

To analyze brain tissue, we trimmed and dehydrated
formalin-fixed brains, embedded themin paraffin wax,
and cut 4-pm slices. We dewaxed and rehydrated the
specimens by standard procedures. We established
the vacuolar lesion profile of the brains in accordance
with published standard methods and semiquantita-
tively scored vacuolation on a scale of 0-5 in different
brain areas (34,35).

For immunohistochemical (IHC) demonstration
of PrP* accumulation, tissue sections underwent an-
tigen retrieval and hydrogen peroxide quenching as
previously described (36). We incubated the sections
with 2A11 mAb (37), which recognizes the , .QVYYR-
PVDQ,,, epitope of the goat PrP sequence. Subse-
quently, we subjected the sections to antigen retrieval
and inactivation of endogenous peroxidase activity
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before incubating them with the 2A11 mAb. We used
a commercial immunoperoxidase technique (VECTA-
STAIN Elite ABC Kit; Vector Laboratories, https://
vectorlabs.com), according to the manufacturer’s
instructions. Finally, we counterstained the sections
with Mayer’s hematoxylin. We used the Sha31 mAb
(33) for paraffin-embedded tissue blotting, as previ-
ously described (38,39).

Results

Homozygous K,,,-Tg516 Mice and Resistance

to Classical Scrapie PrPsc

We intracranially inoculated homozygous K,, -Tg516
with classical scrapie isolates (Table 1) previously
characterized as representative of different prion
strains circulating in Europe (31, 40). Although all
mice expressing the wild-type goat PrP (Q,,,-Tg501)
developed recognizable prion disease, K, ,-Tg516
mice reached the end of their lifespan without show-
ing clinical signs indicative of prion disease (Table 2).
After second passage, survival times were still pro-
longed, even reaching the end of the mice’s lifespan
again (Table 2). However, in both first and second
passages, Western blot analysis showed the presence
of PrP in the brains of K ,,-Tg516 animals inoculated
with the different classical scrapie isolates (Figure 1,
panel A). For the 198/9 and S2 isolate, the percent-
age of PrP™-positive animals in the first passage was
not 100% of the inoculated animals (Tables 2, 3). At
least for the S2 isolate, 100% of the inoculated mice

were PrP-positive by the completion of the second
passage (Tables 2, 3). Comparison between the PrPr
signature of the original inoculum and the PrP™ ob-
tained molecular mass for the nonglycosylated band,
depending on the individual (Figure 1, panel A). In
addition, brain PrP™ accumulation in K,,-Tg516 mice
was remarkably reduced compared with that in Q,,,-
Tg501 mice for most of the inoculated isolates, with
the exception of F14 and F10 (Figure 1, panel A).

K,,,-Tg516 PrP-positive animals exhibited only a
few vacuolations that were difficult to distinguish from
those resulting from the physiologic aging process (Fig-
ure 2). Immunohistochemistry of K, -Tg516 mice in-
oculated with CP060146/K,,, goat and F10/K,,,-Tg516
inocula revealed only a few large and focalized PrP*
plaques and lacked any other type of deposits affecting
neurons or microglia cells (Figures 3, 4). Those PrP*
deposits were restricted to the mesencephalon, thala-
mus, and hypothalamus areas (Figures 3, 4). We de-
tected no deposits for the remaining inoculations (data
not shown). Consistent with our findings, paraffin-em-
bedded tissue blotting showed clear PrP deposition
only in K, -Tg516 mice inoculated with CP060146/K,,,
goat (Figure 5) and F10/K,-Tg516 inocula (data not
shown), with deposition to the exact same brain areas
affected by IHC (Figures 3, 4). We detected no deposits
for the remaining inoculations (data not shown).

Proteinase K Studies in K,,,-Tg516 Mice
The differential brain PrPr accumulation observed
between K,,,-Tg516 and Q,,,-Tg501 mice (Figure 1,

222

Table 1. Isolates used in study of classical scrapie prions in homozygous Kz, transgenic mice*

Goat PrP
Category Isolate Species Origin genotypet Description Supplier
| 198/9 Sheep Italy wt; S240S Classical scrapie isolate from a ISS
naturally infected sheep
1l S2 Goat Spain wt; S0P Classical scrapie isolate from a UNIZAR
naturally infected goat
CP060146 (22) Goat France wt Classical scrapie isolate from an ENVT
experimentally infected goat
CP060146/Kx2, (22) Goat France Koz Classical scrapie isolate from an ENVT
experimentally infected goat
1+ 11 UKA2 Goat United wt; Sz40P Classical scrapie isolate from a APHA
Kingdom naturally infected goat
F14 Goat France wt; 1142M, So40P Classical scrapie isolate from a INRA
naturally infected goat
[\ F10 Goat France wt; Sz40P Classical scrapie isolate from a INRA
naturally infected goat
C1 Goat Cyprus wt Classical scrapie isolate from a VS
naturally infected goat
Negative Healthy goat brain Goat France wt Brain from a noninfected goat INRA
control

*Isolates were classified as previously described (37) on the basis of prion biochemical features when transmitted in transgenic mice expressing the
bovine PrP (Bo-Tg110) and biologic features transmitted in mice expressing the ovine PrP (Q222-Tg501). APHA, Animal and Plant Health Agency, Surrey,
United Kingdom; ENVT, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France; INRA, French National Institute for Agricultural Research, Nouzilly,
France; ISS, Istituto Superiore di Sanita Animal, Rome, Italy; UNIZAR, Universidad de Zaragoza, Spain; VS, Veterinary Services, Nicosia, Cyprus; wt,

wild-type.

1The wt goat prion protein genotype is A13sR154P240/A136R154P240. S240S, S240P and 1142M refer to polymorphisms at specific codons of the PRNP gene.
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Table 2. Transmission of classical scrapie isolates to Q22,-Tg501 homozygous mice and survival of mice in study of classical scrapie

prions in homozygous Ky, transgenic mice*

1st passage

2nd passage

Mean survival

No. diseased and PrP™s-

Mean survival

No. diseased and PrP™s-

Category Isolate time £ SD, d positive/no. inoculated time + SD, d positive/no. inoculated
| 198/9 592 + 13 6/6 536 + 46 5/5
Il S2 228 + 15 6/6 233+4 6/6
CP060146 379 £ 31 5/5 ND NA
CP060146/Kz2, goat 415 + 40 6/6 ND NA
I+ 1 UKA2 245 + 36 5/5 252+8 6/6
F14 526 + 46 4/4 241+ 22 4/4
\% F10 449 £ 19 5/5 372+ 14 6/6
F10/Ka22-Tg516 495 + 26 3/3 ND NA
C1 483 + 15 4/4 301+10 4/4
Negative control Healthy goat brain >650 0/6t >650 0/6t

*NA, not available; ND, not done; PrP™s, proteinase K—resistant PrP.

tAnimals were found dead or were euthanized at the end of their lifespan without showing clinical signs of classical scrapie.

panel A) can be attributed to 2 alternative hypotheses.
There could be a genuine reduction in PrP™ accumu-
lation for these classical scrapie isolates in K, -Tg516
mice. Alternatively, the produced PrP™ might be
more susceptible to proteinase K treatment, resulting
in a weaker Western-blotting signal. To distinguish
between those 2 possibilities, we performed protein-
ase K resistance analyses using different enzyme con-
centrations in both Q,,-Tg501 and K,,,-Tg516 mice
inoculated with F10 (which exhibited similar PrP
accumulation between K, -Tgbl6 and Q,,-Tg501
mice) and CP060146 (which showed reduced PrPrs
accumulation in K, -Tg516 mice compared with Q,, -
Tg501 mice) isolates. In all cases, proteinase K consis-
tently acted at a concentration of 50 pg/mL (which
falls within the normal proteinase K concentration
range for routine Western blotting); we observed the

same pattern and signal intensity at a concentration of
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Figure 1. Proteinase K-resistant PrP (PrP™®) accumulation in brains of K,,,-Tg516 and Q

500 pg/mL (Figure 6). However, protease action did
not achieve proper PrP™ resolution at concentrations
of 1 upg/mL and 0.1 pg/mL (Figure 6). Those results
suggest that both isolates, when replicating in either
Q,,,-PrP¢ or K,,-PrP¢ contexts, retain the same pro-
teinase K sensitivity. Thus, the differences in Western
blotting signals detected previously (Figure 1, panel
A) truly account for reduced brain PrP™ accumula-
tion in K,,-Tg516 mice.

Transmission in K,,,-Tg516 Mice and Host-Induced
Reversible Strain Adaptations

After the second passage in K
tation in a K,,, homozygous goat, F10 and CP060146
isolates were transmitted back into Q,,,-Tg501 mice
(Table 3). The purpose of those inoculations was to
determine whether replication in the K,,, context re-
sulted in host-induced reversible adaptations of the

L0~ 18516 mice or adap-

Cc1 198/9 CpPos
0146/ FlO/
QZZZ- KZZZ- QZIZ- KIZZ- CPOG K222 222
Tg501|Te516 |Tg501(Te516 0146 goat F10 Tg516
- -
(21 kDa —21 kDa
Qy,-T8501
(—21 kDa

Dilution factor 0.5 1 0.5 1

1>~ 19501 homozygous mice in study of

propagation of classical scrapie prions. A) Comparison of the biochemical profile of brain PrPs from classical scrapie isolates in

-Tg516 mice with that in Q

222 222

-Tg501 mice using Sha31 monoclonal antibody. Exposure time and dilution factor are specified.

B) Comparison of the biochemical profile of brain PrP™s of CP060146 and F10 isolates of classical scrapie, before (left) and after (right)

adaptation to the K, -PrP° context, in Q
on the right side of each band.
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Table 3. Transmission of classical scrapie isolates to Ky2,-Tg516 homozygous mice in study of classical scrapie prions in homozygous

Kz2, transgenic mice*

1st passage

2nd passage

Mean survival

No. diseased and PrPs-

Mean survival  No. diseased and PrPrs-

Category Isolate time £+ SD, d positive/no. inoculated time + SD, d positive/no. inoculated
| 198/9 >650 1/61 ND NA
Il S2 >650 3/4t >650 77t
CP060146 >650 5/5t >650 5/5t
CP060146/K2,, goat >650 4/4t >650 6/6t
I+ 1l UKA2 >650 4/4t >650 5/5t
F14 >650 4/41 >650 5/5t
v F10 >650 6/6t >650 5/5t
F10/K222-Tg516 >650 5/5t >650 6/61
C1 >650 77t ND NA
Negative control Healthy goat brain >650 0/6t >650 0/61

*NA, not available; ND, not done; PrP™s, proteinase K—resistant PrP.

tAnimals were found dead or euthanized at the end of their lifespan without showing clinical signs of classical scrapie.

strain, including changes in prion strain characteris-
tics such as biologic properties (mean survival time
and proportion of PrP™-positive animals) and bio-
chemical properties (brain PrP™ accumulation and
PrPr glycosylation pattern). In both cases, the surviv-
al times were comparable to those observed for the
primary transmission of the same inocula in Q222-
Tg501 mice. Specifically, survival time was 449 + 19
days (5/5) for the original F10 inoculum from a wild-
type goat versus 495 + 26 days (3/3) after adaptation
in K,,-Tg516 mice and 379 +31 days (5/5) for the
original CP060146 inoculum from a wild-type goat
versus 415 + 40 days (6/6) after adaptation in a K,
goat (Table 2). The PrP™ signatures obtained were
identical to those observed after the primary trans-
mission of these isolates in Q_,-Tg501 mice (Figure
1, panel B).

222

,and Q,,, PrPres

Differences between K,, 92

Formation Kinetics
Once we confirmed the lower brain PrP™ accumula-
tion in K ,-Tg516 mice compared with the Q,,,-Tg501

222

5_

4

Vacuolation score

G4 G5 G6 G7

Brain areas
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control counterparts, we conducted kinetic studies
on PrP formation in both transgenic lines using the
goat isolates F10 and CP060146, which had been pre-
viously adapted for propagation in a K,,-PrP¢ con-
text. Of interest, both K, and Q,,,-PrP™ appeared at
equal levels by 300 days postinoculation (Figure 7).
However, Q,,-PrP™ accumulation continued to in-
crease steadily until the time of death, whereas K-
PrP remained at low levels throughout the lifespan

of the mice (Figure 7).

Discussion

Previous studies conducted in heterozygous Q/K,,,
and homozygous K,,, goats (20-23), as well as in
hemizygous K ,,-Tg516 mice (29), have highlighted
the Q,,,K polymorphism as one of the most promising
candidates for reducing prion disease transmission in
goats. Although the K ,, allele has been consistently
reported in certain countries in Europe, such as Italy
(15,16), France (10), and Greece (17,42), in other coun-
tries, such as the United Kingdom, the polymorphism
has been reported as infrequent (43). However, once

Figure 2. Histologic analysis

=@ 198/9 of brain tissue from K,,,-Tg516
- 234 homozygous mice inoculated
—.—F10 with clasglcal scrapu.a in study'of
CPO6146 propagation of classical scrapie
== (1 prions. Comparative analysis
=—@= UKA2 shows the vacuolar lesion profile

=@ Notinoculated  in homozygous K,,,-Tg516

mice inoculated with different
scrapie isolates compared with
noninoculated mice. G, gray
matter; W, white matter.

[1=S\SESEPEN V]

G8 G9

w1l W2 W3
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Figure 3. Immunohistochemistry results of brain tissue in study of propagation of classical s
-Tg516 mice inoculated with F10 goat scrapie isolate at second passage. Results are visualized using the Sha31

Classical Scrapie Prions in K, Transgenic Mice

v herdiony z B a0
crapie prions. Images are of tissue

monoclonal antibody. A) Thalamus specimen. B) Hippocampus specimen. C) Midbrain specimen. Original magnification x40.

the supposed protective effect against prion diseases
is confirmed, the frequency of the K,,, allele could
increase across different countries through selective
breeding programs.

Transgenic mice expressing K,, -PrP¢ in homo-
zygosity emerge as the optimal tool for definitively
testing the susceptibility or resistance that allele con-
fers to prions. Our model enables the testing of mul-
tiple prion strains more rapidly and cost-effectively
than the model using goats. In our study, classical
scrapie isolates representing different classical scra-
pie strains circulating within Europe (40-42) were
selected and used to challenge homozygous K,,-
Tg516 mice.

Once the expression level is increased, homozy-

gous K,,-Tg516 mice become susceptible to all test-

ed classical scrapie isolates (Table 3). The K, -PrP¢
variant is capable of sustaining PrP* replication
even in the absence of the Qm-PrPC variant, which

Emerging Infectious Diseases * www.cdc.gov/eid « Vol. 31, No. 12, December 2025

was identified as responsible for most accumulated
brain PrP™ in Q,, K heterozygous goats (24). Fur-
thermore, K, -Tg516 mice exhibit consistently lower
brain PrP™ accumulation than Q,,,-Tg501 mice (Fig-
ure 1). The explanation that K, -PrP™ is more sensi-
tive to proteinase K treatment and so reduced detec-
tion of brain PrP™ accumulation has been ruled out
(Figure 6). Therefore, we recommend careful analy-
sis of the general features and behavior of classical
scrapie K,,,-PrPr.

K,,,-Tg516 mice inoculated with classical scrapie
did not develop typical prion pathology and showed
no clinical signs of prion disease, which suggests that
classical scrapie K,,,-PrP™ might not be toxic or might
not induce the signaling pathways leading to neuro-
nal death. Those conclusions are not only caused by
insufficient time for the onset of neuronal death path-
ways within the animal lifespan; second passages in
K,,,-Tg516 yielded identical results to the first ones.

Figure 4. Immunohistochemistry
results of brain tissues in study
of propagation of classical
scrapie prions. Images are of
tissue specimens from K-
Tg516 mice inoculated with
CP060146/K,,, goat isolate.

" Results are visualized using the
Sha31 monoclonal antibody.

A) Hippocampus specimen
tested at first passage. B)
Midbrain specimen tested at
first passage. C) Hippocampus
specimen tested at second
passage. D) Midbrain specimen
tested at second passage.
Original magnification x40.
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Figure 5. Paraffin-embedded tissue blotting results of brain tissues in study of propagation of classical scrapie prions. Images are of

brain specimens from 3 distinct K,,,,

-Tg516 mice inoculated with CP060146/K,,, goat isolate. Results are visualized with the Sha31

monoclonal antibody. A) Cerebellum specimens. B) Thalamus specimens. C) Hippocampus specimens. D) Cerebral cortex specimens.
Proteinase K—resistant prion protein is visible as dark staining in similar brain regions in the 3 mice. Original magnification x20.

However, we noted that the lower brain PrP™ accu-
mulation in K,,-Tg516 animals could lead to a mis-
interpretation of those results. The reduced accumu-
lation might reflect insufficient replication within the
animal’s lifespan, possibly caused by consistently low
replication rates, as suggested by our kinetic experi-
ments, or by more efficient clearance of PrP™ aggre-
gates. Those factors could explain why transmission
does not necessarily result in prion disease, highlight-
ing a dissociation between infectivity and toxicity of
classical scrapie K, -PrPr.

All circulating prion strains must be con-
sidered in the design of breeding selection pro-
grams. Programs aimed at controlling and reduc-
ing classical scrapie in sheep, implemented by
EU member states, have identified sheep herds
that are more susceptible to atypical/Nor98

2260

scrapie (44). In our study, K,,-Tg516 mice died
without exhibiting overt clinical signs after
inoculation with different classical scrapie isolates;
we found that PrP™ accumulated in their brains
(Table 1). Of note, K,,-derived PrP™ retained in-
fectivity when transmitted back to Q,,-Tg501 mice,
recovering the strain characteristics observed in the
original inocula. Our findings suggest that, under
the experimental conditions we established, the
K,,, allele does not confer full resistance to classical
scrapie agents.

Of interest, the reversibility of strain features ob-
served upon reinoculation of K, ,-derived PrP™ into
Q,,,-Tg501 mice is reminiscent of the phenomenon of
nonadaptive prion amplification as described previ-
ously (45). In that model, PrP* can replicate transiently

in a nonpermissive host without inducing a permanent

Emerging Infectious Diseases « www.cdc.gov/eid « Vol. 31, No. 12, December 2025
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A F10/Qm-Tg501 B CP060146/Q222-Tg501
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Figure 6. Proteinase K digestion studies conducted as part of study of propagation of classical scrapie prions. Km-T9516 and
Q,,,-Tg501 homozygous mice were inoculated with classical scrapie. A) Proteinase K—resistant prion protein (PrP™*) sensitivity in

the brains of Q,,,-Tg501 and K,,,-Tg516 mice initially inoculated with F10 scrapie isolate and subsequently reinoculated into both

the original model and its counterpart. B) PrP' sensitivity in the brains of Q,,,-Tg501 and K,,.-Tg516 mice initially inoculated with
CP060146 scrapie isolate and subsequently reinoculated into both the original model and its counterpart. In both cases, proteinase K
concentrations of 500, 50, 1 and 0.1 pug/mL were tested. Western blot visualizations were done using the Sha31 monoclonal antibody.

Molecular weight markers are indicated on the right side of each band.

adaptation of the strain. Our data are consistent with It is important to note that the use of transgenic
that concept; the classical scrapie agents replicated in models with PrP overexpression may enhance prion
K,,,-Tg516 mice but reverted to their original biochemi- replication efficiency, potentially uncovering low-
cal and biologic properties upon passage back into a level or subclinical conversion events that might not
permissive Q,,, context. That interpretation reinforces occur under physiologic PrP expression in goats. In
the view that the K ,, allele may enable subclinical or addition, all animals were inoculated intracerebrally;
low-efficiency replication of classical scrapie agents that route does not mimic natural exposure and by-
without supporting stable strain selection or adaptation.  passes key peripheral barriers such as the gut and

Figure 7. Kinetic studies of Q,,,-Tg501 Ky2,-T8516
proteinase K-resistant prion DaysPost 100 100 200 200 300 300 350 400 400 450 450 450 100 100 200 200 300 590 610
protein (PrPres) detection in

K,,,-Tg516 and Q,,,-Tg501
homozygous mice inoculated
with classical scrapie in
study of propagation of
classical scrapie prions.
Brain PrPres from mice
euthanized at various time
points postinoculation were B Qg,-Tg501 Ky,-T8516
analyzed by Western blotting Dayspost 144700 200 200 300 300 400 400 460 530 200 200 300 300 400 400 500 500
and visualized using the Sha31
monoclonal antibody. A) Q,,,-
Tg501 and K,,,-Tg516 mice
inoculated with the CP060146
classical scrapie isolate
adapted to the K, cellular
prion protein (PrP¢) context
(CP060146/K,,,-goat). B) Q,,,-
Tg501 and K,,-Tg516 mice inoculated with the F10 classical scrapie isolate adapted to the K,,,-PrP¢ context (F10/K
Molecular weight markers are indicated on the right side of each band.

v
‘o‘
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inoculation
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associated lymphoid tissues, which play a critical role
in determining prion susceptibility and pathogenesis
under field conditions. Therefore, although our re-
sults highlight the potential for silent propagation of
classical scrapie strains in the context of the K,,, vari-
ant, extrapolation to the natural host should be made
with caution.

Interest has grown for in-depth characteriza-
tion of the strains of Q/K,,, heterozygous goats af-
fected with scrapie, which are abundant in various
regions of Greece. The interest lies in determining
whether prions propagated under the K,,, allele
can act as potential silent carriers of the disease,
as shown in previous studies. Furthermore, un-
derstanding whether the presence of the K, allele
induces a change in the biologic properties of the
strains and their potential transmission to other
animal species is crucial.

Overall, our results underscore the need for fur-
ther in vivo studies using physiologically relevant
models or natural hosts to fully evaluate the protec-
tive efficacy of the K ,, allele. Until such evidence
becomes available, the inclusion of the K,,, polymor-
phism in breeding selection programs should be criti-
cally considered, especially in regions where classical
scrapie strains with known zoonotic potential remain
present. Furthermore, experiments conducted in clas-
sical BSE-inoculated Q/K,,, heterozygous goats have
shown at least low infectivity in goat tissues after
long postinoculation periods (26), whereas hetero-
zygous K, -Tg516 mice were already fully suscep-
tible to goat BSE (29). In addition, at least 1 Q/K,,,
heterozygous goat tested positive for atypical /Nor98
scrapie (28), and homozygous K, ,-Tg516 mice were
found to be completely susceptible to atypical /Nor98
scrapie (30). Taken together, those data suggest that
the protective effect of the Q,, K polymorphism may
be limited, and its use in breeding programs should
be carefully evaluated.
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