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Foodborne Illness Acquired in the United 
States—Major Pathogens, 2019 

Appendix 1 

Model Structures and Approach Used to Make Estimates 

Background 

This work updates estimates of the number of domestically acquired foodborne illnesses, 

hospitalizations, and deaths in the United States for select pathogens (1). Although some new 

approaches were implemented, the model structures remained similar; starting with the observed 

counts or incidence of illnesses, we accounted for biases by adjusting for factors, including 

underdiagnosis and underreporting, proportion of domestically acquired illness, and proportion 

of foodborne illness. Those factors were included in the models as probabilities and implemented 

as random draws from different distributions. In this appendix, we describe the model structures 

and the factors. Note that we use the term Bayesian in the broad sense. For example, we include 

approximate Bayesian computation (2), although we don’t make explicit use of that method. 

Model Structures 

Two broad types of models or approaches were used: 

• Surveillance data scaled-up approach: This model scales counts of observed 

laboratory-confirmed illnesses up to an estimated number of illnesses, accounting for 

underdiagnosis and underreporting, factors that contribute to an illness not being diagnosed or 

reported to public health surveillance (Appendix 1 Figure 1). The surveillance scaled-up model 

was used to estimate illnesses, hospitalizations, and deaths for the pathogens listed (Appendix 1 

Table 1). 

• Population data scaled-down approach: This model scales populations at risk down 

to an estimated number of ill persons (Appendix 1 Figure 2). The scaled-down model was used 
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to estimate illnesses, hospitalizations, and deaths for norovirus and hospitalizations and deaths 

for Toxoplasma gondii (Appendix 1 Table 2). 

Each model has subtypes that reflect the available data. The figures describe 

mathematical multipliers in the key subtypes are described and illustrated for the surveillance 

data scaled-up model (Appendix 1 Figures 3, 4, 5) and for the population scaled-down model 

(Appendix 1 Figure 6). All figures consist of a series of histograms that describe the distributions 

of simulated individual multiplicative factors as they are successively applied to elements of the 

burden estimates. 

The following 4 distributions were used: 

•Degenerate distribution. Degenerate distribution is a distribution of a degenerate 

random variable (i.e., one that has a single possible value). Degenerate distribution was used for 

population ratios and underreporting (when we thought there was no underreporting; i.e., 

underreporting multiplier = 1). 

•Empirical distribution. An empirical distribution was simulated by using simple 

nonparametric bootstrapping, which is the random resampling of observed data with 

replacement. Empirical distribution was applied to survey or surveillance data. 

•Program Evaluation and Review Technique (PERT) distribution. The PERT 

distribution, the location/scale family extension of the beta distribution, is very flexible and can 

be useful when limited information about a finite support distribution is available. It is defined 

by the upper and lower bounds, the most likely value (modal value or mode), and a fourth 

parameter that controls the flatness of the distribution (the default value is 4). The smaller the 

fourth parameter, the flatter the distribution. Equations are available to convert between the first 

3 parameters. PERT distribution was used when data from survey or surveillance were not 

available or insufficient to account for uncertainty. Mean and confidence limits from literature 

were used as parameters for PERT distribution. When the mode and only 1 of the upper and 

lower bounds was available, we calculated the other 2 parameters according to the assumption 

that the odds of the upper was 1.5 and lower bounds 1–1.5 times the odds of the mode. 
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•Posterior distribution. Posterior distribution was generated from Bayesian regression 

models. Because we used distributions as model inputs, use of posterior distribution has the 

advantage of being approximate to the underlying true distribution. 

In the model, successive factors are applied by multiplication to obtain proportional 

increases or decreases in the observed counts or incidence of illness. A random sample (n = 

10,000) was drawn for a factor from a given distribution. Two distributions were multiplied 

sequentially depending on their positions in the model. Note that if a degenerate distribution was 

involved in the multiplication, a value must be applied to the corresponding value in other 

distributions. Take counts of illnesses from FoodNet as an example; the ratio of the average of 

the 2017–2019 US population to the 2017 Georgia population must be multiplied with the 

number of illnesses in Georgia in 2017. In addition, a Bayesian model predicted probability of 

medical care seeking for a patient must be multiplied with the count for that person. 

Domestically acquired foodborne burden estimates were described by using the mean and a 

quantile-based 90% confidence interval derived from the resulting distribution of the final 

product of all factors. 

Factors in the Surveillance Data Scaled-Up Model 

Observed Laboratory-Confirmed Illnesses for Estimates of Illnesses  

Campylobacter, Shiga toxin-producing Escherichia coli (STEC) O157, non-O157 

STEC, Salmonella nontyphoidal serotypes. We used 2017–2019 FoodNet data from 10 sites 

(Appendix 1 Table 3). A total of 30 year- and site-specific counts were used as the source 

distribution to produce 10,000 bootstrap draws. Campylobacter or nontyphoidal Salmonella 

illnesses in FoodNet were diagnosed by culture only, culture independent diagnostic tests 

(CIDTs) and reflex culture, and CIDT only. Becasue we considered CIDT as the standard in this 

work, the observed counts of illnesses for FoodNet pathogens are stratified as either culture-

diagnosed or CIDT-diagnosed (only if CIDT test was positive) (Appendix 1 Figures 4, 5). 

Seventeen percent of Salmonella nontyphoidal isolates had no information on serotypes. 

We randomly assigned those isolates to 6 serotypes with weights proportional to the 6 serotypes 

of all known nontyphoidal Salmonella spp. 
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For STEC, 4,152 (48%) isolates did not have information on the O antigen. Because 

STEC O157 and other non-O157 STEC strains have different symptom profiles, we developed a 

random forest model by using data from 4,494 isolates with a known O antigen to predict O157 

vs non-O157 and by using patient demographics (age group, race, ethnicity, sex), symptoms 

(diarrhea, bloody diarrhea, fever), illness severity (hospitalization, hemolytic uremic syndrome), 

outbreak association, history of international travel, FoodNet site, and year of illness. This model 

was then applied to the 4,152 isolates to predict the E. coli serogroup. 

Listeria monocytogenes. Observed laboratory-confirmed invasive L. monocytogenes 

infections were from the nationwide Centers for Disease Control and Prevention (CDC) Listeria 

Initiative surveillance system during 2016–2019. Invasive Listeria was defined as isolation of L. 

monocytogenes from a specimen collected from a normally sterile site (blood or cerebrospinal 

fluid) or product of conception (for pregnancy-associated illnesses: placenta, amniotic fluid, 

umbilical cord, or chorion). During surveillance, mother-infant pairs are counted as a single case; 

however, we counted both mother and infant as separate cases of illness if L. monocytogenes was 

isolated from a specimen from that person or if the mother or infant of an invasive case reported 

symptoms (e.g., fever, vomiting, diarrhea). Infants with an unknown outcome were 

proportionally distributed according to infants with a known outcome. Bootstrapping samples of 

the 4 annual counts were used in the analysis. 

Clostridium perfringens. We used data from the 2010–2019 Foodborne Disease 

Outbreak Surveillance System (FDOSS). We used 10 annual counts of illnesses to produce 

10,000 bootstrapping draws. 

Year or Geography for Illnesses, Hospitalizations, and Deaths  

The observed laboratory-confirmed illnesses were adjusted for surveillance year and 

FoodNet site population to obtain projected US laboratory-confirmed illnesses (Appendix 1 

Table 3). Active surveillance is preferred over passive surveillance and outbreak surveillance in 

burden estimates. Using the 2017–2019 FoodNet data produced the estimated average illness 

burden over that period. We used the average of the 2017–2019 US Census population to 

account for variation caused by the year and geographic coverage of surveillances. For FoodNet 

data, observed laboratory-confirmed illnesses for a given year and a given site were multiplied 

by the ratio of the average 2017–2019 US Census population (326,763,427) to the population 
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size of that site in that year. For L. monocytogenes and C. perfringens, national data were used. 

Thus, only the year was accounted for by multiplying the observed laboratory-confirmed 

illnesses for a given year by the ratio of the average 2017–2019 US Census population to the US 

Census population in that year. 

Underdiagnosis Multiplier for Illnesses 

In laboratory-based surveillance, underdiagnosis can occur if the ill person does not seek 

medical care, a specimen is not submitted for laboratory testing, the laboratory does not test for 

the causative agent, or the test does not identify the pathogen. We created multipliers to account 

for underdiagnosis (medical care seeking and specimen submission, laboratory testing, and test 

sensitivity) (Appendix 1 Table 4). The specific approach used for each pathogen was data driven. 

The approach used for Campylobacter spp., STEC O157, non-O157 STEC, nontyphoidal 

Salmonella spp. serotypes and L. mon0cytogenes is described. Because of the lack of data, we 

assumed the underdiagnosis multipliers for C. perfringens were the same as that for nontyphoidal 

Salmonella serotypes. 

Medical Care Seeking and Specimen Submission 

Campylobacter, STEC O157, non-O157 STEC, Salmonella nontyphoidal serotypes. 

The 2018–2019 FoodNet Population Survey collected demographics and symptoms among 

participants who had acute diarrhea illness, defined as diarrhea (3 loose stools in 24 hours) 

lasting >1 day or resulting in restricted activities, excluding respondents with a chronic illness in 

which diarrhea or vomiting was a major symptom and who said that their recent diarrhea or 

vomiting episode was caused by a chronic digestive issue (such as colitis or irritable bowel 

syndrome). The FoodNet Population Survey also asked each participant if they sought medical 

care and if they submitted a specimen, which allowed us to examine if demographic or symptom 

information could predict medical care seeking and specimen submission. We chose a Bayesian 

approach for this analysis because the posterior distribution matched our need to produce a 

distribution to inform a component of our model. 

Using FoodNet Population Survey data, we developed Bayesian models for predicting 

probabilities of medical care seeking in all participants and another model for predicting 

probabilities of specimen submission among those who sought medical care. Both models had 

noninformative priors, 4 chains, and 5,000 iterations with a warm-up of 2,500 iterations. The 
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model for specimen submission included age groups, sex, race ethnicity, bloody diarrhea, fever, 

and the interaction term between bloody diarrhea and fever. The model for medical care seeking 

included 2 additional terms: the interaction between age groups and bloody diarrhea and the 

interaction between age groups and fever. 

The two models were then applied to the 2017–2019 FoodNet surveillance data to predict 

the probabilities of medical care seeking and the probabilities of specimen submission for each 

patient. To reduce the burden of computing, 1 draw of the predicted probabilities was randomly 

made for each patient. The reciprocal of the predicted probabilities for a patient was then 

sequentially applied to the count of observed laboratory-confirmed illness of that person (i.e., 1 × 
1

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠
 × 1

𝑃𝑃𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠
) (Appendix 1 Figure 1, panel A). 

L. monocytogenes. We used the approach laid out previously to estimate the 

underdiagnosis multiplier (Appendix 1 Figure 3, panel B) (1). We assumed all L. monocytogenes 

cases were severe. Different from Campylobacter spp., STEC O157, non-O157 STEC, and 

Salmonella nontyphoidal serotypes, the multiplier for medical care seeking and specimen 

submission was calculated as the product of 1
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠

 × 1
𝑃𝑃𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠

 

Laboratory Testing 

Campylobacter spp., STEC O157, non-O157 STEC, Salmonella nontyphoidal 

serotypes. The number of specimens receiving a laboratory test was derived from the FoodNet 

Laboratory Survey. Each site reported the proportion of isolates that were routinely tested by 

year and pathogen both on and off site. The proportion for the listed FoodNet pathogens was 

close to 1.  

L. monocytogenes. Laboratory testing data for L. monocytogenes were lacking. We 

assumed that most persons with listeriosis who submitted a specimen were tested for Listeria 

according to disease severity. 

Test Sensitivity 

Campylobacter spp., STEC O157, non-O157 STEC, Salmonella nontyphoidal 

serotypes. We reported CIDT-diagnosed illnesses. However, some Campylobacter spp. and 

Salmonella nontyphoidal isolates were tested by culture only. The culture-diagnosed illnesses 

needed to be converted to CIDT illnesses by accounting for sensitivity of culture against CIDT. 
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The pathogen-specific test sensitivities were estimated from the FoodNet surveillance data. CDC 

encourages laboratories to culture specimens with positive CIDT results (i.e., reflex culture or 

follow-up culture). In the 2017–2019 FoodNet surveillance data, ≈36% of Campylobacter spp. 

and Salmonella nontyphoidal isolates were tested by both CIDT and reflex culture, allowing us 

to estimate the sensitivity of reflex culture as the counts of culture-positive and CIDT-positive 

isolates divided by the sum of the counts of culture-positive and CIDT-positive isolates and 

counts of culture-negative and CIDT-negative isolates. Because the sensitivity of culture 

decreases with the time elapsed after specimen collection, reflex culture is considered to have 

lower sensitivity compared with culture at the time of specimen collection. Thus, we used the 

sensitivity of the reflex culture as the lower boundary of the PERT distribution for timely culture. 

The mode and upper boundaries were estimated on the basis of the assumption that the odds of 

the upper boundary was 1.5 and lower boundary was 1–1.5 times the odds of the mode. 

Listeria monocytogenes. CDIT is not routinely performed for L. monocytogenes, and we 

did not identify any new publications describing test sensitivity for this bacterium. We used 

blood culture sensitivity from a published study that we cited in a previous report (5). 

Underreporting Multiplier for Illnesses 

Campylobacter spp., STEC O157, non-O157 STEC, Salmonella nontyphoidal 

serotypes. FoodNet is an active surveillance system. Thus, we assumed that there was no 

underreporting for FoodNet pathogens. 

L. monocytogenes. Considering the severity of Listeria infections, we assumed that there 

was no underreporting for Listeria-associated illnesses. This assumption is supported by the 

negligible difference in counts of illness from the Listeria Initiative within the FoodNet areas 

versus the counts from FoodNet. 

C. perfringens. Of the CDC surveillance systems, only FDOSS includes illnesses 

associated with C. perfringens. We attempted to maximize the robustness of our approach 

because of the uncertainties around acquiring laboratory confirmation and determining outbreak 

association. To estimate the underreporting multiplier, we applied the methods developed as 

previously described (1). In brief, the FoodNet system has information on whether an illness is 

associated with an outbreak, which allowed us to calculate outbreak-associated laboratory-
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confirmed illnesses. Underreporting multipliers can then be calculated as the ratios of total 

laboratory-confirmed illnesses to outbreak-associated laboratory-confirmed illnesses in FoodNet. 

We used 5 years of FoodNet data (2015–2019) for 11 pathogens to ensure all pathogens 

had nonzero outbreak-associated illnesses. The ratios were calculated (Appendix 1 Table 5). The 

2 extreme ratios from Yersinia enterocolitica (460.0:1) and Cyclospora cayetanensis (3.5:1) 

were dropped. We used a minimum (7:1), maximum (297:1), and median (25:1) of the 9 ratios to 

define the lower and upper boundaries and the mode. To specify a variance parameter, we 

computed medians of the ratios across states according to year and then the median of those 

medians across years. The medians analysis yielded a value of 28.88, which we used as the target 

mean of our multiplier distribution. With minimum, mode, and maximum values fixed, we 

looked for a variance parameter that forced a PERT mean of ≈28.88. The PERT variance 

parameter was chosen to equal 64, producing a PERT distribution with a mean of 28.86. 

Proportion of Domestically Acquired Illnesses, Hospitalizations, and Deaths  

Campylobacter spp., STEC O157, non-O157 STEC, Salmonella nontyphoidal 

serotypes. Laboratory-confirmed illness related to international travel generally accounted for a 

small proportion of total laboratory-confirmed illness (Appendix 1 Table 6). FoodNet collected 

information on international travel history of patients. Because of the small number of patients 

with a history of international travel, the proportions of international travel according to year and 

state were not computed. Instead, we calculated the proportion of international travel in all 

FoodNet sites combined during 2017–2019 for each pathogen. This overall proportion was used 

as the modal value in the PERT distribution, and uncertainty was determined on the basis of a 

50% increase or decrease from the modal value on an odds scale. 

L. monocytogenes. The Listeria Initiative recorded that 3.18% of patients traveled 

internationally. The difference between pregnant versus nonpregnant women was negligible. 

C. perfringens. The proportion of persons with C. perfringens infections associated with 

international travel was determined. The proportion was assumed to be low because the 

incubation period for C. perfringens infection is short. 

Proportion of Foodborne Illnesses, Hospitalizations, and Deaths 

Campylobacter spp., STEC O157, non-O157 STEC, Salmonella nontyphoidal 

serotypes. For the foodborne attribution proportion, a calibrated and synthesized distribution for 
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each pathogen was obtained from the results of an expert elicitation (6). In brief, 48 experts 

representing a wide range of professional and scientific backgrounds were assigned to pathogen 

panels according to their expertise, education, work history, professional interest, experience, 

and knowledge of the individual pathogens in the study. Experts provided 5th, 50th, and 95th 

percentile estimates for the proportion of domestically acquired illnesses that are transmitted 

through each of the 5 major pathways, including the foodborne pathway. Those estimates were 

used to produce point estimates and 95% uncertainty intervals for pathogens and pathways. The 

point estimates were used as modal values, and uncertainty limits were used as the low and high 

boundaries for PERT distribution in our analysis (Appendix 2). 

L. monocytogenes and C. perfringens. Foodborne illness caused by L. monocytogenes 

was assumed to be high and an appropriate PERT distribution was applied. Foodborne illness 

caused by C. perfringens was assumed to be high (Appendix 1 Table 6). 

Incidence Rates for Hospitalizations and Deaths 

Incidence rates of hospitalizations were calculated by using surveillance data. The 

bootstrapping draws were according to those incidence rates. Incidence rates of hospitalizations 

and deaths among laboratory-confirmed illnesses caused by Campylobacter spp., STEC O157, 

non-O157 STEC, Salmonella nontyphoidal serotypes were calculated by year and site by using 

the 2017–2019 FoodNet data. Incidence rates of hospitalizations and deaths among patients with 

illnesses caused by L. monocytogenes were calculated by using 2016–2019 Listeria Initiative 

surveillance system data. Incidence rates of hospitalizations and deaths among patients with 

illnesses caused by C. perfringens were calculated by using 2010–2019 FDOSS data. 

Underdiagnosis Multiplier for Hospitalizations and Deaths 

As previously described (1), a subjective underdiagnosis multiplier of 2 was used to 

estimate hospitalizations and deaths. In this work, we improved our analysis to calculate an 

underdiagnosis multiplier by using available data. 

An underdiagnosis multiplier was calculated for Campylobacter spp., STEC O157, non-

O157 STEC, Salmonella nontyphoidal serotypes as follows. Using linked laboratory and hospital 

discharge data from a healthcare organization and its affiliated hospital in previous reports, 5,804 

of 7,862 of adult patients and 351 of 882 child patients with a discharge code for infectious 

intestinal disease, nonspecific gastroenteritis, or both had a fecal sample submitted for bacterial 



 

Page 10 of 18 
 

culture (7,8). Taken together, 6,155 (70%) of 8,744 patients submitted a specimen. Thus, 70% 

was used as the mode for the PERT distribution of the proportion of specimen submissions. The 

uncertainty was calculated on the assumption that the odds of the upper boundary was 1.5 and 

lower boundary was 1–1.5 times the odds of the mode. The distributions for laboratory test 

proportion and sensitivity were used for estimates of illnesses. The underdiagnosis multiplier for 

illnesses was used for hospitalizations and deaths caused by L. monocytogenes. The 

underdiagnosis multiplier for hospitalizations caused by FoodNet pathogens was used for C. 

perfringens because of limited data. 
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Appendix 1 Table 1. Pathogens for which surveillance data were used to estimate illnesses, hospitalizations, and deaths by using 
the surveillance data scaled-up model 
Foodborne Diseases Active Surveillance Network 
(FoodNet) Listeria Initiative 

Foodborne Disease Outbreak 
Surveillance System (FDOSS) 

Campylobacter spp.  Invasive Listeria monocytogenes; 
nonpregnancy-associated 

listeriosis; pregnancy-associated 
listeriosis (mothers and live-born 

infants); fetal deaths 

Clostridium perfringens 
Shiga toxin-producing Escherichia coli (STEC) 
 STEC O157 
 non-O157 STEC 
Nontyphoidal Salmonella spp. serotype 
 Enteritidis 
 I 4,[5],12:i:- 
 Javiana 
 Newport 
 Typhimurium 
 Other 

 
 
 
Appendix 1 Table 2. Pathogens for which administrative and other data sources were used to estimate illnesses, hospitalizations, 
and deaths by using the population data scaled-down model 
Published studies* National Inpatient Sample†  
Norovirus Toxoplasma gondii 
*Published studies used for norovirus in scaled-down model (3,4). 
†National Inpatient Sample database developed by the Healthcare Cost and Utilization Project (https://hcup-us.ahrq.gov/nisoverview.jsp). 

 
 
 
Appendix 1 Table 3. Data source (distribution) for counts of illnesses and year and geography of the surveillance data scaled-up 
model for 6 pathogens* 

Pathogen 
Observed counts of illness  Year or geography 

Test method Data source, distribution Data source, distribution 
Campylobacter spp. Culture, CIDT FoodNet, by year and site (empirical)  Ratio of average 2017–2019 US 

population to FoodNet site population, by 
year (degenerate) 

STEC O157 CIDT  
non-O157 STEC CIDT  
Nontyphoidal Salmonella 
spp. serotypes 

Culture, CIDT  

Listeria monocytogenes Culture Listeria Initiative, by year (empirical)  Ratio of average of 2017–2019 US 
population to US population, by year 

(degenerate) 
Clostridium perfringens Culture FDOSS, by year (empirical)  

*CIDT, culture-independent diagnostic test; FDOSS, Foodborne Disease Outbreak Surveillance System; STEC, Shiga toxin-producing Escherichia 
coli. 

 
  

https://pubmed.ncbi.nlm.nih.gov/29655383
https://pubmed.ncbi.nlm.nih.gov/29655383
https://doi.org/10.1017/S0950268818000882
https://pubmed.ncbi.nlm.nih.gov/32091947
https://doi.org/10.1089/fpd.2019.2773
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Appendix 1 Table 4. Data sources (distribution) for the underdiagnosis multiplier of the surveillance data scaled-up model for 
illnesses associated with 6 pathogens* 

Pathogen 
Underdiagnosis multiplier of illness, distribution 

Medical care seeking/specimen submission % Laboratory test Test sensitivity 
Campylobacter spp. Predicted using Bayesian models 

developed from the FoodNet Population 
Survey data (posterior) 

FoodNet Laboratory 
Survey (empirical) 

FoodNet reflex culture 
data (PERT) 

STEC O157 1 (degenerate) 
non-O157 STEC 1 (degenerate) 
Nontyphoidal Salmonella spp. 
serotypes 

FoodNet reflex 
culture data (PERT) 

Listeria monocytogenes Assumed to be high (PERT) Assumed to be high 
(PERT) 

Literature (PERT) 

Clostridium perfringens Multiplier for nontyphoidal Salmonella was used. 
*PERT, program evaluation review technique; STEC, Shiga toxin-producing Escherichia coli. 

 

 
 
Appendix 1 Table 5. Total and outbreak-associated illnesses by pathogen during 2015–2019 in the FoodNet database* 

Pathogen 
Total no. laboratory-confirmed 

cases 
No. outbreak-associated, 

laboratory-confirmed cases Ratio 
Yersinia enterocolitica 920 2 460.0:1 
Campylobacter spp. 46,271 156 296.6:1 
Salmonella enterica serotype Typhi 326 3 108.7:1 
Cryptosporidium spp. 5,339 181 29.5:1 
non-O157 STEC 8,108 292 27.7:1 
Listeria monocytogenes 737 30 24.6:1 
Vibrio spp. 1,860 83 22.4:1 
Shigella spp. 13,129 687 19.1:1:1 
Salmonella spp., nontyphoidal 41,704 2846 14.7:1 
STEC O157 3,130 409 7.7:1 
Cyclospora cayetanensis 1,376 389 3.5:1 
STEC, Shiga toxin-producing Escherichia coli. 

 
 
 
Appendix 1 Table 6. Data source (distribution) for underreporting, percent travel related, and percent foodborne of the surveillance 
data scaled-up model for 6 pathogens* 
Pathogen Underreporting % Travel related % Foodborne 
Campylobacter spp. 1 (degenerate) FoodNet data (PERT) Structured expert judgment 

(empirical) STEC O157 
non-O157 STEC 
Salmonella nontyphoidal 
serotypes 
Listeria monocytogenes 1 (degenerate) Listeria Initiative (PERT) Assumed to be high (PERT) 
Clostridium perfringens FoodNet data (PERT) Assumed to be low (PERT) Assumed to be high (PERT) 
*PERT, program evaluation review technique; STEC, Shiga toxin-producing Escherichia coli. 
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Appendix 1 Figure 1. Schematic illustration of surveillance data scaled-up model used to estimate 

illnesses, hospitalizations, and deaths according to numbers of laboratory-confirmed illnesses reported to 

surveillance. A) Estimates of illnesses; B) estimates of hospitalizations and deaths. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 is the counts 

of laboratory-confirmed illnesses reported to disease surveillance. Year is a deterministic factor to 

standardize counts in given year to years 2017–2019. Geo is a deterministic factor to scale counts from 

the Foodborne Diseases Active Surveillance Network (FoodNet) sites up to the entire United States or 

equals 1 if counts are from a national disease surveillance system. UnderDx is an underdiagnosis 

multiplier that is the product of medical care seeking (MCS), specimen submission (SS), laboratory test 

(LabTest), and sensitivity of laboratory test (LabSens) factors. MCS is a factor to scale medical care 

seekers up to all illnesses with a Bayesian prediction model approach for FoodNet pathogens and severe 

and mild illness approach for invasive Listeria monocytogenes. In the Bayesian prediction model 

approach, MCS is the reciprocal of the predicted probability of medical care seeking (i.e., 
1

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠
). A) SS is a factor to scale patients who submitted specimens up to all ill visits with a 

Bayesian prediction model approach for FoodNet pathogens and a severe illness approach for invasive 

Listeria monocytogenes. In the Bayesian prediction model approach, SS is the reciprocal of the predicted 

probability of specimen submission (i.e., 1
𝑃𝑃𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠

). B) SS is a factor to scale patients who 

submitted specimens up to all hospitalized patients with a reciprocal version for FoodNet pathogens (i.e., 
1

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑃𝑃𝑃𝑃 𝑎𝑎𝑠𝑠𝑃𝑃𝑃𝑃𝑎𝑎 ℎ𝑃𝑃𝑠𝑠𝑃𝑃𝑖𝑖𝑃𝑃𝑎𝑎𝑜𝑜𝑖𝑖𝑜𝑜𝑠𝑠𝑜𝑜  𝑃𝑃𝑠𝑠𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑠𝑠 
) and severe and mild illness approach for invasive 

Listeria monocytogenes. LabTest is a factor to scale tests performed up to specimens submitted. 
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LabSens is a factor to scale positive tests up to true positive specimens. UnderRep is a factor to scale 

illnesses reported to a passive surveillance or outbreak surveillance system up to illnesses reported to an 

active surveillance system (i.e., to harmonize counts from different types of surveillance for further 

common adjustment). Dom is a factor to scale total counts down to counts that are domestically acquired. 

F is a factor to scale counts down to counts that are foodborne. 

 

Appendix 1 Figure 2. Schematic illustration of the population data scaled-down model used to estimate 

illnesses, hospitalizations, and deaths according to the US population size and disease incidence rates. 

A) Estimates of illnesses; B) estimates of hospitalizations and death. US Population refers to the 

population at risk (i.e., average of the 2017–2019 US census population). Incidence rate is new cases per 

year in a given population. UnderDx is underdiagnosis multiplier. For norovirus, we used an illness 

incidence rate from a publication indicating specimen submission, laboratory test, and test sensitivity. 

Thus, only medical care seeking was considered here. Dom is a factor to scale total counts down to 

counts that are domestically acquired. F is a factor to scale counts down to counts that are foodborne. 
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Appendix 1 Figure 3. Estimations of annual illnesses and underdiagnosis multiplier for Listeria 

monocytogenes in nonpregnant women. A) Estimation of annual illnesses. Histogram of observed 

laboratory-confirmed illness reflects annual counts reported to the Listeria Initiative during 2016–2019 

adjusted for under-diagnosis, percent domestically acquired, and percent foodborne. We assumed there 

was no underreporting on the basis of illness severity. Year is a deterministic factor to standardize counts 

in a given year to the years 2017–2019. Geo denotes geography and is a deterministic factor to scale 

counts from the Foodborne Diseases Active Surveillance Network (FoodNet) sites up to the entire United 

States or equals 1 if counts are from a national disease surveillance system. B) Underdiagnosis multiplier 

for Listeria illnesses. The histograms represent the factors contributing to underdiagnosis (medical care 

seeking, specimen submission, laboratory testing, and laboratory test sensitivity). 
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Appendix 1 Figure 4. Schematic diagram of the estimation of annual illnesses caused by Campylobacter 

spp. Histogram of observed laboratory-confirmed illnesses reflects annual counts reported by 10 FoodNet 

sites during 2017–2019. We assumed there was no underreporting because FoodNet is an active 

surveillance system. 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝐶𝐶𝑠𝑠and 𝑃𝑃𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶 𝑠𝑠𝐶𝐶𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝐶𝐶𝐶𝐶were computed for individual cases and 

implemented as degenerate distributions. Year is a deterministic factor to standardize counts in a given 

year to the years 2017–2019. Geo denotes geography and is a deterministic factor to scale counts from 

the Foodborne Diseases Active Surveillance Network (FoodNet) sites up to the entire United States or 

equals 1 if counts are from a national disease surveillance system. M, million. 
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Appendix 1 Figure 5. Schematic diagram of the estimation of annual hospitalizations caused by 

Campylobacter spp. Histogram of observed laboratory-confirmed illness are annual counts reported by 10 

FoodNet sites during 2017–2019. Year is a deterministic factor to standardize counts in a given year to 

the years 2017–2019. Geo denotes geography and is a deterministic factor to scale counts from the 

Foodborne Diseases Active Surveillance Network (FoodNet) sites up to the entire U.S. or equals to 1 if 

counts are from a national disease surveillance. M, million. 
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Appendix 1 Figure 6. Schematic diagram of the estimation of annual illnesses for norovirus. M, million. 
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