Article DOI: https://doi.org/10.3201/eid3104.241193

EID cannot ensure accessibility for supplementary materials supplied by authors. Readers who have difficulty accessing supplementary content should contact the authors for assistance.

Predictive Model for Estimating Annual *Ebolavirus* Spillover Potential

Appendix

Appendix Table 1. Spillover events used in a predictive model for estimating annual Ebolavirus spillover potential*

		Ebolavirus				
ID	Country	species	Year	Lat	Long	Source
1	Gabon	Zaire	2001	0.0550	11.8109	(1), (2)
2	Gabon	Zaire	2001	0.7001	14.1580	(3), (4), (5)
3	ROC	Zaire	2002	0.1333	14.2667	(2), (5)
4	ROC	Zaire	2002	0.2987	14.5075	(6)
5	ROC	Zaire	2003	0.0682	14.4200	(2), (5), (7)
6	ROC	Zaire	2003	0.5619	14.6573	(5)
7	South Sudan	Sudan	2004	4.5568	28.4016	(8)
8	ROC	Zaire	2004	0.9064	15.1751	(9)
9	ROC	Zaire	2005	0.4944	14.6786	Trevor Shoemaker, pers. comm., 2022 Jun 6
10	DRC	Zaire	2007	-5.259	21.4095	(2)
11	Uganda	Bundibugyo	2007	0.7038	30.1175	(7), (10), (11)
12	DRC	Zaire	2008	-5.24	21.4103	(7), (12)
13	Uganda	Sudan	2011	0.6444	32.7276	(7), (13), (14)
14	Uganda	Sudan	2012	0.6214	31.1685	(7), (12)
15	DRC	Bundibugyo	2012	2.7718	27.6196	(7)
16	Uganda	Sudan	2012	0.5784	32.5480	(11)
17	Guinea	Zaire	2013	8.6225	-10.064	(7)
18	DRC	Zaire	2014	-0.714	20.5302	(15)
19	DRC	Zaire	2017	3.2990	23.5430	(16), (17)
20	DRC	Zaire	2018	-0.737	18.4214	(18); Trevor Shoemaker, pers. comm., 2022 Jun 6
21	DRC	Zaire	2018	0.6059	29.3065	Trevor Shoemaker, pers. comm., 2022 Jun 6
22	DRC	Zaire	2020	0.0300	18.2800	Trevor Shoemaker, pers. comm., 2022 Jun 6
23	DRC	Zaire	2022	0.0414	18.2770	Trevor Shoemaker, pers. comm., 2022 Jun 6
24	Uganda	Sudan	2022	0.6697	31.4686	Trevor Shoemaker, pers. comm., 2022 Jun 6

*CDC, Centers for Disease Control and Prevention; DRC, Democratic Republic of the Congo; ROC, Republic of the Congo.

Appendix Table 2.	Variable descrip	otions for a p	predictive m	odel for estimatin	g annual	<i>Ebolavirus</i> sp	oillover	potential
			Vee		anal			

		Original	Years	Temporal	
		spatial	represented	range of	
Variable	Units	resolution	in data	analysis	Citation
Elevation	Meters	1×1 km	2000	Single time point	(19)
Forest cover (FC)	Percentage	30×30 m	2000-2022	% FC during	(20)
				year of spillover	
Forest	Binary	30×30	2000-2022	%	(21)
fragmentation		(calculated		Fragmentation	
		using FC		during year of	
		data)		spillover	
Forest loss	Binary	30×30 m	2001–2022	% forest loss	(20)
				during same	
				year, 1 y prior,	
				and 2	
				years before	
				spillover	

Variable	Units	Original spatial resolution	Years represented in data	Temporal range of analysis	Citation
Night-time land surface temperature (NTLST)	Degrees Kelvin	0.05 degrees	2000–2022	Time Averaged mean monthly values	(22)
Potential evapotranspiration (PET)	mm day-1	1×1 km	2000–2022	Time Averaged mean monthly values	(23)
Precipitation	Millimeters	1×1 km	1970–2000	Time Averaged mean monthly values	(19)
Temperature seasonality	Standard Deviation	1×1 km	1970–2000	Time Averaged mean monthly values	(19)
Precipitation seasonality	Coefficient of Variation	1×1 km	1970–2000	Time Averaged mean monthly values	(19)
Population count	Population per grid cell	30 arc seconds (≈1× km)	2000–2022	Population per grid cell during year of spillover	(24)

References

- Lahm SA, Kombila M, Swanepoel R, Barnes RF. Morbidity and mortality of wild animals in relation to outbreaks of Ebola haemorrhagic fever in Gabon, 1994–2003. Trans R Soc Trop Med Hyg. 2007;101:64–78. <u>PubMed https://doi.org/10.1016/j.trstmh.2006.07.002</u>
- 2. Nkoghe D, Kone ML, Yada A, Leroy E. A limited outbreak of Ebola haemorrhagic fever in Etoumbi, Republic of Congo, 2005. Trans R Soc Trop Med Hyg. 2011;105:466–72. <u>PubMed</u> <u>https://doi.org/10.1016/j.trstmh.2011.04.011</u>
- 3. Leroy EM, Souquière S, Rouquet P, Drevet D. Re-emergence of Ebola haemorrhagic fever in Gabon. Lancet. 2002;359:712. <u>PubMed https://doi.org/10.1016/s0140-6736(02)07796-6</u>
- 4. Allela L, Boury O, Pouillot R, Délicat A, Yaba P, Kumulungui B, et al. Ebola virus antibody prevalence in dogs and human risk. Emerg Infect Dis. 2005;11:385–90. <u>PubMed</u> <u>https://doi.org/10.3201/eid1103.040981</u>
- 5. Pourrut X, Kumulungui B, Wittmann T, Moussavou G, Délicat A, Yaba P, et al. The natural history of Ebola virus in Africa. Microbes Infect. 2005;7:1005–14. <u>PubMed</u> <u>https://doi.org/10.1016/j.micinf.2005.04.006</u>
- Rouquet P, Froment JM, Bermejo M, Kilbourn A, Karesh W, Reed P, et al. Wild animal mortality monitoring and human Ebola outbreaks, Gabon and Republic of Congo, 2001–2003. Emerg Infect Dis. 2005;11:283–90. <u>PubMed https://doi.org/10.3201/eid1102.040533</u>

- 7. Mylne A, Brady OJ, Huang Z, Pigott DM, Golding N, Kraemer MUG, et al. A comprehensive database of the geographic spread of past human Ebola outbreaks. Sci Data. 2014;1:140042. <u>PubMed</u> <u>https://doi.org/10.1038/sdata.2014.42</u>
- 8. World Health Organization. Institutional repository for informational sharing: Ebola [cited 2022 June 6].

https://iris.who.int/discover?query=ebola&filtertype=subject&filter_relational_operator=equals&filter=Disease+Outbreaks

- 9. Caillaud D, Levréro F, Cristescu R, Gatti S, Dewas M, Douadi M, et al. Gorilla susceptibility to Ebola virus: the cost of sociality. Curr Biol. 2006;16:R489–91. <u>PubMed</u> <u>https://doi.org/10.1016/j.cub.2006.06.017</u>
- Leroy EM, Epelboin A, Mondonge V, Pourrut X, Gonzalez JP, Muyembe-Tamfum JJ, et al. Human Ebola outbreak resulting from direct exposure to fruit bats in Luebo, Democratic Republic of Congo, 2007. Vector Borne Zoonotic Dis. 2009;9:723–8. <u>PubMed</u> <u>https://doi.org/10.1089/vbz.2008.0167</u>
- Pigott DM, Golding N, Mylne A, Huang Z, Henry AJ, Weiss DJ, et al. Mapping the zoonotic niche of Ebola virus disease in Africa. Elife. 2014;3:e04395. <u>PubMed https://doi.org/10.7554/eLife.04395</u>
- Shoemaker T, MacNeil A, Balinandi S, Campbell S, Wamala JF, McMullan LK, et al. Reemerging Sudan Ebola virus disease in Uganda, 2011. Emerg Infect Dis. 2012;18:1480–3. <u>PubMed</u> <u>https://doi.org/10.3201/eid1809.111536</u>
- Grard G, Biek R, Tamfum J-J, Fair J, Wolfe N, Formenty P, et al. Emergence of divergent Zaire ebola virus strains in Democratic Republic of the Congo in 2007 and 2008. J Infect Dis. 2011;204:S776–84. <u>PubMed https://doi.org/10.1093/infdis/jir364</u>
- 14. Muyembe-Tamfum JJ, Mulangu S, Masumu J, Kayembe JM, Kemp A, Paweska JT. Ebola virus outbreaks in Africa: past and present. Onderstepoort J Vet Res. 2012;79:451. <u>PubMed</u> https://doi.org/10.4102/ojvr.v79i2.451
- 15. Maganga GD, Kapetshi J, Berthet N, Kebela Ilunga B, Kabange F, Mbala Kingebeni P, et al. Ebola virus disease in the Democratic Republic of Congo. N Engl J Med. 2014;371:2083–91. <u>https://doi.org/10.1056/NEJMoa1411099</u>
- 16. Nsio J, Kapetshi J, Makiala S, Raymond F, Tshapenda G, Boucher N, et al. 2017 Outbreak of Ebola virus disease in northern Democratic Republic of Congo. J Infect Dis. 2020;221:701–6. <u>PubMed</u> <u>https://doi.org/10.1093/infdis/jiz107</u>

- 17. ReliefWeb Perma.cc Records. Democratic Republic of Congo (DRC): Ebola outbreak emergency plan of action (EPoA) DREF Operation 1 [cited 2022 Jun 6]. https://perma.cc/PG7D-PEGQ
- 18. Lacroix A, Mbala Kingebeni P, Ndimbo Kumugo SP, Lempu G, Butel C, Serrano L, et al. Investigating the circulation of Ebola viruses in bats during the Ebola virus disease outbreaks in the Equateur and North Kivu Provinces of the Democratic Republic of Congo from 2018. Pathogens. 2021;10:557. <u>PubMed https://doi.org/10.3390/pathogens10050557</u>
- 19. Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatology. 2017;37:4302–15. <u>https://doi.org/10.1002/joc.5086</u>
- 20. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, et al. High-resolution global maps of 21st-century forest cover change. Science. 2013;342:850–3. <u>PubMed</u> <u>https://doi.org/10.1126/science</u>
- 21. Riitters K, Wickham J, O'Neill R, Jones B, Smith E. Global-scale patterns of forest fragmentation. Conservation Ecology. 2000;4:1–23. <u>http://www.jstor.org/stable/26271763</u>
- 22. Wan Z, Hook S, Hulley G. MOD11C3 MODIS/Terra Land Surface Temperature/Emissivity Monthly L3 Global 0.05Deg CMG V006 [Data set] [cited 2022 Jun 17]. NASA EOSDIS Land Processes Distributed Active Archive Center. <u>https://doi.org/10.5067/MODIS/MOD11C3.006</u>
- 23. Trabucco A, Zomer R. Global aridity index and potential evapotranspiration (ET₀) climate database version 3, 2022. <u>https://doi.org/10.6084/m9.figshare.7504448.v4</u>
- 24. Sims K, Reith A, Bright E, Kaufman J, Pyle J, Epting J, et al. LandScan Global 2022 data set. Oak Ridge National Laboratory. <u>https://doi.org/10.48690/1529167</u>

Appendix Figure 1. Maps displaying temporospatial data used in a predictive model for estimating annual *Ebolavirus* spillover potential.

Appendix Figure 2. Map of *Ebolavirus* spillover sites, 2001–2021. Symbols indicate *Ebolavirus* species. Each gray dot represents a randomly generated location-year where spillover was not identified from 2001-2021.

Appendix Figure 3. Receiver operator curves (ROC) visualizing sensitivity and specificity in predicting ebolavirus spillover from the All-species full and reduced analyses (A) and ZEBOV-only full and reduced analyses (B) based on leave-one-year-out cross validation and corresponding confusion matrices resulting from each analysis.

Ratio Multi-species ROR vs Zaire-only ROR

Appendix Figure 4. Map representing the ratio between estimated relative spillover odds in 2022 resulting from the multispecies relative to the ZEBOV-only analysis. Values >1 represent locations where relative spillover odds estimates from the Multi-species analysis were higher, while values <1 represent locations where estimates from the ZEBOV-only analysis were higher. ZEBOV, *Ebolavirus zaire*.

Appendix Figure 5. Relative spillover odds ratio estimates in 2022 resulting from sensitivity analysis which used health center coordinates throughout equatorial Africa as controls to train model of ebolavirus spillover. There were 57,920 heath facilities used as controls and at which estimates of relative spillover odds were made. Each dot in the figure represents a health facility. A) Multispecies model sensitivity; B) *Ebolavirus zaire* only model.

Appendix Figure 6. Estimated spillover relative odds ratios at the locations of health facilities resulting from the primary model trained on random absence points throughout the study area compared to a model whose controls were health facilities for the multispecies (A) and ZEBOV-only (B) analyses. ZEBOV, *Ebolavirus zaire*.

Appendix Figure 7. Sensitivity analysis of different forest definition cutoff values used to classify fragmented forests and their impact on relative spillover odds estimates. A) Multispecies model; B) ZEBOV-only model. Based on previous methods (*21*), fragmented forests are determined based on a binary classification of forests. Maps corresponding to each analysis represent the ratio between the estimated ratio of odds ratios (RORs) using the 80% forest cover as a cutoff versus 70% forest cover as a cutoff to define forests. Purple locations are those whose ROR estimates were higher when forest were defined as >80% forest cover. Green areas are those whose ROR estimates were higher when forests were defined as >70% forest cover. ZEBOV, *Ebolavirus zaire*.

Appendix Figure 8. Ratio between estimated relative spillover odds in 2022 resulting from full models in the multispecies (A) and Zaire-only (B) analyses, relative to the reduced versions of the models that did not make predictions with covariates related to forest changes.