Article DOI: https://doi.org/10.3201/eid3106.240930

EID cannot ensure accessibility for supplementary materials supplied by authors. Readers who have difficulty accessing supplementary content should contact the authors for assistance.

Genomic Surveillance of Climate-Amplified Cholera Outbreak, Malawi, 2022–2023

Appendix 2

Supplemental Material and Methods

Methods: Estimation of time-varying reproduction number (Rt) and association with other variables

We model the number of new cases, i_t , at time t>0, through a renewal equation, and these new cases are moderated by R_t (Bhatt et al. (1)).

$$i'_{t} = R_{t} \cdot \sum_{s < t} i_{s} g_{t-s}$$
$$i_{t} = S_{t-1} \cdot \left(1 - \exp\left(-\frac{i'_{t}}{P}\right)\right)$$

where g is approximated by the serial interval, that is the distribution of time from symptom onset of the primary case to the symptom onset of the secondary case. For cholera we assume a mean serial interval of 5 days, a standard deviation of 8 days and that g is gamma distributed with a 1-day shift (2). S_t is the size of the susceptible population at time t and P is the size of the population and the second equation ensures that i_t ' accounts for the depletion of susceptible individuals in the population. We give the initial susceptible population S₀ a N(0.95,0.1) prior as this provides a conservative prior which assumes that a very large majority of the population is susceptible.

We model case observations as $o_t = \sum_{s < t} i'_t \cdot \pi_{t-s}$ where π is the infection to onset distribution with a median of 1.4 days (3).

We can form a linear predictor, consisting of fixed effects and autocorrelation terms, which is then transformed via a link function, to model the reproduction number.

$$R_{t} = g^{-1} \left(\beta_{0} + \sum_{k} X_{t,k} \beta_{k} + \epsilon_{w(t)} \right)$$
$$R_{t} = R_{0} \cdot g^{-1} \left(\sum_{k} X_{t,k} \beta_{k} + \epsilon_{w(t)} \right)$$

We use a *log*-link function as this ensures nonnegative reproduction numbers which don't grow exponentially. We use $R_0 \sim Normal(1.56, 0.2)$ as a prior, where the mean is consistent with Mukandavire et al. (4).

 $\epsilon_{w(t)}$ is a weekly random walk (we use a weekly random walk rather than a daily random walk to obtain more stable R_t estimates), $X_{t,k}$ are covariates of interest and β_k their respective effect sizes.

We use 'epidemia' to obtain the posterior distribution with priors as provided above.

We use two covariates in our analysis:

- 1. *Flooding data (see details in Methods section of the main text)* we transform available flooding data as follows
 - 1. 1-day difference in flooded area
 - 2. An indicator if the difference is bigger than 1,000 pixels
 - 3. Delay by 4 days to account for mean serial interval

This transformation creates an indicator time series of significant rainfall and shifts it to account for the mean serial interval. Similar to Camacho et al. (2), it is a mechanistic representation of rainfall's impact.

2. Vaccinations – two vaccination campaigns took place in Malawi against cholera (WHO) (5). The first vaccination campaign is not modeled as it was early in 2022. The second vaccination campaign is modeled such that we assume that the rollout takes place over 3 months, with a delay of 10 days to account for the time lag until the vaccine is effective. We only estimate the effect size of vaccination as an intervention.

The results of the model are provided (Appendix 2 Figure 3).

We conducted sensitivity analysis with respect to our prior S_0 , considering a 95%, 75%, and 40% susceptible population, and found that the impact on the effect sizes for rainfall and vaccination was minimal (Appendix 2 Figure 3).

References

- Bhatt S, Ferguson N, Flaxman S, Gandy A, Mishra S, Scott JA. Semi-mechanistic Bayesian modelling of COVID-19 with renewal processes. J R Stat Soc Ser A Stat Soc. 2023;186:601–15. <u>https://doi.org/10.1093/jrsssa/qnad030</u>
- Camacho A, Bouhenia M, Alyusfi R, Alkohlani A, Naji MAM, de Radiguès X, et al. Cholera epidemic in Yemen, 2016–18: an analysis of surveillance data. Lancet Glob Health. 2018;6:e680–90.
 <u>PubMed https://doi.org/10.1016/S2214-109X(18)30230-4</u>
- Azman AS, Rudolph KE, Cummings DAT, Lessler J. The incubation period of cholera: a systematic review. J Infect. 2013;66:432–8. <u>PubMed https://doi.org/10.1016/j.jinf.2012.11.013</u>
- Mukandavire Z, Morris JG Jr. Modeling the epidemiology of cholera to prevent disease transmission in developing countries. Microbiol Spectr. 2015;3:3.3.21. <u>PubMed</u> <u>https://doi.org/10.1128/microbiolspec.VE-0011-2014</u>
- 5. Malawi WHO. Vaccines help battle cholera outbreak in Malawi. 2023. https://www.afro.who.int/countries/malawi/news/vaccines-help-battle-cholera-outbreak-malawi

A	ppendix	2 Table	1. Model	selection c	of molecular	clock and	Bavesian	demograph	hic models	to infer	time-str	uctured	phy	loa	env
						0.00.0.0.0.0.0							P · · · J		

Model	In(ML) _{ss}	Ln(BF) _{ss}	In(ML) _{PS}	Ln(BF) _{PS}
SC CONST	-2239.2	12.7	-2238.3	12.5
RC CONST	-2226.5	12.7	-2225.8	12.5
RC CONST	-2226.5	0.5	-2225.8	0.2
RC BSG	-2226	0.5	-2225.6	0.2

*Log of marginal likelihood estimate, In (MLE) values obtained by Stepping Stone (SS) and Path Sampling (PS), are reported for models that either used as priors: strict (SC) or uncorrelated relaxed lognormal (UCLN) molecular clocks, and constant (CONST), non-parametric Bayesian skygrid (BSG) demographic models.

Appendix 2 Table 2.	Bayes factor values and	directionality of inferre	d migration rates*
	1	1	

Bayes factor	From	То
14.6	Algeria	Bangladesh
0.8	Algeria	India
0.8	Algeria	Iran
15	Algeria	Kenva
0.0	Algeria	Lebanon
0.9	Algeria	Malawi
0.8	Algeria	Dakistan
0.0	Algeria	Couth Africo
0.0	Algena	South_Allica
1.3	Algeria	Tanzania Zamakia
0.9	Algeria	Zambia
0.9	Algeria	Zimbabwe
2.0	Bangladesh	Algeria
1.0	Bangladesh	India
0.9	Bangladesh	Iraq
1.1	Bangladesh	Kenya
1.0	Bangladesh	Lebanon
1.0	Bangladesh	Malawi
2.7	Bangladesh	Pakistan
0.9	Bangladesh	South Africa
1.0	Bangladesh	Tanzania
0.9	Bandladesh	Zambia
0.9	Bandladesh	Zimbabwe
55.3	India	Algeria
4.0	India	Bangladesh
0.5	India	Iraq
15.5	India	Kenva
0.5	India	Lebanon
0.4	India	Malawi
7.6	India	Pakistan
0.5	India	South Africa
51	India	Tanzania
0.5	India	Zambia
0.6	India	Zimbabwe
1.8	Iraq	Algeria
12	Iraq	Bandladesh
16	Iraq	India
12	Iraq	Kenva
1 4	Iraq	Lebanon
1.1	Iraq	Malawi
1.1	Iraq	Pakistan
1.1	Iraq	South Africa
1.1	Irea	Tanzania
1.2	Iraq	Zambia
1.1	lrag	Zanibia Zimbabwe
1.1	Корус	
1.7	Kenya	Aigena
1.4	Konya	Danyiauesii
1.0	Kenya	India
1.0	Kenya	lahanan
0.8	r enya	
0.8	Kenya	
2.1	ĸenya	Pakistan
0.8	Kenya	South_Africa
20.0	Kenya	Tanzania
1.1	Kenya	∠ambia
1.0	Kenya	∠imbabwe
1.0	Lebanon	Algeria

Bayes factor	From	То
1.0	Lebanon	Bangladesh
0.9	Lebanon	India
169.8	Lebanon	Iraq
0.8	Lebanon	Kenya
0.9	Lebanon	Malawi
1.1	Lebanon	South Africa
0.7	Lebanon	Tanzania
0.7	Lebanon	Zambia
0.8	Lebanon	Zimbabwe
0.7	Malawi	Algeria
0.5	Malawi	Bangladesh
0.6	Malawi	India
0.4	Malawi	Iraq
0.6	Malawi	Kenya
0.5	Malawi	Lebanon
0.7	Malawi	Pakistan South Africa
0.5	Malawi	Tanzania
0.5	Malawi	Zambia
0.5	Malawi	Zimbabwe
1.0	Pakistan	Algeria
1.2	Pakistan	Bangladesh
0.7	Pakistan	India
1.3	Pakistan	Iraq
0.8	Pakistan	Kenya
158.3	Pakistan	Lebanon
0.6	Pakistan	South Africa
0.7	Pakistan	Tanzania
0.6	Pakistan	Zambia
0.6	Pakistan	Zimbabwe
0.9	South_Africa	Algeria
0.6	South_Africa	Bangladesh
0.8	South_Africa	India
0.6	South_Africa	Iraq
0.6	South Africa	L obopon
0.0	South Africa	Malawi
0.7	South Africa	Pakistan
0.7	South Africa	Tanzania
0.6	South Africa	Zambia
25109.5	South_Africa	Zimbabwe
1.3	Tanzania	Algeria
1.1	Tanzania	Bangladesh
0.9	Tanzania	India
0.8	Tanzania	Iraq
0.8	Tanzania	
0.6	Tanzania	Malawi
1.4	Tanzania	Pakistan
0.9	Tanzania	South Africa
110.5	Tanzania	Zambia
1.9	Tanzania	Zimbabwe
1.2	Zambia	Algeria
0.9	Zambia	Bangladesh
1.1	∠ambia Zambia	India
0.0	Zambia	Пац
0.9	Zambia	Lebanon
0.9	Zambia	Malawi
1.0	Zambia	Pakistan
1.7	Zambia	South_Africa
0.8	Zambia	Tanzania
38.3	Zambia	Zimbabwe
2.4	Zimbabwe	Algeria
1.6	∠imbabwe Zima a buuu	Bangladesh
2.5	Zimbabwe	India
1.2	Zimbabwe	iraq

Bayes factor	From	То
1.3	Zimbabwe	Kenya
1.3	Zimbabwe	Lebanon
1.1	Zimbabwe	Malawi
1.7	Zimbabwe	Pakistan
1.0	Zimbabwe	South Africa
1.4	Zimbabwe	Tanzania
1.7	Zimbabwe	Zambia

* Bayes Factor [BF] values of 3–20 indicate positive evidence (highlighted in yellow), BF of 20–150 indicate strong (highlighted in orange), and values greater than 150 indicate very strong evidence (highlighted in green).

Appendix 2 Figure 1. Cholera sequencing workflow. Out of 70 *Vibrio cholerae* samples cultured by the Public Health Institute of Malawi, three samples failed library preparation as DNA concentration was less than 100ng. Out of 67 samples successfully sequenced, 18 samples failed assembly and quality control as sequencing depth was less than 10X. We obtained 49 high-quality genomes. The genomic analyses were as follow: raw data was processed with fastp and FASTQC, Snippy was used for reference assembly, Fastbaps for cluster detection, Gubbins was used for detect and mask recombination sites, MEGAX was used to extract parsimony informative SNPs, ABRicate and ResFinder for AMR analsyis. SNPs were used to infer phylogenetic trees and for phylogegraphic analyses. The data was reported to the Public Health Institute of Malawi.

Appendix 2 Figure 2. Weekly number of confirmed cholera cases and deaths per district in Malawi are depicted on the y-axes from February 2022 to April 2023. Green dots portray the daily number of pixels demonstrating flooding conditions across districts of Malawi as detected from remotely sensed satellite imagery with the moving average shown as the dashed green line.

