
Salmonella enterica bacteria are a leading cause of 
foodborne illness and hospitalization in the Unit-

ed States (1). Improving our understanding of the 
sources and transmission vehicles of salmonellosis 
can guide prevention strategies and policy measures 
to reduce the prevalence of disease attributable to this 
pathogen. Exposure to Salmonella bacteria can occur 
through food, drinking water, animal contact, envi-
ronmental sources such as soil and water, and infect-
ed persons (2). Some Salmonella serotypes are highly 

host-specific. For example, S. enterica serovar Dublin 
is primarily associated with infections in cattle and 
sheep, whereas serovar Gallinarum is almost exclu-
sively associated with infections in poultry. In con-
trast, other serotypes, such as serovars Enteritidis and 
Typhimurium, are associated with infection of a wid-
er range of human and animal hosts (3–5). Most Sal-
monella infections in the United States are most likely 
transmitted through food, especially the commonly 
observed serotypes, including Salmonella Enteritidis, 
4,[5],12:i:-, Newport, Javiana, and Typhimurium (1,2).

Source attribution is the process used to ascribe 
human infections to specific sources. Attribution es-
timates can be made for different points in the farm-
to-fork continuum, depending on the data and meth-
ods used, which can affect interpretation of results. 
Outbreak-based attribution estimates reflect foods as 
consumed and might not reflect risks at other points 
in the farm-to-fork continuum. Data from foodborne 
outbreaks often are used to estimate the relative con-
tribution of food sources to an attribution estimate 
for all human infection (both sporadic infections and 
infections linked to outbreaks) (6). However, only 5% 
of Salmonella illnesses can be linked to known out-
breaks, so these analyses might not be representative 
of the risks associated with sporadic (e.g., nonout-
break) illnesses (7).

Other methods can attribute illnesses at points 
in the continuum before consumption, such as using 
microbial subtyping to link clinical isolates from spo-
radic human cases to isolates from food, animals, and 
other potential sources (8,9). Until recently, most of 
these analyses were based on traditional laboratory 
typing methods. With the advent of whole-genome 
sequencing (WGS) as a subtyping method, devel-
oping source prediction models that are based on a 
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Salmonella enterica bacteria are a leading cause of 
foodborne illness in the United States; however, most 
Salmonella illnesses are not associated with known out-
breaks, and predicting the source of sporadic illnesses 
remains a challenge. We used a supervised random 
forest model to determine the most likely sources re-
sponsible for human salmonellosis cases in the United 
States. We trained the model by using whole-genome 
multilocus sequence typing data from 18,661 Salmonel-
la isolates from collected single food sources and used 
feature selection to determine the subset of loci most in-
fluential for prediction. The overall out-of-bag accuracy 
of the trained model was 91%; the highest prediction 
accuracy was for chicken (97%). We applied the trained 
model to 6,470 isolates from humans with unknown 
exposure to predict the source of infection. Our model 
predicted that >33% of the human-derived Salmonella 
isolates originated from chicken and 27% were from 
vegetables.
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more discriminatory subtyping method with publicly 
available surveillance data has the potential to clarify 
the source of Salmonella infections and improve attri-
bution estimates.

Machine learning algorithms that use WGS have 
been shown to successfully attribute human infec-
tions to sources (10–14); however, those studies were 
based on a small number of isolates and serotypes. 
For our study, we applied a random forest machine 
learning classifier algorithm to determine the most 
likely sources responsible for human salmonellosis 
cases in the United States overall and for serotypes 
commonly associated with illness. Random forest al-
gorithms are a supervised machine learning classifi-
cation method that use highly dimensional data (i.e., 
many predictor variables) to predict membership to a 
predetermined set of categories. We developed a ran-
dom forest model by using WGS data of Salmonella 
isolates with known food sources to estimate the dis-
tribution of sources of human Salmonella infections.

Methods

WGS Data from Known Food Sources for Model Training
We compiled all available Salmonella isolates col-
lected from food or cecal samples collected from food 
animals at slaughter in the National Center for Bio-
technology Information (NCBI) database (accessed 
in 2018) and publicly available metadata, plus addi-
tional metadata available from the US Department 
of Agriculture’s Food Safety and Inspection Service  
(USDA-FSIS), Food and Drug Administration (FDA), 

and Centers for Disease Control and Prevention 
(CDC). We then manually identified isolates that 
could be definitively categorized into 1 of 15 analyti-
cal categories in the Interagency Food Safety Analyt-
ics Collaboration (IFSAC) scheme (https://www.
cdc.gov/ifsac/php/projects/food-categorization-
scheme.html) (15). Those categories included beef, 
chicken, dairy, eggs, pork, nuts/seeds, fruit, shellfish, 
fish, turkey, vegetables, grains/beans, game, other 
poultry, and other meat. Isolates from dishes or foods 
with ingredients in multiple categories were excluded 
(e.g., lasagna). Because most Salmonella isolates avail-
able in NCBI were collected from chicken, we ran-
domly selected a subset of 50% of those chicken iso-
lates to mitigate class imbalance. To further mitigate 
the effects of class imbalance, we used inverse class 
weighting to build the model. To ensure our dataset 
did not contain duplicated isolates, we only included 
isolates whose sequence read archive identification 
number was found in NCBI’s Pathogen Browser. In 
addition, if multiple isolates were associated with the 
same strain (i.e., specimen) identifier, we removed 
those isolates from the dataset. This process resulted 
in a total of 18,661 isolates (Table 1).

WGS Data from Human Infections with Unknown Source
We collected Salmonella isolates submitted to the 
Foodborne Diseases Active Surveillance Network 
(FoodNet) during 2014–2017 with unknown source of 
illness and no history of international travel for the 
affected patient. FoodNet conducts population-based 
active surveillance for laboratory-confirmed enteric 
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Table 1. Number of Salmonella isolates used to train a random forest model by food commodity, location of collection (domestic vs. 
international sampling) and, if domestic, entity that collected the isolate, 2003–2018*† 

Category 
Domestic sampling‡ 

International§ 
Missing 
location Total FSIS NARMS FDA/CFSAN Other Total 

Chicken 1,477 1,010 3,075 31 5,593 168 72 5,833 (31) 
Vegetables NA NA 1,284 42 1,326 1,055 9 2,390 (13) 
Turkey 121 486 1,630 33 2,270 6 12 2,288 (12) 
Pork 362 1,226 238 67 1,893 121 12 2,026 (11) 
Beef 344 597 628 34 1,603 77 3 1,683 (9) 
Fish 13 NA 47 1 61 984 2 1,047 (6) 
Nuts/seeds NA NA 415 4 419 516 12 947 (5) 
Fruit NA NA 151 9 160 532 6 698 (4) 
Shellfish NA NA 20 NA 20 527 10 557 (3) 
Egg 266 NA 60 15 341 32 11 384 (2) 
Other poultry 52 NA 43 13 108 94 3 205 (1) 
Other meat NA NA 80 2 82 112 2 196 (1) 
Grains/beans NA NA 124 NA 124 40 6 170 (1) 
Dairy NA NA 74 7 81 71 7 159 (1) 
Game NA NA 63 NA 63 15 NA 78 (<1) 
Total 2,635 (14) 3,319 (18) 7,932 (43) 258 (1) 14,144 4,350 (23) 167 (<1) 18,661 
*Values are no. or no. (%). CDC, Centers for Disease Control and Prevention; CFSAN, Center for Food Safety and Applied Nutrition; FDA, Food and 
Drug Administration; FSIS, Food Safety Inspection Service; HAACP, Hazard Analysis and Critical Control Point; NA, not available; NARMS, National 
Antimicrobial Resistance Monitoring System; USDA–ARS, US Department of Agriculture’s Agricultural Research Service.  
†Includes 603 isolates collected prior to 2003. 
‡Domestic sampling by various agencies and programs: FSIS (HAACP, baselines, exploratory), NARMS (FSIS and FDA), FDA CFSAN (including 
GenomeTrakr Network), and other (CDC PulseNet, USDA–ARS, university laboratories, and state laboratories). 
§International includes isolates from nondomestic GenomeTrakr laboratories. 
 

https://www.cdc.gov/ifsac/php/projects/food-categorization-scheme.html
https://www.cdc.gov/ifsac/php/projects/food-categorization-scheme.html
https://www.cdc.gov/ifsac/php/projects/food-categorization-scheme.html
http://www.cdc.gov/eid
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infections, including those caused by Salmonella, and 
has a catchment covering ≈15% of the US popula-
tion (16). During 2014–2017, data were collected at 
10 sites: Connecticut, Georgia, Maryland, Minnesota, 
New Mexico, Oregon, Tennessee, and select counties 
in California, Colorado, and New York. FoodNet col-
lects data on patient demographics, clinical informa-
tion, outbreak association, and international travel 
history in the 7 days before illness onset. Since 2014, 
FoodNet also has collected data on various exposures, 
including consuming meats, fruits, and vegetables, 
during the 7 days before illness onset.

Whole-Genome Multilocus Sequence Typing Data
We assembled food isolate sequences in SPAdes, then 
analyzed them in BioNumerics version 7.6 (bioMéri-
eux, https://www.biomerieux.com) to assign assem-
bly based allele calls in the Salmonella whole-genome 
multilocus sequence typing (wgMLST) scheme (17). 
We assembled human isolate sequences by using 
SPAdes (https://github.com/ablab/spades), and 
we generated allele calls from the PulseNet Salmo-
nella wgMLST allele database. Given the time over 
which the sequence data were generated, we used 
multiple versions of SPAdes to account for upgrades 
in the software, the oldest version being SPAdes ver-
sion 3.7.1. We analyzed the annotated data by using 
BioNumerics version 7.6. We generated serotype data 
for each sequence by using SeqSero2 (https://github.
com/denglab/SeqSero2). We described results for 
Salmonella overall and by common serotypes, includ-
ing Salmonella Enteritidis, Typhimurium, Javiana, 
Newport, Infantis, Heidelberg, and 4,5,[12]:i:-.

Random Forest Algorithm
We trained a random forest model by using wgMLST 
data on isolates from 15 known single food categories 
(18). We excluded loci that were missing allele call in-
formation in >99% of isolates. Otherwise, we treated 
a missing allele as a unique nominal value. We de-
fined tree splits once by using the first principal com-
ponent of the weighted covariance matrix, which is 
computationally efficient for nominal features with 
a large number of levels (19). We evaluated feature 
importance (i.e., how informative each locus was for 
accurately predicting food source) by using permu-
tation importance on 2-fold cross-validation (20). We 
calculated the relative importance of each feature and 
then ran the random forest with inverse class weight-
ing and 1,000 trees 20 times on a stratified random 
75–25 train-test split of the data by using the top-10 
loci. We calculated the mean accuracy and κ of the 
test data by using this top set of features. We repeated 

this approach, increasing the top set of loci by 50 each 
time, and finally with all loci present in >1% of iso-
lates. We then determined an optimal model as the 
one with maximum median accuracy and κ. We as-
sessed the confusion matrix and accuracy for specific 
common serotypes of interest on the optimal model. 
We then assessed out-of-bag accuracy overall and by 
food category.

We applied the trained model to human isolates 
of Salmonella with an unknown source. For each iso-
late, if the maximum predicted probability for a food 
category was >0.50, we assigned the isolate that cat-
egory as the likely source. If the largest predicted 
probability was <0.50, we assigned the isolate a class 
of unknown or nonfood source. We then renormal-
ized the distribution of predictions among human 
isolates assigned to a category, so the predicted per-
centages of isolates from each of the 15 categories to-
taled 100%. We estimated the distribution of sources 
of isolates from human illnesses overall and by the 
common serotypes, including Salmonella Enteritidis, 
Typhimurium, Javiana, Newport, Infantis, Heidel-
berg, and 4,5,[12]:i:-.

We performed all analyses in R version 4.1.1 (The 
R Project for Statistical Computing, https://www.r-
project.org). We developed the random forest model 
by using the ranger package (21).

Results

WGS Data from Known Food Sources for Model Training
We trained the random forest model on 18,661 isolates, 
of which 16,756 (89.7%) were single food sources and 
1,905 (10.2%) were cecal samples from food animals 
(Appendix 1 Table 1, https://wwwnc.cdc.gov/EID/
article/31/4/24-1172-App1.xlsx). In this analysis, we 
assumed the cecal isolates were representative of a 
food source. We included isolates from all over the 
world; however, most isolates (76%) were collected in 
the United States. Among isolates with a known year 
of collection, 603 isolates (3.2%) were collected before 
2003, 8,409 (45.3%) were collected during 2003–2013, 
9,038 (48.7%) were collected during 2014–2017, and 
505 (2.7%) were collected after 2017. Sample collec-
tion year was not available for 106 isolates (0.6%). 

Chicken was the most common food source (n 
= 5,833 [31.3%]), followed by vegetables (n = 2,390 
[12.8%]), turkey (n = 2,288 [12.3%]), and pork (n 
= 2,026 [10.9%]) (Figure 1). We accounted for the 
skewed distribution observed in the training data 
across 15 categories during the random forest model 
development by using inverse class weighting, a cost-
sensitive approach to classification on imbalanced 
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data. The most common serotypes were Salmonella 
Kentucky (n = 1,604 [8.6%]), Typhimurium (n = 1,539 
[8.2%]), Enteritidis (n = 1,311 [7.0%]), and Heidelberg 
(n = 1,280 [6.9%]) (Appendix 2 Figure 1, https://ww-
wnc.cdc.gov/EID/article/31/4/24-1172-App1.pdf). 
A total of 22,457 chromosomal loci were present, in-
cluding 3,002 core loci and 8,143 loci that were pres-
ent in >1% of isolates (Appendix 2 Figure 2). Among 
those loci, the number of unique alleles within a lo-
cus (that also were missing as a unique value) ranged 
from 2 to 5,509. The median number of unique alleles 
was 134 (interquartile range 28–465).

WGS Data from Human Infections with Unknown Source
For food source prediction of human isolates, we used 
6,470 isolates collected from humans in cases where the 
source of illness was unknown and no history of inter-
national travel was reported. Isolates were collected 
during 2014–2017; a total of 280 isolates (4.3%) were col-
lected in 2014, 833 (12.9%) were collected in 2015, 2,429 
(37.5%) were collected in 2016, and 2,928 (45.2%) were 
collected in 2017. Most isolates were not associated 
with an outbreak (88%). The most common serotypes 
among the human isolates were Salmonella Enteritidis 
(n = 1,446 [22.3%]), Typhimurium (n = 716 [11.1%]), 
Newport (n = 706 [10.9%]), Javiana (n = 553 [8.5%]), and 
4,[5],12:i:- (n = 416 [6.4%]) (Appendix 2 Figure 1).

Permutation Importance and Model Performance
The accuracy of the median test data model, when ap-
plied to a stratified 75–25 split of the food data with 
permutation importance and inverse class weighting, 
ranged from 0.51 using the top-10 loci to 0.74 using 
the top-7,360 loci (Appendix 2 Figure 3). Of these 
7,360 loci, 2,987 were core (Appendix 1 Table 2). The 
median κ was maximized at 0.70 using the top 7,360 
loci; we selected that model as the optimal model.

The confusion matrix displays the accuracy 
among each class and patterns of misclassification 
among training isolates using out-of-bag estimates 
(Figure 2, panel A; Appendix 2 Figure 4, panel A). 
The overall accuracy of the model using all iso-
late predictions was 0.81 (Table 2). The model per-
formed best for chicken (0.95 out-of-bag accuracy) 
and also performed well for other common sources 
of Salmonella, such as turkey (0.88), pork (0.83), veg-
etables (0.82), and beef (0.77). The model had lowest 
accuracy for less common sources; those with <0.40 
accuracy included game (0.10), dairy (0.29), and  
other meat (0.39).

When we assessed out-of-bag estimates while 
limiting analysis to the 14,888 isolates with a maxi-
mum predicted probability from a single class of 
>0.50, the overall accuracy increased to 0.91; we ob-
served the highest accuracy (0.97) for chicken (Fig-
ure 2, panel B; Appendix 2 Figure 4, panel B). In ad-
dition, the accuracy of each class increased, and all 
class accuracies were >0.50 except for game (0.16) 
and dairy (0.45).

Model Prediction of Human Data
Among all patients without a reported history of in-
ternational travel and with unknown source of infec-
tion, the most common predicted sources of illness 
were chicken (n = 2,170 [34%]) and vegetables (n = 
1,924 [30%]). All other sources accounted for <10% 
of illnesses (Figure 3, panel A). When we assigned 
human isolates with a maximum predicted prob-
ability of <0.50 as from an unknown source, 44% of 
isolates (n = 2,859) were labeled unknown. There is 
more confidence in the predictions with prediction 
probabilities >0.50 that are retained (i.e., not reclassi-
fied as unknown) and are likely to arise from major-
ity classes (such as chicken or vegetables) as opposed 
to minority classes as observed in the training data 
(Appendix 2 Figure 5). Among isolates assigned to a 
known source, 46% (n = 1,694) were predicted to be 
from chicken, 27% (n = 987) were predicted to be from 
vegetables, and all other sources of illness account-
ed for <10% of illnesses (Figure 3, panel B). In addi-
tion, the most common predicted source of serotypes  
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Figure 1. Percentage of Salmonella isolates collected from 
known single source foods in the United States and other 
countries from 2003–2018 (used as training data in random 
forest model), by food category (N = 18,661, including 603 
isolates collected before 2003).

https://wwwnc.cdc.gov/EID/article/31/4/24-1172-App1.pdf
https://wwwnc.cdc.gov/EID/article/31/4/24-1172-App1.pdf
http://www.cdc.gov/eid
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Salmonella Enteritidis, Typhimurium, Heidelberg, 
and Infantis was from chicken. The most common 
predicted source of Salmonella Javiana and Newport 
was vegetables, and the most common source of Sal-
monella 4,[5],12:i:- was pork (Appendix 1 Table 3).

Discussion
Our study developed a random forest model by us-
ing Salmonella wgMLST data from food sources to es-
timate the likely source of sporadic human illnesses. 
When using all isolate predictions, the model had 
>74% accuracy when both out-of-bag and train-test 
validation methods were used. When we restricted 
analysis to isolates with prediction probabilities >0.50, 
the out-of-bag accuracy increased to 91%. Chicken 
and vegetables were the most common predicted 
sources of salmonellosis in the United States. This 
result is consistent with previous analyses; however, 
our analysis found chicken to be linked to a substan-
tially higher percentage of illnesses than in recent at-
tribution estimates for poultry products on the basis 
of outbreak data (46% vs. 17%) (6). There are numer-
ous possible reasons for this difference. One possible 
explanation might be that outbreak data reflect foods 
as consumed (which can become contaminated from 
another food during preparation), whereas the data 
in this study are from earlier points in the farm-to-
fork continuum. Another explanation might be that 
risks associated with outbreaks differ from those as-
sociated with sporadic infections. By using our single 
model, we were able to estimate the contributions 

of sources to human salmonellosis overall and for  
serotypes that commonly cause human illness. We 
found notable differences in attribution across sero-
types; we found that chicken was the most common 
estimated source of Salmonella Enteritidis, Typhimuri-
um, Heidelberg, and Infantis, pork was the most com-
mon source of Salmonella 4,[5],12:i:-, and vegetables 
were the most common source of Salmonella Javiana 
and Newport.

In our approach, we assigned human isolates 
from a single source that were attributed to a cat-
egory with >0.50 probability to that food category. 
We classified human isolates with <0.50 probability 
of attribution to any single source as either attributed 
to an unknown food or a nonfood source. We chose 
a cutoff of 0.50 by examining the accuracy of predic-
tions by probability, considering that not all illnesses 
arise through foodborne transmission, and for ease 
of explanation (i.e., those with >0.50 probability were 
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Figure 2. Confusion matrix from the random forest model trained on Salmonella isolates collected from single food categories in the 
United States and other countries from 2003–2018 and 603 isolates collected before 2003. A) Confusion matrix for all Salmonella 
isolates from single food categories (N = 18,661). B) Confusion matrix from the random forest model for Salmonella isolates from single 
food categories with a maximum predictive probability of >0.50 (n = 14,888).

 
Table 2. Out-of-bag and train-test performance statistics for a 
random forest model trained on Salmonella isolates collected 
from single food sources and using the top 7,360 loci determined 
from feature selection* 
Characteristic Out-of-bag Train-test, 75–25† 
Accuracy 0.81 0.74 
 0.77 0.68 
Balanced accuracy 0.61 0.52 
AUC-ROC, uniform distribution‡ 0.93 0.92 
AUC-ROC, a priori distribution‡ 0.97 0.95 
*AUC-ROC, area under the receiver operating characteristic curve.  
†Indicates 75% of the data was used to train the model, whereas 25% was 
used to test the model. 
‡Calculation described at 
https://www.math.ucdavis.edu/~saito/data/roc/ferri-class-perf-metrics.pdf. 
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more likely than not to have come from that source). 
This approach could be tailored to adjust the sensitiv-
ity and specificity of the model for different purposes.

Without this prediction threshold, we estimate 
that about two thirds of human salmonellosis are at-
tributable to chicken (34%) or vegetables (30%). With 
the prediction threshold, we retain only confident 
model predictions and estimate chicken and veg-
etables as the source of roughly 73% of salmonellosis 
cases. Moreover, cases were attributed to all 15 mod-
eled categories, indicating that illnesses likely arise 
from various sources, which is consistent with a re-
cent report of foodborne illness attribution from the 
Interagency Food Safety Analytics Collaboration (6).

Since routine WGS on Salmonella isolates began in 
2019, we are better able to develop and explore new 
approaches for source attribution estimation. Simi-
lar studies in Europe and Australia have used core-
genome multilocus sequence typing (cgMLST) and 
single-nucleotide polymorphism data to attribute cer-
tain Salmonella serotypes to animal reservoirs. Results 
from a logit boost algorithm on cgMLST data from 
animals estimated 53% of Salmonella Typhimurium’s 
sources in Denmark with 93% accuracy (13). Results 
from a Bayesian source attribution model using Sal-
monella Typhimurium cgMLST data in England and 
Wales attributed 60% of human cases to pigs (22).

One limitation of our model is that the training 

data were imbalanced; chicken represented the clear 
majority class. Subsequently, we then randomly select-
ed a 50% subset to reduce the dataset, and all minor-
ity class isolates (i.e., nonchicken sources), which had 
been filtered out, were reincorporated. As a result, the 
input data was less imbalanced because the majority 
chicken class was reduced to only 31%. We also used a 
cost-sensitive learning approach through inverse class 
weighting scheme to handle the remaining class imbal-
ance, which applies a heavier penalty on misclassify-
ing the minority classes during model development. 
Given those steps, our model still predicts chickens 
as the dominant source in the test dataset of human 
isolates (>31%). Access to and incorporation of more 
isolates from nonchicken food categories would likely 
strengthen the model’s accuracy and precision. In ad-
dition, healthcare-seeking behaviors, access to health 
services, and other characteristics of the FoodNet sur-
veillance area population might not reflect those of 
the entire United States and might limit the generaliz-
ability of our findings. The human isolates included in 
this analysis were a subset of FoodNet isolates that had 
wgMLST analysis performed and might not have been 
equally distributed across the FoodNet sites, which 
might also limit generalizability. Not all salmonello-
sis is foodborne; recent estimates indicate that 66% of 
all salmonellosis cases are from direct consumption of 
a contaminated food item (foodborne), and we only  
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Figure 3. Predictions from a random forest model of sources of US human illnesses among patients without reported history of 
international travel who had whole-genome sequenced Salmonella isolates reported to the Foodborne Diseases Active Surveillance 
Network, 2014–2017. A) Predictions of sources of human illnesses among all patients (N = 6,470). B) Predictions of food category 
sources of human illnesses among patients renormalized among isolates with a >0.50 probability of attribution to a single food category 
(n = 3,686).

http://www.cdc.gov/eid
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included food isolates in our training data (23). Includ-
ing additional training data from nonfood sources, 
such as water, wild and domesticated animals, and 
the environment, could expand our estimation to also 
predict nonfood sources of infection as well. Food ani-
mals can contaminate the environment and indirectly 
contaminate vegetables and fruits and potentially 
make humans sick. Further, our approach does not 
distinguish where in the farm-to-fork continuum ex-
posure occurred, and those food sources are not neces-
sarily tied to consumption. Consequently, our model 
ascribes isolates to sources that might not actually be 
the source of a foodborne exposure.

Overall, our model predicted chicken and veg-
etables are top sources of salmonellosis cases in the 
United States. This analysis highlights the utility of 
applying classification algorithms, such as random 
forests, to analyze genomic data for foodborne illness 
source attribution. With further research, models like 
ours could be leveraged with existing genomic sur-
veillance systems to support source identification in 
outbreak investigations and to help inform regula-
tory priority setting processes.

The findings and conclusions in this report are those of the 
authors and do not necessarily represent the official position 
of the Centers for Disease Control and Prevention, the US 
Food and Drug Administration, or the US Department of 
Agriculture’s Food Safety and Inspection Service.
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