## Article DOI: https://doi.org/10.3201/eid3107.241864

EID cannot ensure accessibility for Supplemental Materials supplied by authors. Readers who have difficulty accessing supplementary content should contact the authors for assistance.

## *Borrelia* Lineages Adjacent to Zoonotic Clades in Black Flying Foxes (*Pteropus alecto*), Australia, 2018–2020

## Appendix

| Appendix Table 1. PCR primers and reaction conditions used for <i>Borrelia</i> sp. PCR testing* |                   |               |                           |              |         |              |                      |  |
|-------------------------------------------------------------------------------------------------|-------------------|---------------|---------------------------|--------------|---------|--------------|----------------------|--|
|                                                                                                 |                   |               |                           | Annealing    |         |              |                      |  |
| Target                                                                                          | Primer            | Primer        |                           | temperature, |         | Amplified    |                      |  |
| gene                                                                                            | name              | orientation   | Sequence, 5'-3'           | °C†          | Cycles  | fragment, bp | Reference            |  |
| 16S rRNA                                                                                        | 1A                | Forward       | CTAACGCTGGCAGTGCGTCTTAAGC | 70–61, 60    | 10 + 40 | ≈724         | (1)                  |  |
| 16S rRNA                                                                                        | 1B                | Reverse       | AGCGTCAGTCTTGACCCAGAAGTTC |              |         |              |                      |  |
| 16S rRNA                                                                                        | Bf1 <sub>24</sub> | Forward       | GCTGGCAGTGCGTCTTAAGCATGC  | 72–63, 62    | 10 + 40 | ≈1,395       | Modified<br>from (2) |  |
| 16S rRNA                                                                                        | Br1 <sub>24</sub> | Reverse       | GCTTCGGGTATCCTCAACTCGGGT  |              |         |              | .,                   |  |
| 16S-23S<br>rRNA IGS                                                                             | F                 | Outer forward | GTATGTTTAGTGAGGGGGGGTG    | 55           | 30      | Variable     | (3)                  |  |
| 16S-23S<br>rRNA IGS                                                                             | R                 | Outer reverse | GGATCATAGCTCAGGTGGTTAG    |              |         |              |                      |  |
| 16S-23S<br>rRNA IGS                                                                             | Fn                | Inner forward | AGGGGGGTGAAGTCGTAACAAG    | 55           | 30      | Variable     |                      |  |
| 16S-23S<br>rRNA IGS                                                                             | Rn                | Inner reverse | GTCTGATAAACCTGAGGTCGGA    |              |         |              |                      |  |
| flaB                                                                                            | FlaLL             | Outer forward | ACATATTCAGATGCAGACAGAGG   | 52           | 30      | ≈665         | (4)                  |  |
| flab                                                                                            | FlaRL             | Outer reverse | GCAATCATAGCCATTGCAGATTGT  |              |         |              | . ,                  |  |
| flab                                                                                            | 442f              | Inner forward | GCTGAAGAGCTTGGAATGCAACC   | 55           | 30      | ≈524         | This paper           |  |
| flaB                                                                                            | FlaRL             | Inner reverse | GCAATCATAGCCATTGCAGATTGT  |              |         |              | (4)                  |  |

\*PCR assays used Promega GoTaq Green master mix (Promega, Madison, WI, USA). Primers were used at 0.5 mM concentration. All PCRs began with an initial denaturation step at 94°C, 2 minutes. Thereafter, cycles consisted of 94°C, 30 seconds; annealing temperature as indicated in the table for 30 seconds; and extension at 72°C, 30 seconds for 16S 1A/1B and *flaB* primers or 72°C, 1 minutes for 16S Bf1<sub>24</sub>/Br1<sub>24</sub> and IGS primers. †The 16S rRNA screening primers (1A/1B) and the longer region 16S primers (Bf1<sub>24</sub>/Br1<sub>24</sub>) used a touchdown PCR approach. The annealing temperature was dropped 1°C in each of the first 10 cycles, followed by 40 additional cycles with annealing temperature as shown in the table.

| App | pendix | Table 2. | PCR | positivity | for I | Borrelia ir | nfections | summarized | across | Pteropus | s alecto | roosts ar | nd samp | ling s | sessions |
|-----|--------|----------|-----|------------|-------|-------------|-----------|------------|--------|----------|----------|-----------|---------|--------|----------|
|-----|--------|----------|-----|------------|-------|-------------|-----------|------------|--------|----------|----------|-----------|---------|--------|----------|

|               |                   |                    | Total no. |                 |  |  |
|---------------|-------------------|--------------------|-----------|-----------------|--|--|
| Site          | Sampling session  | Session prevalence | sampled   | Site prevalence |  |  |
| Gympie        | 31 January 2019   | 0.20               | 20        | 0.20 (4/20)     |  |  |
| Hervey Bay    | 15 July 2018      | 0                  | 6         | Ò               |  |  |
| Hervey Bay    | 28 July 2020      | 0                  | 30        |                 |  |  |
| Maclean       | 9 July 2018       | 0                  | 1         | 0               |  |  |
| Mount Ommaney | 17 January 2019   | 0                  | 7         | 0               |  |  |
| Redcliffe     | 25 May 2018       | 0.04               | 24        | 0.03 (10/375)   |  |  |
| Redcliffe     | 27 July 2018      | 0                  | 10        |                 |  |  |
| Redcliffe     | 14 September 2018 | 0                  | 19        |                 |  |  |
| Redcliffe     | 14 December 2018  | 0.05               | 21        |                 |  |  |
| Redcliffe     | 8 March 2019      | 0                  | 59        |                 |  |  |
| Redcliffe     | 28 May 2019       | 0.03               | 30        |                 |  |  |
| Redcliffe     | 9 July 2019       | 0.03               | 32        |                 |  |  |
| Redcliffe     | 10 September 2019 | 0.03               | 30        |                 |  |  |
| Redcliffe     | 3 December 2019   | 0.03               | 32        |                 |  |  |
| Redcliffe     | 3 March 2020      | 0.07               | 30        | 0.03 (10/375)   |  |  |
| Redcliffe     | 11 May 2020       | 0.07               | 30        |                 |  |  |
| Redcliffe     | 7 July 2020       | 0                  | 30        |                 |  |  |

|           |                  |                    | Total no. |                 |
|-----------|------------------|--------------------|-----------|-----------------|
| Site      | Sampling session | Session prevalence | sampled   | Site prevalence |
| Redcliffe | 7 September 2020 | 0                  | 28        |                 |
| Toowoomba | 3 June 2018      | 0.05               | 21        | 0.007 (3/402)   |
| Toowoomba | 21 July 2018     | 0.04               | 26        |                 |
| Toowoomba | 8 September 2018 | 0                  | 21        |                 |
| Toowoomba | 8 December 2018  | 0                  | 22        |                 |
| Toowoomba | 11 January 2019  | 0                  | 9         |                 |
| Toowoomba | 15 March 2019    | 0.02               | 58        |                 |
| Toowoomba | 14 May 2019      | 0                  | 30        |                 |
| Toowoomba | 2 July 2019      | 0                  | 29        |                 |
| Toowoomba | 23 July 2019     | 0                  | 6         |                 |
| Toowoomba | 3 September 2019 | 0                  | 30        |                 |
| Toowoomba | 10 December 2019 | 0                  | 30        |                 |
| Toowoomba | 10 March 2020    | 0                  | 29        |                 |
| Toowoomba | 4 May 2020       | 0                  | 30        |                 |
| Toowoomba | 14 July 2020     | 0                  | 30        |                 |
| Toowoomba | 1 September 2020 | 0                  | 30        |                 |

 Toowoomba
 1 September 2020
 0
 30

 \*Bats are considered infected if testing positive for at least 1 of our 3 markers (i.e., 16S rRNA gene, *flaB* gene, and 16S–23S rRNA ITS).



**Appendix Figure 1.** Maximum likelihood phylogenetic tree displaying evolutionary relationships between *Borrelia* spp. using the *flaB* gene. The tree was constructed using RAxML 8 (*5*) and a GTR+I+G nucleotide substitution model. Branch support was calculated with 1,000 rapid bootstrap replicates.



**Appendix Figure 2.** Maximum likelihood phylogenetic tree displaying evolutionary relationships between *Borrelia* spp. using the 16S gene. The tree was constructed using RAxML 8 (5) and a GTR+I+G nucleotide substitution model. Branch support was calculated with 1,000 rapid bootstrap replicates.

## References

- Richter D, Schlee DB, Matuschka F-R. Relapsing fever-like spirochetes infecting European vector tick of Lyme disease agent. Emerg Infect Dis. 2003;9:697–701. https://doi.org/10.3201/eid0906.020459
- Raoult D, Ndihokubwayo JB, Tissot-Dupont H, Roux V, Faugere B, Abegbinni R, et al. Outbreak of epidemic typhus associated with trench fever in Burundi. Lancet. 1998;352:353–8. https://doi.org/10.1016/S0140-6736(97)12433-3
- Bunikis J, Garpmo U, Tsao J, Berglund J, Fish D, Barbour AG. Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents *Borrelia burgdorferi* in North America and *Borrelia afzelii* in Europe. Microbiology (Reading). 2004;150:1741–55. https://doi.org/10.1099/mic.0.26944-0
- 4. Barbour AG, Carter CJ, Bundoc V, Hinnebusch J. The nucleotide sequence of a linear plasmid of *Borrelia burgdorferi* reveals similarities to those of circular plasmids of other prokaryotes. J Bacteriol. 1996;178:6635–9. https://doi.org/10.1128/jb.178.22.6635-6639.1996
- Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3. https://doi.org/10.1093/bioinformatics/btu033