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Selection for the A, R,,,R,,, PRNP allele is known to
curb classical scrapie in sheep, and we expected it to
minimize the risk for classical bovine spongiform en-
cephalopathy (c-BSE) propagation. We orally chal-
lenged newborn ARR/ARR and ARQ/ARQ lambs with
ovine-passaged c-BSE. Contrary to our expectations,
prion disease developed in all ARR/ARR lambs after
markedly longer incubation times (50 months) than
ARQ/ARQ controls (20 months). Tissue distribution of
the abnormal isoform of prion protein (PrP) in clinically
affected ARR/ARR sheep largely mirrored tissue distri-
bution seen in ARQ/ARQ animals. Bioassays in bovine-
and human-PrP transgenic mice showed that passage
through ARR/ARR sheep did not increase the agent’s
zoonotic potential. Transmission efficiency in human
normal cellular isoform PrP-expressing mice remained
similar to cattle c-BSE and lower than ARQ-passaged c-
BSE. Our data reveal the limitations of breeding exclu-
sively for ARR when the objective is to mitigate c-BSE
risk and underscore the need to maintain specific-risk-
material removal and surveillance programs.

Prion diseases, or transmissible spongiform en-
cephalopathies (TSE), are fatal neurodegen-
erative disorders that occur naturally in various
mammalian species, including sheep (scrapie),
cervids (chronic wasting disease), and humans
(Creutzfeldt-Jakob disease [C]JD]). A key event in
the pathogenesis of TSEs is the conversion of the
normal cellular prion protein (PrP<), encoded by the
PRNP gene, into an abnormal disease-associated
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isoform (PrP%) within the tissues of those affected.
PrP¢ is completely degraded after controlled diges-
tion with proteinase K (PK) under nondenaturing
conditions, whereas PrP* is N terminally truncated
under such conditions, leaving a PK-resistant core
termed PrPr (1).

In 1985, classical bovine spongiform encepha-
lopathy (c-BSE), a new prion disease affecting cat-
tle, was identified in the United Kingdom (2). The
number of c-BSE cases in cattle rapidly increased
because of the recycling of infected carcasses into
the feed chain in the form of meat and bone meal
(MBM) (3). Over the next 2 decades, c-BSE dissemi-
nated to >28 countries, mostly in Europe but also in
the United States, Canada, and Japan, through the
export of infected live animals and contaminated
MBM and livestock feed.

Experimental oral or parenteral exposure to
c-BSE demonstrated its transmissibility to sheep
(4). Because MBM was also distributed to small
ruminants, the potential spread of c-BSE in the
sheep population became a major concern for
health authorities. The emergence of variant CJD
(vCJD) in humans, because of dietary exposure to
the c-BSE agent, further reinforced those concerns,
making the prevention of any potential spread
of ¢-BSE to small ruminants a top priority in
Europe (5,6).

In sheep, susceptibility to prion diseases is
determined principally by polymorphisms in the
PRNP gene. The major polymorphic sites influenc-
ing susceptibility to classical scrapie are located at
codons 136 (A or V), 154 (R or H), and 171 (R, Q, or
H) (7,8), which also strongly influence susceptibil-
ity to BSE. Sheep with the AHQ/AHQ and ARQ/
ARQ PrP genotypes are highly susceptible to c-BSE
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infection when exposed through intracerebral or
oral routes (4).

In contrast, intracerebral inoculation of ARR/
ARR sheep with cattle c-BSE resulted in an inefficient
transmission of the disease (incomplete attack rate),
and oral inoculation failed to transmit disease or
cause detectable accumulation of prion infectivity or
abnormal PrP in the peripheral tissues or central ner-
vous system (9). Those findings led to the conclusion
that the ARR/ ARR PrP genotype confers strong, if not
complete, resistance to c-BSE infection in sheep. Selec-
tion for the ARR allele was originally conceived as a
tool to control classical scrapie in farmed sheep popu-
lation, but it also appeared to protect against possible
¢-BSE transmission (10). In this study, we experimen-
tally exposed ARQ/ARQ and ARR/ARR newborn
lambs orally to c-BSE passaged in ARQ/ARQ sheep
to determine transmission efficiency of the disease.

Materials and Methods

Ethics Statement

All animal experiments were performed in compli-
ance with institutional and French national guide-
lines (directive no.2010/63/EU). Sheep BSE ex-
perimental transmission was approved by the local
National Research Institute for Agriculture, Food
and Environment committees, and mouse experi-
ments (national registration no. 01734.01) were ap-
proved by the Ecole Nationale Veterinaire Toulouse
ethics committees.

Lamb Inoculation

We sourced sheep from New Zealand that were
considered free of classical scrapie (11). ARQ/ARQ
and ARR/ARR ewes were produced under TSE-
free conditions in the United Kingdom. They were
mated with ARQ/ARQ and ARR/ARR rams and
exported to France. Lambs were born and raised
within an A3 biosecure unit. We sequenced the
PRNP gene of each sheep and lamb (12). We pre-
pared the c-BSE inoculum by using the brainstem
of 3 ARQ/ARQ sheep (at the clinical stage of the
disease) that were inoculated through the intrace-
rebral route with cattle BSE.

Lambs received 2 doses of inoculum (each equiv-
alent to 2.5 g of brain tissue) through natural suck-
ling. The first inoculation was received within the
first 24 hours of life, and the second dose was deliv-
ered 14 days after birth. Lambs and ewes of both gen-
otype groups were housed in a single pen. A total of
6 ARQ/ARQ and 8 ARR/ARR lambs were included
in the experiment.
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Protein Misfolding Cyclic Amplification and

Seeding Activity Titration

We used brain tissue from transgenic mice express-
ing the ovine ARQ PrP variant (tgShXI) (13) to pre-
pare the protein misfolding cyclic amplification
(PMCA) substrates, as previously described (14).
We performed PMCA amplification as previously
described (14). We included 1 to 2 unseeded controls
for every 8 seeded reactions in each run. Each PMCA
run included a reference ovine BSE sample (1/10 di-
lution series of a 10% brain homogenate) as a control
for amplification efficiency. We analyzed the PMCA
reaction products for the presence of PK-resistant
PrP by using Western blot.

For each dilution and each sample, we tested
>4 replicates in 2 independent runs. For each sam-
ple, we determined the last dilution showing >50%
positive replicates (presence of Western blot-de-
tectable PrPr).

We established the seeding activity titer in a ref-
erence 10% (wt/vol) frontal cortex homogenate from
a clinical c-BSE ARQ/ARQ sheep by endpoint titra-
tion (intracerebral route) in bovine PrP expressing
(tgBov) mice (15). We estimated the infectious titer
(median lethal dose [LD,]/g IC in tgBov) by using
the Spearman-Kérber method (16).

Western Blot Detection of Abnormal PrP

We detected PrP™ by using Western blot. We con-
ducted immunodetection by using 2 different PrP-
specific monoclonal antibodies: Sha31 (1 pg/mL),
which recognizes the amino acid sequences YE-
DRYYRE (amino acids 145-152) (17), and 12B2 (1 ng/
mL) (18), whose epitope corresponds to amino acid
sequence WGQGG (amino acids 89-93).

Mouse Bioassays

We performed mouse inoculations while the mice
were under anesthesia. Mice displaying clinical man-
ifestations were anesthetized with isoflurane before
being euthanized by using CO, inhalation. We con-
ducted bioassays to characterize the c-BSE strain phe-
notype by using tgBov mice (15).

We characterized c¢-BSE isolates” abilities to
propagate in hosts expressing human PrP by using
mice expressing the methionine 129 human PrP vari-
ant (tg340-tgMet), the valine 129 human PrP variant
(tg361-tgVal), and their crossbred (tgMet/Val), as
previously described (19). We observed the inocu-
lated mice daily and assessed their neurologic status
weekly. When clinically progressive TSE symptoms
were evident, or at the end of the mice lifespan, we
euthanized the mice. We expressed survival time as
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the mean number of days postinoculation (dpi) of
all the mice scored positive for PrP™, with a corre-
sponding SD. In cages where no clinical signs were
observed, mice were euthanized at the end of their
natural lifespan (600-800 days). In those cases, incu-
bation periods reported in the table as >600 dpi corre-
sponded to the survival time observed in >3/6 mice.

Lesion Profiling

We established vacuolar brain lesion profiles accord-
ing to methods previously described (20). We created
each lesion profile on the basis of data obtained from
5-6 animals.

Infectious Titer Estimates

We intracerebrally inoculated (20 pL) a series of 1/10
dilutions of a reference 10% (wt/vol) brain stem
homogenate from an ovine-BSE (ARQ/ARQ) isolate
into 6 tgBov mice. We estimated the prion infectious
titer by using the Spearman-Kérber method (16).

Results

BSE Transmission

We exposed 24-hour-old ARQ/ARQ and ARR/ARR
lambs to a dose of 2.5 g of infected brain (derived from
cattle c-BSE intracerebrally inoculated into ARQ/

Oral Bovine Spongiform Encephalopathy Transmission

ARQ sheep) through natural suckling. We adminis-
tered a second dose of inoculum by the same route at
14 days of age. In each inoculated animal, we collect-
ed blood samples at different time points during the
incubation phase. We euthanized animals from each
genotype at 4 months postinoculation (mpi) (n = 2)
and 10 mpi (n = 2 ARQ/ARQ sheep and n =3 ARR/
ARR sheep).

We observed clinical signs compatible with TSE
disease in the remaining c-BSE-exposed ARQ/ARQ
animals after 19 mpi and ARR/ARR animals after
48 mpi. We euthanized those animals upon showing
locomotor difficulties (ARQ/ARQ at 20 mpi, ARR/
ARR at 50 mpi). At necropsy, we collected brain, spi-
nal cord, and a panel of lymphoid tissues.

Irrespective of the genotype, Western blotting
confirmed the presence of PrPin the posterior brain-
stem of each animal. The PrP™ Western blot banding
profile displayed the typical features of the BSE
agent in sheep: a 19-kDa nonglycosylated band, a
dominant di-glycosylated PrP™ band, and an ab-
sence of immunoreactivity to the 12B2 monoclonal
antibody (Figure 1).

Ovine c-BSE PMCA Detection
PMCA is an in vitro methodology that mimics
prion replication in an accelerated form, enabling

Figure 1. Detection of
OV BSE proteinase K—resistant core PrP
ARQ/ARQ ARR/ARR in study of oral transmission
of classical bovine spongiform
Scrapie OvBSE 1 2 3 4 5 encephalopathy in ARR/ARR

control control
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sheep. Western blot was used
for the detection of anti-PrP
monoclonal antibodies Sha31
(epitope 145-YEDRYYRE-152)
or 12B2 (epitope
89-WGQGG-93). BSE, bovine
spongiform encephalopathy; ov,
ovine; PrP, prion protein.

Sha31l
anti-PrP

12B2
anti-PrP

2245



RESEARCH

amplification of minute amounts of PrP* and prion
infectivity (21). To determine the relative sensitivi-
ty of our optimized ovine c-BSE agent amplification
PMCA protocol, we endpoint titrated a reference
sample (10% cerebral cortex homogenate from an
ARQ/ARQ BSE-affected sheep) by using a bioassay
in tgBov mice via an intracerebral inoculation route
(Appendix Table, http://wwwnc.cdc.gov/EID/
article/31/12/25-0501-Appl.pdf) and by PMCA by
using substrates from ovine ARQ PrP-expressing
mice (tgARQ/tgShXI).

The infectious prion titer of the sheep-passaged
c-BSE isolate was ~107? LD, /mL IC in tgBov mice.
Amplification of a 10-fold serial dilution of the same
sample (12 individual replicates per dilution point)
demonstrated that 2 PMCA rounds (24 h/round)

were sufficient to reach the maximal sensitivity level
of the assay. Additional PMCA rounds neither im-
proved the analytical sensitivity of the assay nor in-
creased the number of positive replicates (Appendix
Figure). The estimated prion seeding titer (SA,)) was
=108 SA, /mL by using tgARQ as substrate. Con-
sidering that mice were inoculated by using a 4-fold
higher amount of material compared with the mate-
rial used to seed PMCA reactions, this methodology
can be considered ~1,500-fold more sensitive than the
bioassay in tgBov mice.

c-BSE Agent Levels in Solid Tissues and Blood

We used the optimized PMCA protocol to character-
ize the levels of prion seeding activity in the central
nervous system (CNS), lymphoid tissues, and blood
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Figure 2. Protein misfolding cyclic amplification (PMCA) seeding activity levels in ARR/ARR and ARQ/ARQ sheep tissues after classical
bovine spongiform encephalopathy challenge in study of oral transmission of classical bovine spongiform encephalopathy in ARR/ARR
sheep. A) ARQ/ARQ sheep. B) ARR/ARR sheep. Protein misfolding cyclic amplification products were analyzed by using Western blot
for proteinase K—resistant core prion protein detection. Each symbol represents a different animal and the associated tissue tested.
Cerv, cervical; duo, duodenum; jeju, jejunum; LN, lymph node; lumb, lumbar; med, medial; mesen, mesenteric; Neg, negative; pp,
Peyer’s patches; prescap, prescapular; thor, thorasic.
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Figure 3. Detection of proteinase K-resistant core prion protein after 2 PMCA rounds of ARR/ARR and ARQ/ARQ sheep tissues after
classical BSE challenge in study of oral transmission of BSE in ARR/ARR sheep. A) ARQ/ARQ sheep samples. B) ARR/ARR sheep
samples. Western blot results from protein misfolding cyclic amplification products showing a detectable proteinase K—resistant core
prion protein in >2 of 4 replicates for each tissue and animal. BSE, bovine spongiform encephalopathy; LN, lymph node; mesen,

mesenteric; mpi, months postinoculation; prescap, prescapular.

collected from the c-BSE orally challenged lambs. We
stored leukocytes isolated from blood samples col-
lected from all the c-BSE-challenged animals during
their incubation period (5 mL original blood equiv-
alent) as dry pellets. We prepared 10-fold dilution
series from the different samples collected from the
ARR/ARR and ARQ/ARQ sheep, either 10% tis-
sue homogenates or leukocyte pellets homogenized
in PMCA buffer, and subjected them to 2 rounds of
PMCA (Figure 2). We tested the presence of PrP™ in
the amplification products from each round by West-
ern blot (Figures 3 and 4).

ARQ/ARQ Lambs

We detected seeding activity in all the tested lym-
phoid organs as early as 4 mpi. In older lambs (10
mpi and clinically affected animals), prion seeding
activity in the lymphoid tissues was generally 1-4
log,, higher than those observed in 4-month-old ani-
mals. However, in Peyer’s patches, spleen, and ton-
sil, the levels of seeding activity detected at 10 mpi
were higher than those measured at the clinical stage
of the disease. In the CNS, seeding activity was first
observed in lambs euthanized at 10 mpi. The levels
of seeding activity in the CNS increased by 1-2 log,

Emerging Infectious Diseases * www.cdc.gov/eid ¢ Vol. 31, No. 12, December 2025

in clinically affected animals (20 mpi). Of note, at the
clinical stage of the disease, seeding activity in spleen,
tonsil, and lymph nodes was equivalent to activity
levels detected in the spinal cord and ~2 log,, lower
than observed in the posterior brainstem. In the blood
of some animals, c-BSE seeding activity was detected
as early as 2 months of age, and all animals tested at
4 months or older showed detectable levels of prion
seeding activity in leukocyte samples.

ARR/ARR Lambs

We observed low but consistent levels of seeding ac-
tivity in the tonsil or cecal Peyer’s patches of the 2 eu-
thanized 4 mpi animals. At 10 mpi, we detected seed-
ing activity in most of the tested lymphoid organs in
2 of 3 lambs. At those stages, we detected no seed-
ing activity in the tested CNS samples. At the clini-
cal stage of the disease (50 mpi), we detected prion
seeding activity in the posterior brainstem and spinal
cord segments of the 3 tested sheep. We detected no
seeding activity in the leukocytes collected at 1-10
months of age. We found positive seeding activity in
3 of 5 animals tested at 10 months of age. In animals
>20 months of age, BSE seeding activity was detected
in all the tested leukocyte samples.
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Figure 4. Protein misfolding
cyclic amplification seeding
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Of note, seeding activity in the CNS of the ARR/
ARR sheep was similar to those observed in affected
ARQ/ARQ animals (20 mpi). At that point, we also
detected seeding activity in most of the lymphoid
organs. However, the levels of seeding activity were
generally 1-3 log,, lower than those observed in the
same tissues of the ARQ/ ARQ affected animals.

In both ARR/ARR (10 mpi and older) and ARQ/
ARQ (3 mpi and older) animals, the level of seeding
activity associated with leukocyte displayed a rapid
increase and then a plateau that maintained during
the clinical phase. At the plateau, the levels of seed-
ing activity in the ARR/ARR sheep leukocyte were

generally lower (limit of dilution 107 to 107%) than in
the ARQ/ARQ sheep (limit of dilution 107 to 107°).

Strain Properties and Zoonotic Potential

To characterize the potential effect of passage in ARR/
ARR sheep on the strain properties of the original BSE
prions, we transmitted 1 ARR/ARR and 1 ARQ/ARQ
isolate (both from clinical-stage sheep, prepared as
10% posterior brainstem homogenates) to tgBov mice
and performed 2 iterative passages (Table 1). On first
passage, we observed some differences in survival
time between the mice. However, after second pas-
sages, the survival times associated with the 2 ovine

Table 1. Results of intracerebral inoculation of transgenic mice expressing bovine prion protein with a panel of bovine and ovine prion
isolates in a study of oral transmission of classical bovine spongiform encephalopathy in ARR/ARR sheep*

Passage 1 Passage 2
Inoculum No. positive/no. tested Survival, dpi £SD No. positive/no. tested Survival, dpi +SD
Cattle BSE 6/6 295 +12 6/6 265 +35
ARQ Ov-BSE 6/6 229 +11 6/6 237 5
ARR Ov-BSE 6/6 375 178 6/6 238 19
Negative brain 0/6 >750 0/6 >750
Phosphate buffered saline control 0/6 >750 0/6 >750

*BSE, bovine spongiform encephalopathy; dpi, days postinoculation; ov, ovine.
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Figure 5. Transmission of ARR/ARR and ARQ/ARQ ovine ¢-BSE to tgBov mice in study of oral transmission of c-BSE in ARR/ARR
sheep. A) Vacuolar lesion profiles in tgBov mice inoculated with ARQ/ARQ and ARR/ARR c-BSE isolates. B) Profiles from tgBov

mice inoculated with cattle-derived c-BSE were used as controls. Lesion scoring evaluated 9 grey matter regions and 3 white matter
regions. White triangles represent mice inoculated with ARQ/ARQ c-BSE isolates. Black triangles represent mice inoculated with ARR/
ARR c-BSE isolates. Black circles represent mice inoculated with cattle-derived c-BSE isolates. c-BSE, classical bovine spongiform
encephalopathy; G, grey matter region; tgBov, bovine prion protein—expressing mice; W, white matter region.

BSE isolates converged, and the vacuolar lesion pro-
files observed in the brains of all inoculated mice
were identical to those observed in tgBov mice in-
oculated with cattle c-BSE isolates (Figure 5). Those
results support the conclusion that passage of the
c-BSE agent in ARR/ARR sheep did not alter its
strain phenotype.

We examined the capacity of c-BSE agents origi-
nating directly from cattle or after passage in ARQ/
ARQ- and ARR/ARR-genotype sheep to replicate in
humanized mice that overexpress the 3 main human
PrP codon-129 variants: tgMet (Table 2), tgVal (Table
3), and tgMet/ Val (Table 4). We used the same inocu-
lum used for the tgBov experiment. We detected no
transmission events (clinical disease or PrP™ deposi-
tion) in tgVal or tgMet/Val mice after 2 serial intra-
cerebral passages with any of the 3 ¢-BSE sources. In
tgMet mice, first-passage transmission was most ef-
ficient with the ARQ/ARQ-derived inoculum (4/6
mice, mean survival 560 83 dpi), whereas only sin-
gle, very late cases were seen with the cattle (1/6, sur-
vival >750 dpi) and ARR/ARR (1/7, survival 737 dpi)

isolates. After a second passage the overall attack rate
increased for all groups, but subtle kinetic differences
remained: ARQ/ARQ BSE produced 100% transmis-
sion (6/6, mean survival 569 + 55 dpi), cattle-derived
BSE 50% transmission (3/6, mean survival 572 + 64
dpi), and ARR/ARR BSE 83% transmission (5/6,
mean survival 616 + 83 dpi). Nevertheless, the PrP
glycoform profile of all positive tgMet brains was in-
distinguishable across isolates (Figure 6), indicating
that strain properties converged after adaptation.

Our observations demonstrate that passage
through ARR/ARR sheep does not abolish the zoo-
notic capacity of c-BSE but appears to impose a mod-
est additional barrier. That barrier is manifested by
a lower first-passage attack rate and a slight prolon-
gation of incubation time relative to the ARQ/ARQ
derived agent.

Discussion

The efficient transmissions observed in orally chal-
lenged ARR/ARR animals demonstrate that this gen-
otype does not provide substantial resistance against

Table 2. Intracerebral inoculation of tgMet humanized mice with a panel of human, bovine, and ovine prion isolates in a study of oral
transmission of classical bovine spongiform encephalopathy in ARR/ARR sheep*

Passage 1 Passage 2
Isolate No. positive/no. tested  Survival, dpi +SD No. positive/no. tested Survival, dpi +SD
Cattle BSE 1/6t >750 3/6 572 +64
ARQ Ov-BSE 4/6 560 +83 6/6 569 +55
ARR Ov-BSE 17 737 5/6 616 +83
Negative brain 0/12 >750 0/12 >750
Phosphate buffered saline control 0/18 >800 0/12 >650

*BSE, bovine spongiform encephalopathy; dpi, days postinoculation; ov, ovine.

tTAbnormal prion protein isoform positive brain in a found dead animal without clinical manifestations of transmissible spongiform encephalopathies.
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Table 3. Intracerebral inoculation of tgVal humanized mice with a panel of human, bovine, and ovine prion isolates in a study of oral
transmission of classical bovine spongiform encephalopathy in ARR/ARR sheep*

Passage 1 Passage 2
Isolate No. positive/no. tested Survival, dpi £#SD No. positive/no. tested Survival, dpi +SD
Cattle BSE 0/6 >750 0/6 >750
ARQ Ov-BSE 0/6 >750 0/6 >750
ARR Ov-BSE 0/6 >750 0/6 >750
Negative brain 0/12 >750 0/6 >750
Phosphate buffered saline control 0/12 >750 0/6 >750

*BSE, bovine spongiform encephalopathy; dpi, days postinoculation; ov, ovine.

the ovine c-BSE agent. Our results strongly contrast
with those previously obtained in ARR/ARR and
ARR/ARQ sheep orally challenged with cattle c-BSE,
where no clinical signs and no or limited PrP* accu-
mulation has been evidenced, whereas positive trans-
mission occurred in ARQ/ARQ sheep (22-24).

The inoculation doses used in this study (5g
of brain equivalent material) were similar to those
used in studies that concluded the absence of cattle
c-BSE transmission through the oral route in ARR/
ARR sheep. However, in the absence of an endpoint
titration establishing the c-BSE titer in our inoculum,
the hypothesis that differences in the infectious titer
in the inoculum account for, or at least contribute to,
the discrepancies observed between studies cannot
be ruled out.

In sheep, the age at the time of inoculation does
appear to affect the efficacy of c-BSE transmission in
orally exposed ARQ/ARQ sheep (25). Transmission
efficiency is much higher in animals challenged be-
fore weaning (<3 weeks) than in animals inoculated
after weaning (>3 months). In our study, lambs were
orally challenged 24 hours after birth and at the age of
2 weeks, whereas in previous studies, where no c-BSE
transmission to ARR/ ARR animals was observed, the
age at inoculation varied from 3-6 months (26,27) or
5-8 months (22).

Experimental oral exposure early after birth is po-
tentially more relevant to a scenario where maternal
lateral transmission (via milk and contact with placen-
ta) would play a central role in the disease transmis-
sion, as observed in classical scrapie-infected flocks
(28,29). Experimental oral challenge after weaning is
certainly a relevant model to mimic a scenario where
sheep would be exposed to the c-BSE agent through
the ingestion of contaminated feedstuffs (meat

and bone meal), as observed in cattle during the c-
BSE epidemics.

The last major difference between our transmis-
sion experiment and those reported in previous stud-
ies was the use of an ovine-adapted c-BSE rather than
cattle c-BSE as inoculum. The apparent higher capac-
ity of ARQ/ARQ sheep-passaged c-BSE (when com-
pared with cattle c-BSE) to cross transmission barriers
(transmission to porcine and human PrP-expressing
hosts) is a well-documented phenomenon. The use
of such ovine-passaged c-BSE as inoculum could, at
least partly, explain the efficient transmission of the
c-BSE agent to ARR/ARR sheep.

During the past 20 years, a breeding for resis-
tance policy relying on the progressive increase of
the ARR allele frequency in sheep has been imple-
mented by certain member states of the European
Union (EU). That policy’s original objectives were
to reduce the global incidence of TSEs and to pre-
vent c-BSE emergence and spread in sheep popu-
lations. The most recent analysis of the small ru-
minants’ TSE epidemiologic situation in the EU
confirmed that the breeding for resistance policy
is an efficient means to reduce classical scrapie
prevalence in sheep populations (10). However, the
transmission of the c-BSE agent to ARR/ARR sheep
reported in this study suggests that ARR allele se-
lection could have a more limited effect than origi-
nally expected on the risk for c-BSE propagation in
the sheep population.

At the clinical stage of the disease, the distribu-
tion and levels of c-BSE prions in the peripheral tis-
sues of both ARR/ARR and ARQ/ARQ experimen-
tally challenged animals were broadly similar. The
main differences observed between both genotypes
were a slower dissemination of the c-BSE agent in the

Table 4. Intracerebral inoculation of tgMet/tgVal humanized mice with a panel of human, bovine, and ovine prion isolates in a study of
oral transmission of classical bovine spongiform encephalopathy in ARR/ARR sheep*

Passage 1 Passage 2
Isolate No. positive/no. tested  Survival, dpi +SD No. positive/no. tested Survival, dpi +SD
Cattle BSE 0/6 >750 NA NA
ARQ Ov-BSE 0/6 >750 NA NA
ARR Ov-BSE 0/6 >750 0/6 >750
Negative brain 0/12 >750 0/6 >650
Phosphate buffered saline control 0/12 >750 0/6 >650

*BSE, bovine spongiform encephalopathy; dpi, days postinoculation; NA, not available; ov, ovine.
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organism and a longer incubation period in the ARR/
ARR animals.

In the humanized transgenic mouse panel,
both ARR/ARR- and ARQ/ARQ-derived c-BSE
remained transmissible to mice expressing methio-
nine 129 human PrP¢, confirming that neither ovine
genotype eliminates zoonotic potential. However,
the ARR/ARR isolate exhibited modestly reduced
transmission efficiency, evident as a lower pri-
mary attack rate and longer mean survival times,
compared with its ARQ/ARQ counterpart. Those
kinetic differences were largely lost after a single
adaptation passage, however, suggesting that once

Emerging Infectious Diseases * www.cdc.gov/eid ¢ Vol. 31, No. 12, December 2025

the species barrier is crossed, the underlying strain
behaves similarly.

In 2001, specific risk material (SRM) measures
were implemented throughout the EU, consisting of
the systematic removal of cattle and small ruminants’
tissues susceptible to contain critical levels of prion
infectivity from the food and feed chains. The SRM
measures are key for ensuring the protection of con-
sumers against exposure to prions present in farmed
animals. Current SRM measures applied to small ru-
minants in the EU consist of the removal of the spleen
and the ileum and, in animals over 12 months of age,
the skull (including the eyes and brain), spinal cord,
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and tonsils. Because of the large distribution of TSE
infectivity in the lymphoid tissues of small ruminants,
SRM measures applied to sheep and goats are consid-
ered to have a more limited effect on the protection of
consumers than they have in the cattle c-BSE context
(30). However, mathematical modeling of the effect
of the SRM measures on the different prion diseases
susceptible to occur in small ruminants (atypical scra-
pie, classical scrapie, and c-BSE) confirmed the strong
positive effect of the SRM measures on the final con-
sumer exposure to these different prions (31).

In conclusion, although the capacity of the c-BSE
agent to propagate in ARR/ ARR sheep can be consid-
ered unfortunate news, the continuation of the TSE
surveillance and SRM measures currently in force for
small ruminants in the EU will continue to ensure ef-
ficient protection against the risk for exposure to this
zoonotic agent. c-BSE infection in ARR/ARR sheep
can still pose a public-health risk, but the quantitative
probability of successful cross-species transmission
might be lower than transmission associated with
ARQ/ARQ sheep cases.

This work was supported by the European Union (grant
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