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Burkholderia pseudomallei Sequence Type 
46 Transmission from Asia to Australia 

Appendix 

Supplementary Methods 

This study was approved by the Human Research Ethics Committee of the Northern 

Territory Government and Menzies School of Health Research. The data collected as part of the 

Darwin Prospective Melioidosis Study included patient demographics, underlying conditions, 

clinical presentations, and outcomes of patients with melioidosis (1). B. pseudomallei isolates for 

each case underwent whole genome sequencing by using an Illumina (short-read) platform and 

in silico multilocus sequence typing (MLST; https://pubmlst.org/organisms/burkholderia-

pseudomallei). 

Phylogenetic analysis was conducted on the 6 DPMS B. pseudomallei ST46 genomes in 

the context of 41 publicly available global ST46 genomes (all from Asia) (2–4), 128 genomes 

from other Australian cases in the DPMS (1), and 149 international genomes (5–8) (Appendix 1, 

Table). Sequences were aligned to the K96243 reference genome (accession no. 

GCA_000959285.1) by using Snippy v4.6.0 (https://github.com/tseemann/snippy) and thresholds 

of >10× coverage and >90% prevalence to call variants. The core single nucleotide 

polymorphism (SNP) alignment was used for phylogenetic analysis in IQ-TREE v2.2.0.3 (9) by 

using a generalized time-reversible (GTR) model, 4 gamma categories, 1,000 ultrafast bootstrap 

replicates, and 1,000 approximate likelihood ratio replicates. 

To further investigate the relationship between the Australian and Asian ST46 isolates, 

the ST46 genomes were aligned to the closed ST46 B. pseudomallei Tokushima genome 

(accession no. GCA_030297295.1) by using Snippy as described above. Regions of 

recombination were predicted with ClonalFrameML v1.2 (10) and were masked from the 

alignment. Temporal analysis was conducted with BEAST 2 (11). The temporal analysis 
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included 953 core SNPs, with constant sites included in the .xml file. HKY and GTR substitution 

models and strict and relaxed clock models were tested; each of those analyses converged with 

no major differences in estimates of the clock rate or tree height. The final analysis was done 

with a GTR model with 4 gamma categories, a relaxed clock model with log-normal distribution 

of rates (with clock rate prior set as a log-normal distribution with mean 1E^−6 and 95% highest 

posterior density ranging from 3.95E^−8 to 5.31E^−6), and a coalescent constant population 

model. Ten replicates were run, each with 800 million iterations, and with sampling from the 

posterior every 80,000 iterations; examination of the trace files revealed that those all converged 

and resulted in similar estimates of the tree height and clock rate. The logs and trees were 

combined by using LogCombiner with 15% burn-in and resampling of every 800,000th iteration. 

Effective sample sizes for all parameters were >700. A maximum clade credibility tree was 

calculated by using TreeAnnotator. A replicate sampling from the prior only with no sequence 

data did not converge, and 10 replicates with randomized tip dates did converge but had wildly 

varying estimates of the tree height and clock rate with wide 95% HPD estimates; those findings 

provided support that the priors were not driving the results of our analysis. 
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