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Venezuelan equine encephalitis virus (VEEV) is an 
alphavirus in the Americas that can cause febrile 

illness and severe disease, including encephalitis. In 
humans, overall case-fatality rates are <1% but higher 
in children; in horses, case-fatality rates are 50%–70% 
(https://www.woah.org/en/disease/venezuelan-
equine-encephalitis). In the United States, VEEV is 
classified as a select agent because of its pathoge-
nicity and aerosolization capacity (https://www.
selectagents.gov/sat/list.htm). The transmission of 
the arthropodborne VEEV involves an epizootic cy-
cle (antigenic subtypes IAB and IC), entailing higher 
numbers of human infections, and an enzootic cycle 
(the common transmission cycle for antigenic sub-
types ID and IE), entailing sporadic human infections 
(1,2). The emergence of VEEV epizootics is poorly un-
derstood but might involve genetic exchanges from 
enzootic subtypes (1). VEEV subtype IE has been re-
ported in Central America and Mexico since the 1960s 
(3). Subtype IE has been detected almost exclusively 
in mosquitoes and sentinel hamsters (3,4) but sporad-
ically in horses and humans (2,3,5); the subtype has 
been associated with 2 epizootics in horses in Mexico 
in the 1990s (6). We report the detection and isolation 
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We isolated Venezuelan equine encephalitis virus 
(VEEV) subtype IE phylogenetically related to Gulf 
Coast strains in a spider monkey (Ateles geoffroyi) re-
leased from a rescue center in Guatemala. Serologic 
testing of 118 monkeys indicated no additional VEEV in-
fections. Infection of a primate warrants intensified sur-
veillance of VEEV transmission cycles in North America.
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of a VEEV IE strain in a healthy nonhuman primate 
(NHP) in Guatemala in 2023.

We investigated 211 animals from 22 species 
(orders Artiodactyla, Carnivora, Didelphimorphia, 
Pilosa, Primates, and Rodentia) (Appendix Figure 
1, https://wwwnc.cdc.gov/EID/article/31/2/24-
1484-App1.pdf). We collected plasma samples from 
animals living in the Wildlife Rescue and Conserva-
tion Association (ARCAS) (https://arcasguatemala.
org), a nongovernment organization in Petén Depart-
ment in northern Guatemala. Animals are brought 
to ARCAS after being seized by police or customs 
officials at roadblocks or local markets. All animals 
are tested against selected pathogens and quaran-
tined for 2–3 months upon arrival to the center and 
usually stay for another few months before being re-
leased into the wild (Appendix). We extracted RNA 
from plasma samples and screened it for alphavirus-
es and flaviviruses by using broadly reactive reverse 
transcription PCR (RT-PCR) assays (Appendix). By 
using an alphavirus RT-PCR, we identified VEEV 
in 1 adult male spider monkey (Ateles geoffroyi), an 
endangered species occurring from southern Mexi-
co to Panama. No sample was positive for flavivirus 
RNA. Viral load in plasma was 1.8 × 105 VEEV RNA 
copies/mL, determined through real-time RT-PCR 
(Appendix). At 2 days postinfection, Vero E6 cells 
displayed a cytopathic effect and reached high con-
centrations of 1.4 × 1010 VEEV RNA copies/mL of su-
pernatant. We applied deep sequencing (Appendix) 
to the virus isolate and obtained a near-complete 
genome (4.7 million reads, >50,000× mean depth of 
coverage), encompassing 11,477 nt and lacking only 

12 nt in the 5′ untranslated region (GenBank acces-
sion no. PQ406672). The VEEV genome showed typi-
cal organization; the predicted regions encoded non-
structural protein genes (nsP1–nsP4) and structural 
protein genes (capsid, E1–E3, and 6K). The VEEV 
from Guatemala had pairwise nucleotide sequence 
distances of 1.4%–7.4% with VEEV subtype IE se-
quences available in GenBank that mostly originated 
from Central America (Figure 1). We identified no 
amino acid exchange at position 117 of the E2 glyco-
protein, which previously had been associated with 
a VEEV subtype IE infection outbreak in horses (1). 
Pressure analyses that identify pervasive and epi-
sodic selection showed no sign of adaptive mutation 
in the E2 glycoprotein (Appendix Figure 2), suggest-
ing strong purifying selection that might limit adap-
tation to new hosts (3). Bayesian phylogenetic analy-
sis showed that the NHP-associated virus grouped 
with viruses obtained from the 1960s circulating in 
the Gulf Coast across a ≈200–700 km distance (most 
recent common ancestor 1954) (Figure 2), suggesting 
a lack of surveillance and continued circulation of 
genetically closely related strains in North America.

Natural VEEV infection in an NHP might be 
indicative of an outbreak. Therefore, we tested 
all plasma samples from primates residing in AR-
CAS (n = 118), including 80 spider monkeys and 38 
howler monkeys (Alouatta pigra and A. palliata), for 
VEEV-specific IgM by using a modified commercial 
immunofluorescence assay (IFA) (Appendix). IFA 
detected no positive samples, including in the PCR-
positive animal (Appendix Figure 3). The NHP in-
fected with VEEV showed no clinical symptoms and 
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Figure 1. Geographic origins of reported Venezuelan equine encephalitis virus subtype IE sequences identified in Central America. 
Circles indicate geolocation of subtype IE sequences. Enlarged map shows the geolocation of the strains grouping with the virus from 
this study (Petén Department, Guatemala, 2023). 

https://wwwnc.cdc.gov/EID/article/31/2/24-1484-App1.pdf
https://wwwnc.cdc.gov/EID/article/31/2/24-1484-App1.pdf
https://arcasguatemala.org
https://arcasguatemala.org
http://www.cdc.gov/eid


was released into the wild on the day of blood sam-
pling, suggesting that the animal was viremic upon 
release. In humans, severe disease characterized by 
neurologic complications occurs more frequently 

in children; therefore, future investigations might 
consider VEEV as a differential diagnosis, particu-
larly in young NHP with acute neurologic disease in 
VEEV-endemic areas.
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Figure 2. Time-scaled Bayesian maximum-clade credibility tree of Venezuelan equine encephalitis virus subtype IE identified in Central 
America. Bayesian phylogeny of the concatenated nonstructural and structural open reading frames with removal of the coding regions 
for the C-terminus of nonstructural protein 3 and N terminus of the capsid protein. Taxa indicate GenBank accession number, country 
abbreviation, and year of collection. Branch tips indicate host by color coding, including a sequence (strain no. 63Z1) isolated from 
blood of a sick human infected in the rainforest near Sontecamapan, Veracruz, Mexico, in August 1963 (2). Numbers at nodes indicate 
posterior probabilities of all major branches. Asterisks indicate clades previously used for dating according to a previous publication (3). 
Bars in node branches represent the 95% height posterior density intervals of the node ages. Scale bar represents time in years. BLZ, 
Belize; CRI, Costa Rica; GTM, Guatemala; HND, Honduras; MEX, Mexico; NIC, Nicaragua; PAN, Panama; SLV, El Salvador.

http://www.cdc.gov/eid


Although the neotropics are a probable hot 
spot for primate-associated emerging infections, 
neotropical NHPs are understudied for emerging 
pathogens (7). NHPs are among the most relevant 
sources of zoonotic viruses (in >20% of primate 
species zoonotic pathogens have been found) (7). 
Infection with other human pathogenic arthro-
podborne viruses, such as chikungunya and yel-
low fever viruses, has been reported in NHPs (8,9). 
Movement of NHPs by wildlife trafficking might 
contribute to the geographic expansion of VEEV 
and other pathogens. Although we identified no 
adaptive mutation in our study, the determinants 
of epizootics are not well understood, and new 
hosts might entail viral adaptation, potentially al-
tering the viral phenotype. Seroepidemiologic and 
experimental infection studies, such as those con-
ducted in rodents (10), are needed to clarify the role 
of NHPs in VEEV transmission cycles.
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