
Multidrug resistance threatens modern medi-
cine and public health by limiting our abil-

ity to effectively treat serious infections (1). Ac-
cordingly, reducing and preventing antimicrobial 
resistance (AMR) is a high priority. Of particular 
concern are carbapenemase-producing organisms 
(CPOs), a subset of multidrug-resistant organisms 
(MDROs) that are resistant to carbapenems—an 

important class of antibiotics typically reserved as 
a last resort—and associated with high mortality 
rates (2). CPOs can transfer their resistance genes 
via mobile genetic elements, like plasmids, across 
multiple species, contributing to the proliferation 
of AMR (3,4). CPOs and plasmids carrying car-
bapenemase genes have the potential to make all  
current antimicrobial drugs ineffective; as such, 
public health prioritizes surveillance and contain-
ment of AMR. Comprehensive strategies critical to 
mitigate AMR, including antimicrobial steward-
ship; prompt, accurate diagnosis, and treatment; 
and infection prevention and control to limit trans-
mission, depend on AMR surveillance data (5–7). 
Recognizing those needs, global and national pub-
lic health agencies advocate for robust AMR sur-
veillance systems providing timely, high-quality 
data to inform global, regional, and local contain-
ment strategies (5,8). By incorporating complemen-
tary data sources, robust AMR surveillance sys-
tems enable early warning of pathogen emergence, 
enhance monitoring of epidemiologic trends, im-
prove detection of outbreaks, and deepen under-
standing of transmission events.

AMR surveillance and cluster investigations 
rely on epidemiology of person, place, and time, 
coupled with the genetic and phenotypic charac-
teristics of suspected pathogens. Whole-genome 
sequencing (WGS) has become a standard method 
for determining genetic characteristics of patho-
gens because it enables more comprehensive AMR 
gene detection compared with traditional PCR-
based methods. WGS also enables full-genome  
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Mitigating antimicrobial resistance (AMR) is a public 
health priority to preserve antimicrobial treatment op-
tions. The Washington State Department of Health in 
Washington, USA, piloted a process to leverage longitu-
dinal genomic surveillance on the basis of whole-genome 
sequencing (WGS) and a genomics-first cluster defini-
tion to enhance AMR surveillance. Here, we outline the 
approach to collaborative surveillance and describe the 
pilot using 6 carbapenemase-producing organism out-
breaks of 3 species: Pseudomonas aeruginosa, Acineto-
bacter baumannii, and Klebsiella pneumoniae. We also 
highlight how we applied the approach to an emerging 
outbreak. We found that genomic and epidemiologic data 
define highly congruent outbreaks. By layering genomic 
and epidemiologic data, we refined linkage hypotheses 
and addressed gaps in traditional epidemiologic surveil-
lance. With the accessibility of WGS, public health agen-
cies must leverage new approaches to modernize sur-
veillance for communicable diseases.
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comparisons between isolates through core-ge-
nome single-nucleotide polymorphism (SNP) anal-
ysis. This wider view offers superior resolution 
over traditional methods that only consider a frac-
tion of the genome, such as multilocus sequence 
typing (MLST). That resolution reduces misclassi-
fication and other biases when making inferences 
about transmission events (7,9) and improves our 
ability to differentiate related and unrelated cases 
(10). Taken together, WGS data enable us to de-
tect MDRO clusters earlier and deploy infection  
control interventions more quickly (11,12), detect 
genes associated with AMR, determine whether 
resistance is due to chromosomal mutations or to 
mobile resistance genes (7,13,14), and build ge-
nomic datasets that provide context for prospective  
analyses (11).

Given the potential of WGS to advance routine 
AMR surveillance, we developed and integrated a ge-
nomics-first approach into our AMR surveillance sys-
tem at the Washington State Department of Health. 
Select MDROs, including CPOs, Candida auris, and 
vancomycin-resistant Staphylococcus aureus, are the 
focus of MDRO surveillance in Washington. Within 
this system, MDRO sequencing data, generated by 
Washington Public Health Laboratory (WAPHL) 
via the Centers for Disease Control and Prevention 
(CDC)–funded Antibiotic Resistance Laboratory 
Network (ARLN) testing activities, are ingested into 
recombination-aware bioinformatics pipelines to 
identify genomic relationships. Then, data are passed 
through a workflow that sources and combines sur-
veillance and genomic data. Central to that approach, 
we established communication and reporting proto-
cols to foster collaborative discussion between labo-
ratory and epidemiology programs about inferences 
derived from the different data sources. We piloted 
the approach on 6 historical MDRO outbreaks to ex-
plore congruence between genomically and epidemi-
ologically defined clusters and to assess the additive 
effect of integrating genomic information. Here, we 
present the results of the pilot and show how to use 
the integrated surveillance system to support MDRO 
outbreak investigations prospectively.
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Table 1. Overview of 6 outbreaks of multidrug-resistant organism 
outbreaks, Washington, USA* 
Outbreak 
ID Pathogen 

No. linked 
cases 

No. health 
facilities 

1 Pseudomonas aeruginosa  3 1 
2 Acinetobacter baumannii 5 1 
3 A. baumannii 6 1 
4 A. baumannii 6 1 
5 A. baumannii 5 5 
6 Klebsiella pneumoniae  5 1 
*We determined linkages between cases by epidemiologic evidence. ID, 
identification. 

 

Figure 1. Data flow and cross-team communication channels for our system for integrating genomic data into public health surveillance 
for multidrug-resistant organisms, Washington, USA. This diagram shows how a sample, then data, move through our integrated 
surveillance program. Tasks that are handled jointly across programs are highlighted in white. A) Tasks conducted by Washington Public 
Health Laboratory. B) Tasks conducted by Molecular Epidemiology Program. C) Tasks conducted by Multidrug-Resistant Organism 
Program and local health jurisdictions. 
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Methods
WAPHL, the Multidrug-Resistant Organism Program 
(MDROP), and the Molecular Epidemiology Program 
(MEP) teams at the Washington State Department of 
Health analyzed 6 known MDRO outbreaks across 3 
species, A. baumannii, P. aeruginosa, and K. pneumoniae, 
and multiple health facilities (Table 1). The outbreaks 
were identified through laboratory detection of target-
ed CPOs by clinical laboratories or WAPHL through 
the ARLN; methods are summarized on CDC’s ARLN 
Testing Web site (15). Cases were identified by de-
tection of a carbapenemase in clinical isolates and 
through colonization screening performed for MDRO 
containment response or admission screening. Using 
epidemiologic investigation methods, MDROP and lo-
cal health jurisdictions identified linked cases.

Epidemiologic Data
CPOs are reportable in Washington; public health 
staff investigate all CPOs in partnership with affect-
ed healthcare facilities and manage patient screen-
ing among epidemiologically linked healthcare 
contacts. MDROP partners with local health jurisdic-
tions to perform longitudinal surveillance using an  
Antimicrobial Resistance Information Exchange 
(ARIE), investigate potential clusters, perform con-
tainment responses, and document reported out-
breaks. For this pilot, MDROP provided MEP a 
master list for each of the 6 outbreaks, including epi-
demiologic information about index cases, facility ad-
missions, known epidemiologic linkages, and isolate 
identifiers to link case and sequencing data.

Sequencing and Genomic Analysis
We performed WGS using DNA extracted with the 
MagNA Pure 96 Small Volume Kit on an MP96 sys-
tem (both Roche, https://ww.roche.com) from bac-
terial cultures grown on blood agar (Thermo Fisher 
Scientific, https://www.thermofisher.com) for 24 
hours at 35–37°C. We prepared paired-end DNA  

libraries using the Illumina DNA Prep kit with Nex-
tera DNA CD indexes sequenced on a MiSeq System 
(all Illumina, https://www.illumina.com) using the 
2 × 250 bp (500-cycle) v2 kit. We used the CDC PHoe-
NIx pipeline (https://zenodo.org/record/8147510) 
to perform general bacterial analysis, including 
quality control, de novo assembly, taxonomic clas-
sification, and AMR gene detection. We repeated se-
quencing for samples with <40× average read depth, 
<1 Mb genome size, >500 assembly scaffolds, or >2.58 
assembly ratio SD (Appendix 1 Table 1, https://
wwwnc.cdc.gov/EID/article/31/13/24-1277-App1.
pdf). PHoeNIx outputs feed into the WAPHL Big-
Bacter pipeline (https://github.com/DOH-JDJ0303/
bigbacter-nf), which enables bacterial genomic sur-
veillance by performing phylogenetic analysis and 
differentiating clusters of closely related bacteria 
that are maintained in a personalized database. We 
clustered samples genomically using PopPUNK  
version 2.6.0 as described (16) and calculated accesso-
ry distances and core SNPs within each genomic clus-
ter using the PopPUNK sketchlib functions and Snip-
py version 4.6.0 (https://github.com/tseemann/ 
snippy). We identified and masked recombinant re-
gions in the Snippy output using Gubbins version 
3.3.1 as described (17). We generated phylogenetic 
trees and distance matrices using IQTREE2 version 
2.2.2.6 as described (18) and custom scripts in R (The 
R Project for Statistical Computing, https://www.r-
project.org) and Bash (Free Software Foundation, 
Inc., https://www.gnu.org/software/bash).

We linked the BigBacter genomic outputs to 
metadata attributes queried from our laboratory in-
formation and surveillance systems, enabling joint 
analysis and visualization in R and Nextstrain Aus-
pice (19). We used the phylogenetic trees, SNP ma-
trices, and BigBacter’s cluster designation to identify 
genomic clusters. To explore congruence between 
genomic clusters and epidemiologically defined 
clusters in our pilot, we identified the subset of  
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Table 2. Results of pilot study of genomic and epidemiologic surveillance of outbreaks of multidrug-resistant organism infections, 
Washington, USA* 

Outbreak 
ID Pathogen 

No. health 
facilities  

No. cases, 
n = 36 

No. isolates 
sequenced, 

n = 43 
Epidemiologically 
linked only, n = 5 

Epidemiologically 
and genomically 

linked, n = 32 

Genomically 
linked only, 

n = 6 
1 Pseudomonas aeruginosa 1 5 8† 0 6 2 
2 Acinetobacter baumannii 1 5 6‡ 0 6 0 
3 A. baumannii 1 6 6 0 6 0 
4 A. baumannii 1 7 10† 3 6 1 
5 A.baumannii 5 8 8 0 5 3 
6 Klebsiella pneumoniae 1 5 5 2§ 3 0 
*ID, identification. 
†One case had 3 isolates sequenced and 1 had 2 isolates sequenced. 
‡One case had 2 isolates sequenced. 
§Sample 5 was placed into a separate genomic cluster due to relatively large pairwise genetic differences between this isolate and the remaining 
outbreak 6 isolates, as determined by PopPUNK (16). 
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genomic clusters that grouped cases associated 
with 6 outbreaks defined by MDROP. Then, we 
looked at the union of all sequenced samples in 
relevant genomic clusters (n = 43) and all cases 
identified as part of the 6 epidemiologically de-
fined outbreaks (n = 36). We defined samples as 
follows: genomically linked only, meaning that the 
sequenced sample grouped in a relevant genomic 
cluster and either the core genome sequences were 
closely related (<10 SNPs) or a larger SNP distance 
could be explained by differences in sample collec-
tion dates; epidemiologically linked only, mean-
ing that MDROP had linked a case to an outbreak, 
but that the sequence did not meet the genomically 
linked definition; or epidemiologically and genom-
ically linked, meaning that both MDROP epidemi-
ologists’ assessment and sequencing data grouped 
the case as part of the relevant outbreak. MEP, 
WAPHL, and MDROP met to discuss the findings. 
Communication between our programs helped ad-
dress perceived utility of routine genomic analy-
ses and enabled us to develop processes for ongo-
ing data production, analytics, interpretation, and 
cross-program communication.

Results

Cluster Detection Using a Genomics-First Approach 
To pilot integrated surveillance, we evaluated wheth-
er genomic data and epidemiologic investigations 

grouped the same cases for 6 known, epidemiologi-
cally defined outbreaks. We analyzed 221 sequences of 
P. aeruginosa, A. baumannii, and K. pneumoniae, collect-
ed during December 2017–May 2024; those sequences 
grouped into 48 genomic clusters. Six of the genomic 
clusters were largely concordant with the 6 epide-
miologically defined outbreaks (n = 36 cases). The 6 
genomic clusters grouped 42 sequences, of which 32 
were classified as epidemiologically and genomically 
linked (Table 2; Appendix 1 Figures 1–6). One epide-
miologically linked case grouped into a seventh ge-
nomic cluster with no other linked cases, indicating 
that genomic data did not support the linkage. Al-
though BigBacter groups related sequences, pairwise 
genetic divergence within a cluster can still exceed the 
SNP distance threshold we use to define genomic link-
age. Indeed, 4 epidemiologically linked cases grouped 
into outbreak-related genomic clusters but were not 
considered genomically linked because they diverged 
from other sequenced cases by 14–56 SNPs; that dis-
tance could not be explained by differences in sample 
collection dates (Table 2; Appendix 1 Figures 4, 6). Six 
sequences grouped into relevant genomic clusters with 
minimally divergent core genome sequences, but those 
cases had not been linked to the outbreaks through ep-
idemiologic information; the cases were genomically 
linked only (Table 2; Appendix 1 Figures 1, 4, 5). Our 
findings show general concordance between epidemi-
ologic and genomic clusters and demonstrate instanc-
es where genomic data may refine cluster definitions.
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Figure 2. Timeline showing overlap of Klebsiella pneumoniae carbapenemase–producing K. pneumoniae infection patients in healthcare 
facilities in Washington, USA, as part of study of integrating genomic data into public health surveillance for multidrug-resistant 
organisms. PTs A, B, and C stayed in HF I. PT A might have overlapped with PT C in HF I in 2023; PT B stayed in HF I in 2021. PTs B 
and C both stayed in HF II but at different times, in 2022 and in 2023. PT D stayed at HF III in 2021, where an overlap with PT B might 
have occurred, and in 2022, PT D might have overlapped with PT A in HF IV. PTs E and F who had stayed in HF V could also be related 
to this outbreak. HF, health facility; PT, patient.
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Development of Standard Integrated  
Genomic Epidemiology Reports
We sought to develop mechanisms to jointly analyze 
genomic and epidemiologic data and communicate 
across teams about the inferences. MEP, MDROP, and 
WAPHL discussed the pilot study findings, including 
the utility and limitations of genomic analyses, and 
collectively designed a new data and communica-
tion workflow. The workflow required us to bridge 
siloed data sources (Figure 1); to do so, we program-
matically ingest laboratory identifiers and query the 
surveillance database. Working with MDROP, we de-
termined which epidemiologic information are most 
important for contextualizing genomic information 
(e.g., submitter facility name, submitter county, col-
lection date, etc.). We source, format, and export this 
information as a metadata file that can be overlaid 
onto phylogenetic trees.

MEP and WAPHL iteratively refined the infor-
mation included in the reports to meet MDROP’s 
needs. The current version of the report includes 3 
components. The first component is an automated 
R markdown-based report that parses the BigBacter 
output and metadata to summarize key information, 
such as the total number of sequences per genomic 
cluster, number of new sequences added to previ-
ously identified clusters, submitting health facilities 

and counties, and sequences with close or interme-
diate genomic linkage (Appendix 2, https://wwwnc.
cdc.gov/EID/article/31/13/24-1227-App2.pdf). The 
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Figure 3. SNP matrix showing number of polymorphic sites 
observed when making pairwise comparisons between the core 
genome of the sequences in a cluster of Klebsiella pneumoniae 
carbapenemase–producing K. pneumoniae infection isolates 
as part of study of integrating genomic data into public health 
surveillance for multidrug-resistant organisms, Washington, USA. 
Dark gray represents lower SNP distances and light gray larger 
SNP distances. Diff, difference; PT, patient; ref., reference; SNP, 
single-nucleotide polymorphism. 

Figure 4. Maximum-likelihood 
phylogenetic tree of sequences 
from patients with Klebsiella 
pneumoniae–producing  
K. pneumoniae infection as part 
of study of integrating genomic 
data into public health surveillance 
for multidrug-resistant organisms, 
Washington, USA. Five patients 
(A–E) are shown, and relevant 
HFs are noted. HF, health facility; 
PT, patient.  
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https://wwwnc.cdc.gov/EID/article/31/13/24-1227-App2.pdf
http://www.cdc.gov/eid


Advances in Pathogen Genomics for Infectious Disease Surveillance, Control, and Prevention

second component is a narrative interpretation of the 
genomic data written by MEP epidemiologists; that 
component alerts MDROP epidemiologists to trans-
mission dynamics consistent with the genomic data, 
such as detection of new introductions or ongoing 
transmission of an outbreak. The final component of 
the report is a Microreact (20) dashboard, where we 
share interactive multipanel figures including SNP 
distance matrices and phylogenetic trees; this type 
of reporting is a standard feature of Washington’s 
AMR surveillance. Among other outcomes, the ap-
proach has improved our understanding of K. pneu-
moniae transmission within a multifacility outbreak 
and helped us ascertain linkages between carbapene-
mase-producing A. baumannii (CRAB) cases that were 
previously unknown. 

Differentiation of Outbreak and Nonoutbreak  
Samples Using Genomic Data
In a prospective analysis of a K. pneumoniae carbapen-
emase–producing K. pneumoniae outbreak involving 

multiple healthcare facilities, epidemiologic investiga-
tion data alone could not clarify how transmission had 
occurred; recent healthcare during the exposure pe-
riod involved multiple cases, some with overlapping 
healthcare stays (Figure 2). Integrating genomic and 
case-level data helped us refine relationships between 
cases and formulate a hypothesis for how cases were 
connected across facilities. MEP and WAPHL reported 
that sequences from patients A, B, and C were close-
ly related (2–3 SNPs) (Figure 3). MDROP confirmed 
epidemiologic linkages among some of those patients 
(Figures 2, 3), but a common link was missing. MDROP 
hypothesized that patients D, E, or F could be the miss-
ing link and requested a review of their sequencing 
results, pending sequencing for patient D. MDROP’s 
reasoning was that patient D might have overlapped 
with patients A and B. Sequencing revealed that pa-
tients E and F had identical core-genome sequences 
but diverged greatly from the other sequenced cases 
(Figure 4). MDROP confirmed an epidemiologic link 
between patients E and F, noting they received care at 

S30 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 31, No. 13, Supplement to May 2025 

Figure 5. Maximum-likelihood 
phylogenetic tree showing 
relationships among 33 
carbapenemase-producing 
Acinetobacter baumannii 
isolates with the OXA-235–like 
carbapenemase gene as part of 
study of integrating genomic data 
into public health surveillance for 
multidrug-resistant organisms, 
Washington, USA.
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the same facility and shared staff. The genomic and ep-
idemiologic information helped confirm these patients 
were connected to each other but not related to the out-
break in question. The sequence from patient D, how-
ever, was genomically linked (2–3 SNPs) to sequences 
from patients A, B, and C (Figure 3). The close genomic 
distances and the overlap in healthcare stays with pa-
tients A and B supported the hypothesis that patient D 
was one of the missing links. Patient C’s relationship to 
the outbreak remains unclear; patient C tested positive 
upon admission but reported no healthcare encounters 
before August 2023. Despite that remaining question, 
genomic analyses helped confirm 1 missing link, ex-
cluded 2 patients from this outbreak, and revealed that 
the outbreak was larger than originally thought.

Genomic Data Linking Historical  
Carbapenemase-Producing A. baumannii Cases
We assessed the congruence between epidemio-
logic surveillance data and genomic clustering for a  

retrospective set of CRAB isolates with the OXA-
235–like carbapenemase gene. Two outbreaks were 
known to MDROP at healthcare facilities I and IV. 
First, we reviewed all 33 sequenced CRAB OXA-235 
isolates representing 27 cases collected during Au-
gust 2019–December 2023. We compiled healthcare 
encounters for cases from MDROP’s linelist and ARIE 
and matched 137 admissions across 29 facilities from 
July 2020–May 2024. We visualized genomic analy-
ses and epidemiologic data using vistime and ggtree 
(https://shosaco.github.io/vistime) (21) in R.

We used PopPUNK (16) for genomic clustering; all 
33 isolates were assigned to the same genomic cluster 
(Figure 5). The cluster had a maximum pairwise diver-
gence of 119 SNPs. To identify closer genetic relation-
ships indicative of clonal transmission, we used Big-
Bacter to partition the cluster into groups of sequences 
separated by ≤10 SNPs (22,23), resulting in 12 parti-
tions (Figure 6). Seven partitions contained multiple 
sequences. We defined sequences within a partition 
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Figure 6. Maximum-likelihood 
phylogenetic tree showing 
partitions of 33 carbapenemase-
producing Acinetobacter 
baumannii isolates with the OXA-
235–like carbapenemase gene as 
part of study of integrating genomic 
data into public health surveillance 
for multidrug-resistant organisms, 
Washington, USA. Colors indicate 
12 partitions demarcating seq       
uences separated by <10 SNPs. 
Seven of the partitions contain 
multiple sequences  
and 5 (2, 3, 4, 8, and 12) contain  
            1 sequence.

https://shosaco.github.io/vistime
http://www.cdc.gov/eid
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as genomically linked to each other. In this analysis, 
MDROP defined epidemiologic linkage between cases 
as temporally overlapping visits at the same health-
care facility. We considered 8 facilities that had cases 
with overlapping visits to be facilities of interest (Fig-
ure 7). We categorized cases that were epidemiologi-
cally linked and belonged to the same genomic par-
tition as epidemiologically and genomically linked. 
We evaluated concordance between genomic and 
epidemiologic data by categorizing sequences from 
the 7 partitions as epidemiologically and genomically 
linked, epidemiologically linked only, or genomically 
linked only. Four partitions (1, 5, 9, and 10) included 
21 sequences; we considered 17 of those epidemio-
logically and genomically linked and 4 genomically 
linked only. We classified the sequences in the re-
maining 3 multisequence partitions (6, 7, and 11) as 
genomically linked only; partition 6 contained 2 se-
quences from cases that were not epidemiologically 
linked, and sequences in partitions 7 and 11 were 
from cases missing epidemiologic data (Appendix 1 
Table 1). Five partitions (2, 3, 4, 8, and 12) contained 
only 1 sequence and thus had no evidence of ge-
nomic linkage. Of those 5 sequences, we considered 3  

epidemiologically linked (Appendix 1 Table 2); 2 se-
quences lacked epidemiologic data.

Our results highlight the consistency that ge-
nomically and epidemiologically defined clusters can 
have, as well as how our definition for epidemiologic 
linkage may lack sensitivity and specificity. Indeed, 
detailed retrospective case review prompted by ge-
nomic linkages described by our analysis yielded 10 
epidemiologic links unknown to MDROP.

Discussion
Here, we describe our approach to integrating genom-
ics into our AMR surveillance system and transition-
ing from a pilot assessment to a repeatable workflow. 
Integrating genomic data into AMR surveillance has 
helped us identify additional outbreak cases, sensi-
tively classify outbreak or nonoutbreak cases, and con-
firm hypothesized linkages. Furthermore, we reduced 
silos between programs, fostering collective discussion 
to guide data interpretation and next steps. Building 
on this success, we now perform automated genomic 
cluster detection for all MDRO bacterial pathogens se-
quenced at WAPHL, and we plan to expand this ap-
proach to other surveillance programs.
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Figure 7. Healthcare encounters at facilities of interest among carbapenemase-producing Acinetobacter baumannii OXA-235 cases 
as part of study of integrating genomic data into public health surveillance for multidrug-resistant organisms, Washington, USA. Six 
cases (14, 15, 16, 17, 18, and 19) are linked to a screening event at HF V, and 3 cases (5, 7, and 10) are linked to a screening event at 
HF I. Cases cannot be in 2 or more health facilities simultaneously. However, we only have access to admission and discharge dates; 
therefore, the figure may show some cases in multiple locations at the same time if transfers occurred without an associated admission 
and discharge. HF, health facility.
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Our approach has some notable benefits. First, 
our system characterizes genomic relationships using 
distance-based analysis of sequence data. Although 
national surveillance systems in the United States 
such as PulseNet (24) and TB GIMS (25) have transi-
tioned from MLST, only a predefined set of loci with-
in the core genome are considered, and the set of rel-
evant loci cannot expand on an outbreak-by-outbreak 
basis. Although sequence types delineate whether se-
quences are nearly identical or not, they do not allow 
epidemiologists to directly estimate genetic distances 
between sequences. Second, BigBacter by default 
stores genomic cluster information in a running da-
tabase, providing historical context when analyzing 
new sequences. This is one of the beneficial features 
of systems such as PulseNet, as it enables detection 
of reemerging outbreaks or strains (26), but to our 
knowledge such approaches are rarely implement-
ed and maintained by a single state agency. Finally, 
our system mitigates the bias that can arise when 
sequencing is prompted solely by epidemiologic hy-
potheses. By sequencing MDRO detections regardless 
of outbreak status and identifying clusters given ge-
netic relatedness only, we draft genomics-informed 
hypotheses independent of hypotheses derived from 
epidemiologic investigation data. When findings 
from both data streams are consistent, it strengthens 
our belief that we understand transmission within the 
cluster, whereas discrepancies prompt us to reinvesti-
gate or evaluate gaps specific to each data source. This 
approach stands in contrast to targeted sequencing 
efforts where sequencing occurs only upon request, 
such as when surveillance epidemiologists have de-
fined an outbreak.

Despite those benefits, our integrated AMR sur-
veillance system has some limitations. Ideally, our 
system would include environmental and nonhuman 
isolates to clarify risk for zoonotic and environmental 
transmission of CPOs to humans (13,14). However, 
we lack access to those sample types, and our sys-
tem’s slow turnaround time limits its utility. In our 
system, bacterial sequencing proceeds from cultured 
isolates, resulting in genomic analysis being shared 
≈1 month after carbapenemase detection. By then, 
WGS only provides post hoc confirmation about links 
that have been already identified, rather than real-
time information to inform infection control practic-
es. Finally, WGS is expensive, which could make this 
program unsustainable in the absence of stable and 
appropriate funding.

Through our efforts to develop, test, and deploy 
an integrated AMR surveillance system, MDROP 
can leverage pathogen genomics for public health 

response. During active investigations, MDROP 
can intervene when genomic links are identified, 
guiding actions to improve infection control prac-
tices. Furthermore, by developing this system col-
lectively, our system includes perspectives from 
surveillance epidemiology, molecular epidemiol-
ogy, and bioinformatics and reduces silos between 
teams. Building on initial successes, we continue to 
refine this system to increase the timeliness of ge-
nomic inferences and identify best practices to en-
gage local health jurisdictions.
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