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In Europe, highly pathogenic avian influenza (HPAI) virus 
circulates in avian wildlife, undergoing frequent reassort-
ment, sporadic introductions in domestic birds, and spill-
over to mammals. An H5N1 clade 2.3.4.4b reassortant, 
EA-2023-DG, affecting wild and domestic birds was de-
tected in western Europe in November 2023. Six of its 
RNA segments came from the EA-2021-AB genotype, but 
the polymerase basic 2 and polymerase acidic segments 
originated from low pathogenicity avian influenza viruses. 
Discrete phylogeographic analyses of concatenated ge-
nomes and single polymerase basic 2 and polymerase 

acidic segments suggested reassortment in summer 2023 
near the southwestern Baltic Sea. Subsequent continuous 
phylogeographic analysis of all concatenated EA-2023-
DG genomes highlighted circulation in northwestern Eu-
rope until June 2024 and long-distance dispersal toward 
France, Norway, England, Slovakia, Switzerland, and Aus-
tria. Those results illustrate the value of phylodynamic ap-
proaches to investigate emergence of novel avian influen-
za virus variants, trace their subsequent dispersal history, 
and provide vital clues for informing outbreak prevention 
and intervention policies.

http://www.cdc.gov/eid
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Since 2016, Europe has experienced periodic intro-
ductions of clade 2.3.4.4b highly pathogenic avian 

influenza (HPAI) subtype H5 viruses via wild migra-
tory bird movements and sporadic spillover events 
to poultry, which have resulted in several outbreaks 
affecting wildlife and poultry (1). In 2021, the typical-
ly seasonal epidemiologic cycle changed, and HPAI 
viruses became enzootic in Europe (2). The hemag-
glutinin (HA) gene of HPAI clade 2.3.4.4 viruses (3) 
showed rapid wild bird–mediated expansion, includ-
ing global spread (4), and rapid evolution in all af-
fected geographic areas (5–7). After 2021, increased 
HPAI incidence in Europe resulted in greater genetic 
diversity and in the evolution of new genotypes by 
frequent reassortment events. By 2022, the continued 
circulation of HPAI viruses led to numerous poultry 
outbreaks, affected an increasing number of wild bird 
species, and led to frequent reassortment, making as-
sessment of the epidemiologic situation difficult (2). 
Sporadic infection of mammals is observed, including 
the unexpected spread to cattle in North America and 
cases of human infection (8,9), and is sometimes asso-
ciated with adaptive mutations for viral replication in 
mammalian cells. Those observations stress the zoo-
notic risk associated with this particular HPAI virus 
(HPAIV) clade and the need for surveillance efforts, 
including whole-genome sequencing.

By the end of 2023, continued circulation and 
frequent reassortment events resulted in the co-circu-
lation of 11 H5Nx HPAIV genotypes in Europe, 7 of 
which emerged during the fall of 2023 (10,11). One of 
those novel reassortants was assigned genotype EA-
2023-DG, according to the standardized avian influ-
enza virus (AIV) genotyping nomenclature in Europe 
(2). EA-2023-DG was first reported in Germany in 
November 2023 and shared most of its genomic seg-
ments with the contemporary dominating genotype 
EA-2021-AB but also gained polymerase basic protein 
(PB) 2 and polymerase acidic protein (PA) segments 
from low pathogenicity avian influenza viruses cir-
culating in western Europe (10). Using all available 
EA-2023-DG genotype complete genome sequences, 
we conducted recombination and discrete as well as 
continuous phylogeographic analyses to investigate 
the emergence and subsequent dispersal dynamic of 
this genotype. 

Methods

Data Selection and Genotyping
The European Union Reference Laboratory, national 
reference laboratories, and some other partners per-
form sequencing analyses of the complete genome 

of HPAI H5Nx viruses detected through ongoing 
surveillance programs. All sequences are depos-
ited in the GISAID EpiFlu database (http://www. 
gisaid.org). Partners perform genotyping on the ba-
sis of the phylogenetic tree topology, using previ-
ously described methods (2). During November 1, 
2023–June 25, 2024, genotyping identified a total of 
54 virus genomes as belonging to genotype EA-2023-
DG. We extracted publicly available complete ge-
nomes comprising 8 segments from GISAID EpiFlu 
on January 15, 2025, resulting in a dataset consisting 
of all 54 identified EA-2023-DG genomes associated 
with exact temporal and spatial sampling metadata 
(Appendix 1 Table 1, https://wwwnc.cdc.gov/EID/
article/31/6/24-1870-App1.pdf). The earliest public-
ly available EA-2023-DG genome, A/Gallus_gallus/ 
Belgium/11307_0002/2023 (GISAID EpiFlu acces-
sion no. EPI_ISL_18607170), was sequenced from a 
chicken sample collected in Belgium on November 
30, 2023. We used that strain as the reference strain 
for genotype EA-2023-DG in this study.

Investigation of Geographic Origin of  
Reassortant EA-2023-DG Genotype
To retrieve a selection of the most homologous sequenc-
es to each of the EA-2023-DG viral genome segments, 
we conducted a search in GISAID EpiFlu on May 27, 
2024. For each of the genome segments of reference 
strain A/Gallus_gallus/Belgium/11307_0002/2023, 
we identified the 500 sequences with highest nucleo-
tide homology and downloaded the sequences of all 
8 gene segments of those genomes along with any 
available metadata (Appendix 2, https://wwwnc.
cdc.gov/EID/article/31/6/24-1870-App2.xlsx). The 
accompanying metadata included sampling location 
and precise collection date. 

We used MAFFT 7.453 (12) to align sequences. 
Because genotyping identified EA-2023-DG as a re-
assortant containing the PB1, HA, nucleoprotein 
(NP), neuraminidase (NA), matrix protein (MP), and 
nonstructural (NS) protein segments from EA-2021-
AB–like viruses, as well as PB2 and PA segments of 
other circulating AIVs, we assembled 3 distinct da-
tasets. One dataset was an alignment concatenating 
the 6 nonrecombinant segments, PB1, HA, NP, NA, 
MP, and NS, of all 54 EA-2023-DG samples and the 
500 most homologous H5N1 virus samples found for 
those 6 segments. We removed duplicates from the 
6 segment searches by using a custom Python script 
(Python Software Foundation, https://www.python.
org), resulting in a total dataset of 958 samples. The 
second and third datasets, 1 for PA and 1 for PB2, 
used a distinct PA or PB2 alignment from all 54  

http://www.cdc.gov/eid
http://www.gisaid.org
http://www.gisaid.org
https://wwwnc.cdc.gov/EID/article/31/6/24-1870-App1.pdf
https://wwwnc.cdc.gov/EID/article/31/6/24-1870-App1.pdf
https://wwwnc.cdc.gov/EID/article/31/6/24-1870-App2.xlsx
https://wwwnc.cdc.gov/EID/article/31/6/24-1870-App2.xlsx
https://www.python.org
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EA-2023-DG samples and the 500 most homologous 
samples for the corresponding segment. 

Because the initial concatenated alignment was 
computationally too large to conduct Bayesian phy-
logeographic inference, we conducted a prelimi-
nary maximum-likelihood phylogenetic inference 
in IQTREE 1.6.12 (13), using default settings and the 
best-fitting substitution model identified by Mod-
elFinder (14). We used that preliminary phylogenetic 
inference to restrict the alignment to a large mono-
phyletic clade of 225 samples containing the 54 EA-
2023-DG samples. Thus, that phylogeny-guided 
downsampling reflects the evolutionary history of the 
larger set of 958 samples.

To assess the presence of a recombination signal 
within the resulting PB1-HA-NP-NA-MP-NS concat-
enated alignment of those 6 segments, we performed 
the Φ test (15) implemented in the SplitsTree 4.14.8 
program (16), which confirmed the occurrence of past 
recombination events (p<0.001). We then used the 
RDP4 program (17) to identify recombinant samples: 
we identified and discarded 41 recombinants within 
the set of background samples, which resulted in a 
PB1-HA-NP-NA-MP-NS concatenated alignment of 
184 samples. We performed a new Φ test on that final 
alignment and confirmed the absence of a remaining 
recombination signal.

We conducted a discrete phylogeographic analy-
sis based on each of the 3 alignments (PA, PB2, and 
recombinant-free PB1-HA-NP-NA-MP-NS) to recon-
struct the transition history of viral lineages among 
countries and investigate the country from which EA-
2023-DG genotype emerged. For those analyses, the se-
lection of countries as discrete locations was imposed 
by the lack of higher sampling precision for most pub-
licly available background sequences retrieved from 
GISAID EpiFlu. We performed the discrete phylogeo-
graphic analyses by using the discrete diffusion model 
(18) implemented in the BEAST 1.10 software package 
(19), specifying a GTR+Γ (general time-reversible with 
a gamma-distributed rate heterogeneity) nucleotide 
substitution model (20), a relaxed molecular clock 
with an underlying log-normal distribution to model 
branch-specific evolutionary rates (21), and a skygrid 
coalescent model for the tree prior (22). We ran the PA 
analysis for 300 Markov chain Monte Carlo (MCMC) 
iterations, the PB2 analysis for 500 MCMC iterations, 
and the concatenated analyses for 210 million MCMC 
iterations and sampled posterior trees every 100,000 
iterations. We assessed the MCMC convergence and 
mixing by using the Tracer 1.7 program (23), checking 
that all estimated parameters were associated with an 
effective sample size value >200. After discarding the 

initial 10% of sampled posterior trees as burn-in, we 
retrieved and annotated the maximum clade credibil-
ity (MCC) tree by using TreeAnnotator 1.10 (19) and 
eventually plotted the tree in R (The R Project for Sta-
tistical Computing, https://www.r-project.org) by us-
ing a custom script (https://github.com/sdellicour/
ea-2023-dg_emergence).

Reconstruction of Reassortant EA-2023-DG  
Dissemination History
To reconstruct the spread of the EA-2023-DG geno-
type after the reassortment event at its genesis, we 
performed a continuous phylogeographic reconstruc-
tion on the basis of the concatenated alignment of all 
8 genomic segments of the 54 EA-2023-DG genomes 
available on January 15, 2025. We then aligned se-
quences again using MAFFT 7.453 (12) and per-
formed the Φ test (15) in SplitsTree (16) to confirm 
the absence of a recombination signal within the 
concatenated alignment made of EA-2023-DG ge-
nomic sequences. The availability of precise sampling 
coordinates for all considered samples in this align-
ment made a spatially explicit phylogeographic re-
construction possible. We performed that continuous 
phylogeographic reconstruction by using the relaxed 
random walk model (24,25) in BEAST version 1.10 
(19). As with the discrete approach, the continuous 
phylogeographic approach involves a joint inference 
of both the phylogenetic tree representing the evo-
lutionary relationships between sampled sequences, 
and the locations, in this case the geographic coordi-
nates (latitude and longitude) of unsampled common 
ancestors (26). Specifically, we used a gamma distri-
bution to model the among-branch heterogeneity in 
diffusion velocity, and modeled branch-specific evo-
lutionary rates according to a relaxed molecular clock 
with an underlying log-normal distribution and the 
nucleotide substitution process according to a GTR+Γ 
parameterization. As for the tree prior, we specified 
a flexible skygrid model (22). We ran the MCMC for 
250 million iterations, sampling posterior trees every 
100,000 iterations, and eventually discarded the first 
25 million sampled trees as burn-in. We used Trac-
er 1.7.2 to assess the MCMC convergence and mix-
ing properties and ensure that estimated parameters 
were all associated with an effective sample size >200. 
We used TreeAnnotator version 1.10 to identify and 
annotate the MCC tree and R functions in the SERA-
PHIM package (27,28) to extract the spatiotemporal 
information embedded within the 1,000 trees sampled 
from the post–burn-in posterior distribution and to 
estimate the weighted diffusion coefficient (29) asso-
ciated with the spread of the EA-2023-DG genotype.

http://www.cdc.gov/eid
https://www.r-project.org
https://github.com/sdellicour/ea-2023-dg_emergence
https://github.com/sdellicour/ea-2023-dg_emergence
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Results

Epidemiologic Findings
Our analysis showed that the EA-2023-DG geno-
type was initially detected in a sample from a 
swan found dead on a Baltic Sea island in Fin-
land on November 1, 2023 (GISAID accession no. 
EPI_ISL_19409779) (Figure 1; Appendix 1 Table 
1). Then, on November 17, 2023, the EA-2023-DG 
genotype emerged in a hobby farm near the North 
Sea coast in northern Germany that had a mixed 
population of 52 chickens, 3 turkeys, and 11 ducks 
(Appendix 1 Table 1). EA-2023-DG subsequently 
spread to a total of 11 countries, and 54 cases were 
detected (Appendix 1 Table 2). The most affected 
countries included Germany, Sweden, and Poland. 
Germany was most affected, with cases in 13 poul-
try farms, 8 wild birds, 1 captive bird, and 1 wild 
mammal (red fox). Sweden experienced cases on 1 

poultry farm and in 11 wild birds, and Poland had 
5 poultry and 3 wild bird cases. Affected poultry 
were among the Phasianidae family (n = 21), which 
includes chickens (Gallus gallus) and turkeys (Me-
leagris gallopavo), and the Anatidae family (n = 1), 
which includes geese and ducks. Domestic poultry 
were only infected in Germany, Poland, Sweden, 
and Belgium. Captive animals included 1 captive 
barn owl (Tytonidae family, Tyto alba) and 1 black 
necked swan (Anatidae family, Cygnus melancory-
phus) in a zoo. Wild birds, all found dead during 
passive surveillance efforts, included birds from the 
Anatidae (n = 24), Accipitridae (n = 3), Falconidae 
(n = 1), Strigidae (n = 1), Gruidae (n = 1), and Ardei-
dae (n = 1) families (Appendix 1 Table 1). A single 
mammal sample from a red fox (Vulpes vulpes) from 
the Hamburg district of Germany was EA-2023-DG 
positive. The most recent (June 25, 2024) occurrence 
was a wild goose sample in Germany.

Figure 1. Discrete phylogeographic analysis from study of genesis and spread of novel highly pathogenic avian influenza A(H5N1) 
clade 2.3.4.4b virus genotype EA-2023-DG reassortant, western Europe. The maximum clade credibility (MCC) tree was obtained 
from discrete phylogeographic inference based on the analysis of the PB1-HA-NP-NA-MP-NS (polymerase basic 1, hemagglutinin, 
nucleoprotein, neuraminidase, matrix protein, nonstructural protein) concatenated alignment of EA-2023-DG samples and selected EA-
2021-AB reference sequences sourced from GISAID EpiFlu (http://www.gisaid.org). Vertical gray shaded bars reflect the 95% highest 
posterior density interval associated with each internal node age estimate; internal nodes are colored according to their inferred location, 
and tip nodes are colored according to their sampling location. For the internal nodes, when a single location could not be inferred 
with a posterior probability >0.95, we used a pie chart to display the posterior probabilities associated with inferred locations with a 
posterior probability of >0.05. The gray transparent box highlights the position of the EA-2023-DG clade. The discrete phylogeographic 
reconstruction based on the analysis of the polymerase basic 2 and polymerase acidic segments are available as supplementary 
information (Appendix 1 Figures 1, 2, https://wwwnc.cdc.gov/EID/article/31/6/24-1870-App1.pdf).

http://www.cdc.gov/eid
http://www.gisaid.org
https://wwwnc.cdc.gov/EID/article/31/6/24-1870-App1.pdf
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Genesis of AIV Genotype EA-2023-DG in  
Western Europe
The discrete phylogeographic analyses conducted 
on the recombinant-free PB1-HA-NP-NA-MP-NS 
concatenated alignment and the PB2 and PA align-
ments confirmed the monophyletic nature of the EA-
2023-DG clade (Figure 1; Appendix 1 Figures 1, 2). 
The analysis based on the PB1-HA-NP-NA-MP-NS 
concatenated alignment inferred the origin of the EA-
2023-DG clade at the end of July 2023 (July 22, 2023; 
95% highest posterior density [HPD] interval  June 
10–August 27, 2023) in Sweden with a posterior prob-
ability >0.99 (Figure 1). The analyses of the PB2 and 
PA segments, inferred its origin in Germany (poste-
rior probability = 0.99); the PB2 analysis inferred its 
origin on January 6, 2023 (95% HPD  September 17, 
2022–April 20, 2023), and the PA analysis inferred its 
origin on June 30, 2023 (95% HPD April 14–Septem-
ber 24, 2023) (Appendix 1 Figures 1, 2). 

Outcomes of discrete phylogeographic infer-
ence are known to be notably affected by sampling 
bias (30). Thus, the discrepancy between the country 
of origin inferred from the discrete phylogeographic 
analyses conducted for the recombinant-free PB1-
HA-NP-NA-MP-NS concatenated alignment on the 
one hand and on the PB2 and PA alignments on the 
other could arise from the heterogeneous sampling 
of closely related sequences in the different countries 
within the study area. However, those results over-
all indicated that EA-2023-DG emerged during the 
spring and summer of 2023 in the southwestern Baltic 
Sea region. The continuous phylogeographic analy-
sis further confirms the emergence of the reassortant 
genotype in this region and time frame (Figure 2).

Spread History and Dynamics of EA-2023-DG
Our continuous phylogeographic analysis using 
concatenated EA-2023-DG sequences for all 8 seg-
ments confirmed that the ancestral node of this clade 
traces back to the southwestern Baltic Sea shores of 
Sweden, Germany, and Denmark (Figure 2, panel B). 
Although the most ancestral nodes of the MCC tree 
are inferred in northern Germany (Figure 2, panel C), 
the uncertainty associated with the Bayesian phylo-
geographic inference (shaded 80% HDP polygons) 
highlights a potential area of origin that is relatively 
large and corresponds to the larger southwestern 
Baltic Sea area, which aligns with the results of the 
discrete phylogeographic reconstructions. Our con-
tinuous phylogeographical analysis dates the most 
ancestral node of the EA-2023-DG clade as August 
2, 2023 (95% HPD  July 16–September 7, 2023), also 
aligning with the discrete phylogenetic analyses  

(Figure 2, panel A). The continuous phylogeographic 
analysis indicated that after its emergence, lineages of 
the EA-2023-DG genotype further spread in Germany 
and Poland, toward the Netherlands, and to southern 
Sweden and southern Finland before November 2023. 
Its lineages then reached Belgium, England, Slovakia, 
and Switzerland during November and December 
2023. By June 2024, EA-2023-DG spread as far north 
as the island of Åland in south Finland; as far south 
as Lyon, France; as far east as Slovakia; and as far 
west as England (Figure 2, panels B–F). Overall, the 
virus predominantly circulated in Germany, Sweden, 
and Poland, with only occasional detections in other 
countries in Europe.

Discussion
The ongoing panzootic caused predominantly by 
clade 2.3.4.4b HPAIVs is notorious for its diversifying 
evolution, including frequent reassortment events 
that result in an ever-changing range of circulating 
genotypes (2,6). Reassortment events represent cru-
cial shifts in virus evolution that can affect host range, 
pathogenicity, and other epidemiologically relevant 
aspects of the virus phenotype; thus, understanding 
the dynamics behind the emergence and spread of 
such novel reassortants is critical. Combining com-
plete avian influenza genomes and exact spatial and 
temporal sampling data enables detailed reconstruc-
tion of virus dispersal during an outbreak (31) and 
identification of reassortment events (2).

In this study, we analyzed all available full-ge-
nome sequences of novel reassortant HPAIV H5N1 
genotype EA-2023-DG, which emerged in 2023 in 
western Europe (10), to reconstruct its genesis and 
dispersal dynamics. We traced its origin to the south-
western Baltic Sea area in the spring and summer of 
2023. More precisely, most of the genome (i.e., PB1, 
HA, NP, NA, MP, and NS segments) originated from 
the dominant EA-2021-AB genotype, and the most re-
cent common ancestor of those EA-2023-DG genomic 
segments likely emerged in or close to Sweden during 
summer 2023. As for the PA and PB2 segments, we 
inferred their origin in Germany, meaning that they 
could have originated from low pathogenicity avian 
influenza viruses circulating in Germany during win-
ter and spring 2023, as suggested by others merely 
on the basis of sequence similarity (10). Overall, our 
results point toward a local reassortment event that 
occurred in the southwestern Baltic Sea area, which 
is in line with the first occurrence of the genotype in 
southern Finland. 

Of note, our phylogeographic reconstructions  
of the genesis of EA-2023-DG agree with the AIV  

http://www.cdc.gov/eid
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introduction risk prediction on the basis of wild bird 
migration data and AIV occurrences by the EFSA Bird 
Flu Radar Tool (32). Those predictions indicated high 
introduction risk near the southwestern Baltic Sea 
along the shores of Germany, Denmark, and Sweden 
for the week fitting the time to most recent common 
ancestor (tMRCA) of the EA-2023-DG clade (August 
7–13, 2023). In addition, the population density and 
ringing recapture data of species from the Anatidae 
family associated with the most distant translocations 
of EA-2023-DG and captured in Germany and Den-
mark around the week of the tMRCA according to the 

Migration Mapping Tool, Bird Flu Radar Tool (32), do 
not contradict the viral lineage movements we recon-
structed here. Those observations confirm the contin-
ued involvement of an increasing spectrum of wild 
bird species in the epidemiology of HPAIV.

The spectrum of bird families affected by EA-
2023-DG, including Phasianidae, Anatidae, Accipi-
tridae, Falconidae, Strigidae, Tytonidae, Gruidae, 
and Ardeidae, aligns largely to the host spectrum 
of genotype EA-2021-AB that donated most of the 
genome (2). A single dead fox was found infected in 
the core area of EA-2023-DG circulation in northern 

Figure 2. Continuous phylogeographic analysis from study of genesis and spread of novel highly pathogenic avian influenza A(H5N1) 
clade 2.3.4.4b virus genotype EA-2023-DG reassortant, western Europe. A) Time-scaled maximum clade credibility treeretrieved and 
annotated from the continuous phylogeographic inference based on analysis of 54 publicly available complete EA-2023-DG genomes 
and associated sampling metadata from GISAID EpiFlu (http://www.gisaid.org). The tree shows horizontal shaded bars reflecting 
the 95% highest posterior density (HPD) associated with each internal node age estimate. The tree and HPD estimates are based 
on 1,000 trees sampled from the posterior distribution of trees and are colored according to time of occurrence; internal nodes are 
displayed as dots and tip nodes are displayed as squares. Dotted vertical lines correspond to 2-month intervals beginning July 1, 2023. 
B–F) Phylogeographic reconstruction of EA-2023-DG viral lineages across western Europe. We mapped the MCC tree and 80% HPD 
regions reflecting the uncertainty related to the Bayesian phylogeographic inference as of June 25, 2024 (B), and for other time points: 
C) September 1, 2023; D) November 1, 2023; E) January 1, 2024; and F) June 25, 2024. On the maps, the dispersal direction of viral 
lineages is indicated by the edge curvature in a counterclockwise direction.

http://www.cdc.gov/eid
http://www.gisaid.org
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Germany, confirming the role of wild carnivores as 
dead-end hosts of HPAIV clade 2.3.4.4b (5). Because 
of the reassortment event, we could not include an-
cestral DG precursor genomes in the detailed whole-
genome–based phylogeographic reconstruction, re-
sulting in a substantial spatial uncertainty covering 
the western Baltic Sea shores and North Sea coast 
of Germany. Another factor that might have con-
tributed to the temporal and spatial uncertainty in 
our predictions is the lack of standardized surveil-
lance approaches between countries, especially for 
wildlife surveillance. Our spatially explicit phylo-
geographic reconstruction highlights continued cir-
culation with a focus in Germany, Poland, and Swe-
den and sporadic occurrences as far north as central 
Sweden, as far south as central France, as far west as 
England, and as far east as Slovakia.

During its period of circulation, EA-2023-DG be-
came the second most frequent (54 cases) genotype 
in the countries it affected, but EA-2021-AB remained 
the dominant genotype with 84 reported cases. Other 
prevalent genotypes were EA-2023-DB (32 cases), EA-
2024-DI (26 cases), EA-2022-BB (16 cases), EA-2021-I 
(14 cases), and EA-2023-DA (13 cases) (33,34). Ten ad-
ditional genotypes circulated at lower frequency (<10 
cases), reflecting the known diversification potential 
of H5N1 clade 2.3.4.4b viruses (2).

In vivo experiments following up on the emer-
gence of HPAIV H5N1 in cattle in the United States 
(35), and its subsequent spillover to other mammals, 
including cats (35) and exposed humans (36), used an 
EA-2023-DG genotype virus as a model of contem-
porary circulating viruses in Europe. Those studies 
indicated that these viruses efficiently replicate in 
bovine mammary tissue and can produce adaptive 
mutations (PB2 E627K) during replication (37). Those 
findings underscore the value of phenotypic charac-
terization of currently circulating H5Nx clade 2.3.4.4b 
viruses, including the newly emerged EA-2023-DG 
genotype, because the zoonotic potential of the virus-
es can evolve, driven and shaped by epidemiologic 
events that could increase the likelihood of spillover 
to mammals and subsequent adaptation. In response 
to HPAIV reassortment promiscuity resulting in fast 
evolution and diversification (2,6), efficient livestock 
and wildlife surveillance programs including a viral 
genomic characterization are essential. 

In conclusion, although gaps in surveillance data 
will always exist, we demonstrated that viral genomic 
data collected from surveillance programs combined 
with precise spatial and temporal metadata can en-
able a comprehensive investigation of the genesis of 
novel AIV reassortants and of their spread dynamics.  

In addition to viral genetic characterization, such as 
adaptive mutations and genotyping, these param-
eters provide vital clues for informing outbreak pre-
vention and intervention policies.
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