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In Brazil, yellow fever virus (YFV) is transmitted 
in a sylvatic cycle between neotropical monkeys 

and canopy-dwelling Haemagogus and Sabethes spp.  
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We detected yellow fever virus in Haemagogus mosqui-
toes collected in 2022 in an Amazon rainforest bordering 
Manaus, Brazil. The viral genome sequence occupied a 
basal position within the South American I genotype 1E 
lineage. Our findings reinforce the Amazon Basin as a 
source for yellow fever virus re-emergence.
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mosquitoes, occasionally spilling over into humans 
by way of bridge vectors (i.e., mosquitoes that bite 
both hosts) (1). Mandatory yellow fever (YF) vacci-
nation combined with mosquito control initiatives 
have effectively eradicated the urban YF cycle; the 
last reported urban outbreak occurred in 1942 (2). 
Endemic to the Amazon Basin, the YFV sylvatic cycle 
remains the main reservoir for YFV spillover in Bra-
zil and was the source of the 2016–2021 YF epidemic, 
which expanded far east and south of the basin (2,3). 
Because sylvatic cycles are largely impervious to hu-
man intervention and eradication (2), surveillance is 
crucial in identifying areas at risk for virus spillover.

We conducted an entomological survey from 
May 2021 through June 2022 at the Adolpho Ducke 
Forest Reserve, 100 square kilometers of primary 

rainforest bordering Manaus in Amazonas state, Bra-
zil (Figure, panels A, B; Appendix Figure, https://
wwwnc.cdc.gov/EID/article/31/4/24-0108-App1.
pdf). We sampled mosquitoes at ground level and 
on 5-meter platforms with hand nets and aspirators 
as part of ongoing studies investigating mosquito 
communities at forest edges (4). We morphological-
ly identified a subsample of 687 female Haemagogus 
mosquitoes as Haemagogus janthinomys (81%), Hg. leu-
cocelaenus (12%), Hg. baresi (6%), or Haemagogus spp. 
(1%). We screened mosquitoes in pools of ≤10 speci-
mens, grouped by species, site, height, and collection 
date (n = 378 pools; mean 1.496 [SD 1.162] specimens/
pool; ) (Appendix).

We macerated samples, extracted RNA, and per-
formed YFV-specific quantitative reverse transcription 
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Figure. Vector surveillance 
at the Adolpho Ducke Forest 
Reserve as part of a study 
of yellow fever virus (YFV) in 
mosquitoes from rainforest 
bordering Manaus, Brazil, 2022. 
A) Location of Manaus, the 
capital of Amazonas state. B) 
Location of the Adolpho Ducke 
Forest Reserve bordering the 
city. Light green dots indicate 
sites where YFV-positive 
mosquitoes were collected 
in Adolpho Ducke Forest 
Reserve. C) Maximum-likelihood 
phylogenetic tree of YFV based 
on complete genome sequences 
from South America. The tree 
was reconstructed according 
to the general time reversible 
plus empirical base frequencies 
plus invariable sites plus 
gamma 4 nucleotide substitution 
model. We tested the reliability 
of branching patterns using 
ultrafast bootstrap approximation 
combined with a nonparametric 
approximate likelihood-ratio test 
in IQ-TREE v.2.0.3 (http://www.
iqtree.org) and visualized and 
edited the tree in FigTree v.1.4.4 
(https://github.com/rambaut/
figtree). Scale bar indicates 
branch lengths. SAI, South 
American I genotype; SAII, 
South American II genotype; 
1A–1E, SAI lineages.
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PCR (5). Two pools of single Hg. janthinomys mos-
quitoes collected at a treefall gap and 1 Haemagogus 
sp. mosquito collected in undisturbed forest tested 
positive for YFV (Figure, panel B). We morphologi-
cally identified the unclassified mosquito as Hg. ba-
resi, but DNA barcoding showed its COI (cytochrome 
c oxidase subunit 1) sequence (GenBank accession no. 
PQ247126) to be 99.99% identical to a Hg. janthino-
mys reference sequence (accession no. NC_028025.1) 
as well as to the 2 morphologically identified Hg. 
janthinomys samples (accession nos. PQ247125 and 
PQ247127). Lacking a published COI barcode for Hg. 
baresi to contextualize this finding, we referred to this 
mosquito specimen as Hg. sp. 

All positive samples were from those collected at 
ground level, 500 meters interior to the forest edge, 
and at the end of the rainy season, in May and June 
2022. We used a maximum-likelihood method to 
estimate infection rates of 4.37 (95% CI 1.088–11.28) 
per 1,000 Haemagogus mosquitoes (Appendix).

We performed Illumina next-generation se-
quencing (https://www.illumina.com) and ob-
tained 1 complete and 1 near-complete genome from 
RNA extracted from the 2 Hg. janthinomys samples 
and a partial NS1 fragment (485 bp) from the Hg. 
sp. sample. We conducted genotyping using a yel-
low fever typing tool, which placed the sequences 
in the South American I (SAI) genotype. Phyloge-
netic analysis of the genomes sequenced placed this 
sequence in a basal position within the 1E lineage, 
closely related to sequences from the midwest re-
gion of Brazil, although not clustering in clades as-
sociated with recent YF outbreaks (2016–2022) (Fig-
ure, panel C; Appendix). We isolated YFV from this 
sample in C6/36 cells, which exhibited cytopathic 
effects (cell lysis) 6 days postinfection, confirming 
virus viability (Appendix).

Our study data confirm circulation of YFV near 
Manaus in forest-dwelling Hg. janthinomys mosqui-
toes, a sylvatic vector implicated in the most recent 
YF outbreaks in Brazil (6). Haemagogus mosquitoes 
feed primarily on monkeys but will also feed on hu-
mans (6), particularly at forest edges (4). Detection 
of YFV in rainforests bordering rural and periurban 
areas is concerning from a public health standpoint 
because of the comingling of humans, wildlife, and 
periurban and forest mosquitoes in such settings, 
creating the potential for arbovirus spillover (1). 
The risk of YF reurbanization remains a paramount 
concern given the widespread infestation of Ae. ae-
gypti mosquitoes throughout South America (2). To 
date, high YFV vaccination coverage in Amazonas 
state (7) has averted outbreaks in the region, but 

vaccine uptake is declining (8). The YFV genomes 
we sequenced did not cluster with sequences from 
outbreaks in Brazil occurring in 2016–2021 and did 
not have the signature 9 amino acid motif associated 
with the latest outbreak (9).

Our findings emphasize the critical role of the 
Amazon Basin in maintaining and disseminating 
YFV strains to other regions of Brazil (10) and to 
neighboring countries. We sequenced the complete 
YFV genome from 1 Hg. janthinomys sample, a con-
siderable achievement given the scarcity of genome 
data from the north and midwest regions of Brazil. 
Whole-genome sequences are crucial to understand-
ing YFV migration dynamics in these regions (10). 
Unfortunately, we could not isolate and sequence 
the whole genome from the remaining 2 Haema-
gogus samples because of low viral loads, indicated 
by high quantitative reverse transcription PCR cycle 
threshold values (34.0 and 36.0). Our findings dem-
onstrate that vector surveillance provides an early 
warning for arbovirus circulation, identifies high-
risk areas for pathogen spillover, and guides pub-
lic health efforts (vector control and vaccination) to 
mitigate future outbreaks.
The sequences obtained in this study are available in  
GenBank (accession nos. PQ247125–7 [COI] and 
PQ276810–2 [YFV]).
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Macrolide resistance in Mycoplasma genitalium is 
rapidly increasing worldwide (1). Reports have 

noted the spread of macrolide resistance in this spe-
cies to be polyclonal (2–4), but a few resistant clones 
may be circulating, particularly in men (3). To search 
for the potential spread of M. genitalium macrolide-
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The 2058T macrolide resistance–associated mutation 
in 23S rRNA has emerged in Mycoplasma genitalium in 
France. Using mgpB typing, we documented the spread 
of a macrolide- and moxifloxacin-resistant ST159 clone, 
harboring the A2058T and ParC Ser83Ile mutations. In 
France, that clone is likely circulating among men who 
have sex with men.
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