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Appendix Table 1. Spillover events used in a predictive model for estimating annual Ebolavirus spillover potential* 

ID Country 
Ebolavirus 

species Year Lat Long Source 
1 Gabon Zaire 2001 0.0550 11.8109 (1), (2) 
2 Gabon Zaire 2001 0.7001 14.1580 (3), (4), (5) 
3 ROC Zaire 2002 0.1333 14.2667 (2), (5) 
4 ROC Zaire 2002 0.2987 14.5075 (6) 
5 ROC Zaire 2003 0.0682 14.4200 (2), (5), (7) 
6 ROC Zaire 2003 0.5619 14.6573 (5) 
7 South Sudan Sudan 2004 4.5568 28.4016 (8) 
8 ROC Zaire 2004 0.9064 15.1751 (9) 
9 ROC Zaire 2005 0.4944 14.6786 Trevor Shoemaker, pers. comm., 2022 Jun 6  
10 DRC Zaire 2007 −5.259 21.4095 (2) 
11 Uganda Bundibugyo 2007 0.7038 30.1175  (7), (10), (11) 
12 DRC Zaire 2008 −5.24 21.4103 (7), (12) 
13 Uganda Sudan 2011 0.6444 32.7276 (7), (13), (14) 
14 Uganda Sudan 2012 0.6214 31.1685 (7), (12) 
15 DRC Bundibugyo 2012 2.7718 27.6196 (7) 
16 Uganda Sudan 2012 0.5784 32.5480 (11) 
17 Guinea Zaire 2013 8.6225 −10.064 (7) 
18 DRC Zaire 2014 −0.714 20.5302 (15) 
19 DRC Zaire 2017 3.2990 23.5430 (16), (17) 
20 DRC Zaire 2018 −0.737 18.4214 (18); Trevor Shoemaker, pers. comm., 2022 Jun 6 
21 DRC Zaire 2018 0.6059 29.3065 Trevor Shoemaker, pers. comm., 2022 Jun 6 
22 DRC Zaire 2020 0.0300 18.2800 Trevor Shoemaker, pers. comm., 2022 Jun 6 
23 DRC Zaire 2022 0.0414 18.2770 Trevor Shoemaker, pers. comm., 2022 Jun 6 
24 Uganda Sudan 2022 0.6697 31.4686 Trevor Shoemaker, pers. comm., 2022 Jun 6 
*CDC, Centers for Disease Control and Prevention; DRC, Democratic Republic of the Congo; ROC, Republic of the Congo. 

 
 
Appendix Table 2. Variable descriptions for a predictive model for estimating annual Ebolavirus spillover potential 

Variable Units 

Original 
spatial 

resolution 

Years 
represented 

in data 

Temporal 
range of 
analysis Citation 

Elevation Meters 1×1 km 2000 Single time point (19) 
Forest cover (FC) Percentage 30×30 m 2000–2022 % FC during 

year of spillover 
(20) 

 
Forest 
fragmentation 

Binary 30×30 
(calculated 
using FC 

data) 

2000–2022 % 
Fragmentation 
during year of 

spillover 

(21) 
 

Forest loss Binary 30×30 m 2001–2022 % forest loss 
during same 

year, 1 y prior, 
and 2 

years before 
spillover 

(20) 
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Variable Units 

Original 
spatial 

resolution 

Years 
represented 

in data 

Temporal 
range of 
analysis Citation 

Night-time land 
surface 
temperature 
(NTLST) 

Degrees 
Kelvin 

0.05 
degrees 

2000–2022 Time Averaged 
mean monthly 

values 

(22) 

Potential 
evapotranspiration 
(PET) 

mm day-1 1×1 km 2000–2022 Time Averaged 
mean monthly 

values 

(23) 

Precipitation Millimeters 1×1 km 1970–2000 Time Averaged 
mean monthly 

values 

(19) 

Temperature 
seasonality 

Standard 
Deviation 

1×1 km 1970–2000 Time Averaged 
mean monthly 

values 

(19) 

Precipitation 
seasonality 

Coefficient 
of Variation 

1×1 km 1970–2000 Time Averaged 
mean monthly 

values 

(19) 

Population count Population 
per grid cell 

30 arc 
seconds 
(≈1× km) 

2000–2022 Population per 
grid cell during 
year of spillover 

(24) 
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Appendix Figure 1. Maps displaying temporospatial data used in a predictive model for estimating 

annual Ebolavirus spillover potential. 
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Appendix Figure 2. Map of Ebolavirus spillover sites, 2001–2021. Symbols indicate Ebolavirus species. 

Each gray dot represents a randomly generated location-year where spillover was not identified from 

2001-2021. 

 

 

Appendix Figure 3. Receiver operator curves (ROC) visualizing sensitivity and specificity in predicting 

ebolavirus spillover from the All-species full and reduced analyses (A) and ZEBOV-only full and reduced 

analyses (B) based on leave-one-year-out cross validation and corresponding confusion matrices 

resulting from each analysis. 
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Appendix Figure 4. Map representing the ratio between estimated relative spillover odds in 2022 

resulting from the multispecies relative to the ZEBOV-only analysis. Values >1 represent locations where 

relative spillover odds estimates from the Multi-species analysis were higher, while values <1 represent 

locations where estimates from the ZEBOV-only analysis were higher. ZEBOV, Ebolavirus zaire. 
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Appendix Figure 5. Relative spillover odds ratio estimates in 2022 resulting from sensitivity analysis 

which used health center coordinates throughout equatorial Africa as controls to train model of ebolavirus 

spillover. There were 57,920 heath facilities used as controls and at which estimates of relative spillover 

odds were made. Each dot in the figure represents a health facility. A) Multispecies model sensitivity; B) 

Ebolavirus zaire only model. 
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Appendix Figure 6. Estimated spillover relative odds ratios at the locations of health facilities resulting 

from the primary model trained on random absence points throughout the study area compared to a 

model whose controls were health facilities for the multispecies (A) and ZEBOV-only (B) analyses. 

ZEBOV, Ebolavirus zaire. 
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Appendix Figure 7. Sensitivity analysis of different forest definition cutoff values used to classify 

fragmented forests and their impact on relative spillover odds estimates. A) Multispecies model; B) 

ZEBOV-only model. Based on previous methods (21), fragmented forests are determined based on a 

binary classification of forests. Maps corresponding to each analysis represent the ratio between the 

estimated ratio of odds ratios (RORs) using the 80% forest cover as a cutoff versus 70% forest cover as a 

cutoff to define forests. Purple locations are those whose ROR estimates were higher when forest were 

defined as >80% forest cover. Green areas are those whose ROR estimates were higher when forests 

were defined as >70% forest cover. ZEBOV, Ebolavirus zaire. 



 

Page 11 of 11 

Appendix Figure 8. Ratio between estimated relative spillover odds in 2022 resulting from full models in 

the multispecies (A) and Zaire-only (B) analyses, relative to the reduced versions of the models that did 

not make predictions with covariates related to forest changes. 
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