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DISPATCHES

Vancomycin-resistant Enterococcus faecium (VREF) 
causes hospital-acquired infections worldwide 

and poses a threat to public health (1). Whole-genome 
sequencing (WGS) has demonstrated that new health-
care-associated E. faecium clones rapidly emerge, 
evolve, and adapt through intragenus recombination, 
displacing existing clones (2,3).

During the past decade, clonal complex 17 se-
quence type (ST) 80 rapidly became the predominant 
VREF lineage in Denmark (4), Australia (5), Ireland 
(6), Spain (7), and Sweden (8) and accounted for 
40%–67.1% of VREF isolates disseminated in hospital 
settings. Few ST80 cases were reported in Asia coun-
tries, including China, until an independent lineage 
of ST80, sequence cluster (SC)11, emerged in January 
2021 as the predominant cause of an ongoing VREF 

outbreak in Guangdong Province (9) and posed a risk 
of spreading to other areas. However, the pangenom-
ic features and adaptation potential of the emerging 
SC11 remain unknown.

VREF isolation rates also substantially increased 
in the metropolitan city of Shenzhen, Guangdong 
Province, China, during 2021–2024. VREF isolation 
rates before 2021 remained <6% (predominantly <5%) 
but rose to an average of 11.53% in 2024 (Appendix 
1 Figure 1, panel A, https://wwwnc.cdc.gov/EID/
article/31/5/24-1649-App1.pdf). To trace the source 
and characterize genomic features that potentially 
contributed to outbreaks, we conducted a multicenter 
genomic epidemiology study and integrated pange-
nomic variation analysis.

The Study
We performed WGS analysis (Appendix 1) on 42 
VREF isolates (primarily collected after April 2022) 
from 39 patients across 7 hospitals, designated SZ_A 
through SZ_F, including 2 affiliated hospitals, SZ_C1 
and SZ_C2, grouped as SZ_C. We used WGS to iden-
tify STs and used phylogenetic analysis to determine 
ST sources in a global context. We assessed genetic 
diversity, indicating mutation rates during circula-
tion, using pairwise core genome single-nucleotide 
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We investigated genomic evolution of vancomycin-
resistant Enterococcus faecium (VREF) during an out-
break in Shenzhen, China. Whole-genome sequencing 
revealed 2 sequence type 80 VREF subpopulations di-
verging through insertion sequence–mediated recombi-
nation. One subpopulation acquired more antimicrobial 
resistance and carbohydrate metabolism genes. Per-
sistent VREF transmission underscores the need for 
genomic surveillance to curb spread.
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polymorphism (cgSNP) distance. We characterized 
population structure to show divergence and emer-
gence of novel variant populations.

Among the 42 isolates, 34 (81%) were ST80 isolates, 
7 (17%) were ST80 variant isolates (ST80_GDvari-
ant1) with ddl loci mutated from 1 to 194, and 1 (2%) 
was an ST78 isolate that was collected in 2023 (Ap-
pendix 1 Figure 1, panel B; Appendix 2, https://
wwwnc.cdc.gov/EID/article/31/5/24-1649-App2.
xlsx). Unexpectedly, ST80_GDvariant1 isolates inde-
pendently emerged in 5 branches and did not origi-
nate from a single mutation event (Figure 1; Appen-
dix 1 Figure 2, panel A).

Phylogenetic analysis inferred from cgSNP of 
the 41 isolates (ST80 and variants) and 703 other 

publicly available ST80 isolates revealed that the 41 
isolates from the ongoing outbreak in Guangdong 
are affiliated with SC11 (Appendix 1 Table 2, Fig-
ure 2, panel A) (9). Within SC11, two 2022 strains 
from Guangzhou, SZYSC_ZDYVRE007 and SZYSC_
ZDYVRE008G, with a 5-SNP divergence, clustered 
adjacent to the lineage root (Figure 1; Appendix 1 
Figure 2, panel A) and formed a distinct VREF sub-
lineage (SC11-root sublineage) with a 37-SNP aver-
age divergence from other SC11 strains (bootstrap = 
72) (Figure 1). In contrast, the remaining SC11 strains 
exhibited tight clustering (pairwise distances of <5 
SNPs [36.5%] and 5–10 SNPs [49.8%]) and formed a 
dominant clade (SC11-outbreak sublineage) (Figure 
1). Those findings suggest that the SC11-outbreak 

Figure 1. Evolution and variation of SC11 inferred from core genome SNPs during rapid transmission and divergence of vancomycin-
resistant Enterococcus faecium ST80, China. Graphs shows reconstructed tree from core genome SNPs (left) among all SC11 isolates 
(n = 235) using strain SZYSC_GYSVRE003 (GenBank accession no. GCA_037475005.1) as reference. Hospital sources of isolates 
from Shenzhen ST80 and its variant, and SC11-pop II isolates are indicated (1, 2, and 3) next to the tree. The heatmap (right) shows 
pairwise SNP distance matrix indicating diversity of SC11 lineage presented in the form of symmetry in the bottom left and top right. 
Cells in the heatmap are colored to show SNP distance in a graded gradient. Red lines indicate large SNP distances and correspond to 
SZYSC_23VRE019 in the tree. pop, population; SC, sequence cluster; SNP, single-nucleotide polymorphism; ST, sequence type.
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lineage originated from a single progenitor or highly 
related lineage, enabling rapid transmission. 

To resolve strain differentiation, we analyzed 
SC11-outbreak_lineage population structure by using 
PopPUNK (https://github.com/bacpop/PopPUNK), 
which integrates core and accessory genomic variation 
(10). We delineated 2 subpopulations, SC11-pop I and 
SC11-pop II (Figure 2, panel A; Appendix 1 Figure 4). 
SC11-pop II isolates formed tight clusters in the pange-
nome-based tree (Figure 2, panel A) but dispersed in the 
cgSNP phylogeny (Figure 1), suggesting subpopulation 
divergence was primarily driven by gene gain or loss.

SC11-pop I and SC11-pop II circulated in parallel for 
>3 years (2021–2024), and SC11-pop II showed broader 
transmission (Figure 2, panel B) and maintained ≈15% 
prevalence (Figure 2, panel C). SC11-pop II showed 
higher prevalence than SC11-pop I in Shenzhen and oth-
er provinces (Figure 2, panel B). Genetically, SC11-pop 
II exhibited enhanced horizontal gene transfer activ-
ity, carrying more insertion sequences (ISs) (Appendix 
1 Figure 5), plasmid-like elements (Appendix 1 Figure 
6), and diverse antimicrobial resistance genes (Figure 3). 
Although all SC11 isolates harbored the VanA operon, 
8 SC11-pop II strains uniquely acquired VanM operon 

Figure 2. Lineages detected in a study of rapid transmission and divergence of vancomycin-resistant Enterococcus faecium ST80, 
China, showing 2 lineages circulating in parallel. A) SC11 subpopulations labeled on pangenomic tree inferred from gene presence and 
absence matrix. Eleven clusters were delineated in PopPUNK, labeled in different colors. Clusters 1 and 2 are the 2 major populations. 
Cluster 6 (1 strain) is nested in cluster 1 (200 strains) on the pangenomic tree and thus are denoted together as SC11-pop I, whereas 
strains from clusters 3–11 (except cluster 6, 10 strains together) are nested in cluster 2 (24 strains) and are denoted as SC11-pop 
I. Scale bar is unit of tree branch length, indicating the genetic distance stimulated from gene presence and absence matrix using 
roary (https://sanger-pathogens.github.io/Roary). B) Parallel circulation of SC11-pop I and SC11-pop II strains from 2021 to 2024. 
C) Geographic distribution of SC11-pop I (n = 200) and SC11-pop II (n = 35) strains. Prevalence is displayed in percentage. pop, 
population; SC, sequence cluster; ST, sequence type.
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(Figure 3). SC11-pop II cases showed trends of increased 
hospitalization and underlying conditions, including 
hypertension and cardiovascular, respiratory, and kid-
ney diseases, but statistical significance was limited by 
the sample size (Appendix 1 Table 5). Expanded surveil-
lance is required to clarify clinical distinctions between 
SC11-pop I and SC11-pop II.

To identify divergence drivers, we compared core 
genomic mutations and accessory gene variations  

between SC11-pop I and SC11-pop II. Unexpectedly, 
no substantial cgSNP differences emerged (Appendix 
3, https://wwwnc.cdc.gov/EID/article/31 /5/24-
1649-App3.xlsx), indicating divergence was not 
driven by core genome mutations. The SC11 lineage 
pangenome (n = 235) comprised 3,674 genes, including 
2,367 core genes and 1,307 accessory genes, an acces-
sory-to-core gene ratio of 0.55. Concerning gene gain 
or loss, SC11-pop II specifically acquired 152 genes 

Figure 3. Alignment of SC11 
to determine divergence 
during rapid transmission and 
divergence of vancomycin-
resistant Enterococcus faecium 
ST80, China. To determine 
the genes associated with 
the divergence of SC11 we 
aligned various SC11 genes 
to pangenomic phylogeny. A) 
Accessory genes; B) virulence 
genes; C) AMR genes. Gene 
copy numbers are displayed 
in a color grade. We identified 
17 total virulence genes; 12 
are conserved in all SC11 
isolates, and thus only 5 variable 
virulence genes are shown. 
Functional categories are 
indicated by color on the top of 
the virulence gene heatmap, 
and drug class corresponding 
to each AMR gene is shown on 
the top of AMR gene heatmap. 
Compared with SC11-pop I, 
SC11-pop II was more active in 
acquiring AMR genes against 
various antibiotic drugs, 
including sporadic acquisition 
of aminoglycoside resistance 
genes ant9Ia and aph3IIIa; 
rifamycin resistance gene arr; 
trimethoprim resistance gene 
dfrF; lincosamide resistance 
genes ermA, ermC, ermT, 
lnuB, and lsaE; and phenicol 
resistance genes fexA, 
optrA, catA1, and catA. AMR, 
antimicrobial resistance; pop, 
population; ARG, antimicrobial 
resistance gene; SC, sequence 
cluster; ST, sequence type.
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(forming Recomb1 modular) and showed higher fre-
quency of 13 other functional unknown genes (except 
endoribonuclease PemK) and lower frequency of 9 
genes versus SC11-pop I (p<0.05) (Appendix 1 Table 
6), indicating greater exogenous gene acquisition. As 
was observed in the hierarchical clustering of acces-
sory genes on the pangenomic phylogeny, we identi-
fied 3 recombination gene modules (Recomb1–3) that 
were frequently acquired in SC11 (Figure 3, panel A). 
Recomb1 was exclusive to SC11-pop II (31/35 strains; 
1 strain carries more than half of Recomb1 genes and 
is recognized as Recomb1 positive, similar to the stan-
dard for recognizing positivity in Recomb2 and Re-
comb3), whereas Recomb2 (68 strains) and Recomb3 
(23 strains) occurred in both populations (Figure 3, 
panel A). The fixation of Recomb1–3 suggested their 
roles in emergence and adaptation of novel variants 
in SC11. Of note, Recomb1 contained 11 carbohydrate 
metabolism genes (Appendix 1 Table 4), which are 
known factors in E. faecium that contribute to clinical 
adaption and epidemics of E. faecium (12). The stable 
3-year persistence of Recomb1 in SC11-pop II across 
regions suggests a functional importance in host ad-
aptation and potential virulence.

Recombination surpasses mutation as the pri-
mary driver of E. faecium genetic diversity (11), and 
IS-mediated events occur within days during infec-
tion (13). Ten families of IS elements were found in 
all SC11 isolates (Appendix 1 Figure 5). Enhanced IS 
transposition was associated with rapid core gene 
mutation (Appendix 1). Recomb1–3 acquisitions 
were linked to IS-mediated recombination, primarily 
involving genes related to DNA transposition, rep-
lication, or recombination (Appendix 1 Table 4). Re-
comb1 contained more ISs than Recomb2 or Recomb3, 
and IS91 was exclusively acquired by SC11-pop II. 
High-frequency modular recombination in Recomb1  
involved IS91, ISL3, and IS256 (specific to SC11-pop 

II), whereas IS200/IS605 and IS1182 occurred at low-
er frequencies (Table; Appendix 1 Figure 5). Recomb2 
in SC11-pop I occasionally incorporated IS3 along-
side ISL3, IS66, IS982, IS256, or IS30 (Table). Recomb3 
exclusively associated with IS3 in all 7 SC11-pop II 
isolates but was absent in SC11-pop I (Table). No 
plasmid marker genes co-occurred with Recomb1–3, 
except 9 Recomb1 genes colocalized with MOBT 
(plasmid relaxase) on contig AXARS010000069.1 
(strain SZYSC_22VRE31), suggesting that plasmids 
did not directly transmit Recomb1–3.

Conclusions
Identifying SC11’s most recent ancestor is crucial for 
elucidating its evolutionary mechanism and mitigat-
ing emergent threats. We hypothesize a shared an-
cestry between SC11-root and SC11-outbreak sublin-
eages. Expanded surveillance of outbreak-associated 
hospitals and retrospective analysis of pre-2021 VREF 
isolates are needed to trace the origin.

In summary, we showed that increasing VREF 
prevalence in Shenzhen, China, constitutes part 
of the ongoing SC11 outbreak, likely originating 
from Guangzhou. Population structure analysis 
revealed 2 stable, circulating SC11 subpopulations, 
emergence of which was driven by IS-mediated re-
combination. Sustained surveillance of those sub-
populations is essential to prevent the emergence 
of high-risk clones with increased transmissibility 
and virulence.

The whole-genome assemblies produced in this study  
are deposited in GenBank (BioProject accession no.  
PRJNA1221312).

This study was approved by the Bioethics Committee of  
Shenzhen Third People’s Hospital (ref. no. 2024-009-02). 
All methods were performed in accordance with the  
relevant guidelines and regulations.

 
Table. Distribution of insertion sequences associated with 3 recombination regions during rapid transmission and divergence of 
vancomycin-resistant Enterococcus faecium sequence type 80, China* 
Region SC11 IS+ sample IS91 ISL3 IS1182 IS200/IS605 IS256 IS3 IS66 IS982 IS30 
Recomb1 SC11-pop I 0 0 0 0 0 0 0 0 0 0 

SC11-pop II 31 24† 23 1 3 11 0 0 0 0 
Proportion of SC11-pop II‡ 31/35 24/35‡ 23/35 1/35 3/35 11/35 0 0 0 0 

Recomb2 SC11-pop I 80 0 4 0 0 1 81 3 2 1 
SC11-pop II 8 0 0 0 0 0 8 0 0 0 

Proportion of SC11-pop I 80/200 0 2/200 0 0 1/200 78/200 3/200 2/200 1/200 
Proportion of SC11-pop II 8/35 0 0/35 0 0 0/35 8/35 0/35 0/35 0/35 

Recomb3 SC11-pop I 0 0 0 0 0 0 0 0 0 0 
SC11-pop II 7 0 0 0 0 0 7 0 0 0 

Proportion of SC11-pop II 7/35 0 0 0 0 0 7/35 0 0 0 
*SC11-pop I, n = 200 strains; SC11-pop II, n = 35 strains. For identifying the associated IS, in certain Recomb modulars, the upstream (5 kb) and 
downstream (5 kb) of each Recomb component gene were searched using ISEscan v1.7.2.3 (14). IS, insertion sequence; pop, population; SC11, 
sequence cluster 11; +, positive. 
†Total IS number can be identified. 
‡The frequency of isolates carrying the corresponding IS. 
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