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Malaria caused by Plasmodium falciparum re-
mains a major health problem. In 2023, an es-

timated 263 million cases and 597,000 deaths were 
seen worldwide; most were in Africa. Introduction 
of rapid diagnostic tests (RDTs) has substantially in-
creased malaria diagnosis and malaria control. P. fal-
ciparum histidine-rich protein 2 (PfHRP2)–detecting 
RDTs rely on monoclonal antibodies raised against 
PfHRP2. Those monoclonal antibodies cross-detect 
PfHRP3 because of shared amino acid repeats.

The development of malaria RDTs began in the 
early 1990s; however, it was not until 2008 that qual-
ity-controlled and reliable RDTs became available. 
The World Health Organization policy shift in 2010 
to a test-and-treat strategy boosted widespread use 
of RDTs, and RDT sales increased to >415 million in 
2022 (1). In 2010 in the Amazon region of Peru, re-
searchers identified the first P. falciparum strains that 
lacked the pfhrp2 gene (and pfhrp3 gene) and caused 
false-negative PfHRP2 RDT results (2). Subsequent 
studies identified pfhrp2 gene–deleted and pfhrp3 
gene–deleted parasites in other malaria-endemic re-
gions; the highest frequencies were reported in the 
Amazon region in South America and parts of East 
Africa, including Ethiopia (3). The high frequency of 
gene deletions in countries in East Africa has already 
led to a policy switch toward non-PfHRP2 RDTs in 
Eritrea, Djibouti, and, in 2022, Ethiopia (4), despite 
the lack of reliable alternative RDT types.

We suspected that treatment guided by PfHRP2-
based RDTs selects for PfHRP2 test–negative para-
sites that can be further transmitted and spread (3). 
In the Amazon region of Peru, where the first pfhrp2-
deleted and pfhrp3-deleted parasites were found, 
PfHRP2-based RDTs were not in common use (2). 
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Plasmodium falciparum strains lacking P. falciparum 
histidine-rich protein 2 (PfHRP2) and PfHRP3 threaten 
malaria rapid test reliability. We show that pfhrp2/pfhrp3–
deleted parasites circulated in Ethiopia as early as 2009, 
before widespread PfHRP2-based rapid test use, and 
had high pfhrp3 deletion prevalence. Monitoring of pfhrp2 
and of pfhrp3 deletions is needed.

Figure. pfhrp2 and pfhrp3 
deletion frequency in genomic 
deletion of PfHRP2 and PfHRP3 
antigens in Plasmodium 
falciparum strains, Ethiopia, 
2009. P. falciparum–positive 
samples from 89 persons, 
previously identified by species-
specific PCR were analyzed by 
4-plex qPCR for the presence of 
P. falciparum by pfcytb to confirm 
DNA quality and quantity by 
amplification of the single copy 
gene pfβtub and then for deletion 
of pfhrp2 and pfhrp3. pfcytb, P. 
falciparum cytochrome b; pfβtub, 
P. falciparum β-tubulin; pfhrp, P. 
falciparum histidine-rich protein; 
qPCR, quantitative PCR.
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To shed light on the multifactorial forces driving 
the spread of parasites with gene deletions, we ret-
rospectively analyzed samples collected in Ethiopia 
in 2009, which was a time when PfHRP2-based RDTs 
were not yet used globally. We obtained the samples 
from eastern and southwestern regions of the country 
(Appendix Figure 1, https://wwwnc.cdc.gov/EID/
article/31/7/24-1676-App1.pdf).

We used 4-plex quantitative PCR (qPCR) analysis 
on 89 samples that had already tested positive for P. 
falciparum monoinfection by using species-specific PCR 
as previously reported (5) and that were available in 
sufficient quantities for testing (6) (Appendix); 74 were 
quality confirmed. Of those 74 samples, 2 (2.7%) were 
negative for pfhrp2 and pfhrp3 (pfhrp2−/pfhrp3−) (Figure). 
We did not detect any pfhrp2 single deletions (pfhrp2−/
pfhrp3+), but 21 samples (28.4%) lacked pfhrp3 (pfhrp2+/
pfhrp3−). Because sample size was limited, we were 
unable to analyze regional differences. Most (63/74) 
samples were from the southwestern (Jimma) region, 
where >90% of the deletions were found (Table).  
PfHRP2 RDTs were not performed on the sample set.

To further profile the pfhrp3 gene locus in the 23 
samples lacking pfhrp3 (targeting the 5′ end of pfhrp3 
exon 2), we reassessed the samples by using a modi-
fied 4-plex qPCR that targets the 3′ region of pfhrp3 
exon 2 (7) (Appendix Figure 2). Of 21 analyzed samples 
(2 samples had insufficient material), 7 samples were 
positive for pfhrp3 (Appendix Table 1). We profiled 5 
of those samples (2 samples lacked material) by PCR 
(primer pairs 3, 4, and 5) that spanned various regions 
within the pfhrp3 locus. All 5 samples had a pfhrp3 gene 
deletion (Appendix Table 2, Figure 2). We therefore rec-
ommend continued use of unmodified 4-plex qPCR (6).

Studies of pfhrp2 and pfhrp3 deletions in the P. fal-
ciparum population in Africa with a sufficiently large 
sample size are lacking (8). Before intensive use of Pf-
HRP2-based RDTs, parasites with pfhrp2 deletions were 
already present but at very low frequencies and only in 
association with pfhrp3 deletions. In contrast, the per-
centage (28%) of pfhrp3-deleted parasites was surpris-
ingly high and agrees with multiple studies from Ethio-
pia conducted since 2015 (Appendix Table 3).

Our data clarify the emergence and spread of 
PfHRP2 diagnostic–resistant parasites, supporting 

Feleke et al. (3). Frequently occurring pfhrp3 dele-
tions might favor selection and spread of occasion-
ally occurring pfhrp2 deletions under the selective 
pressure of intensive use of PfHRP2 RDTs followed 
by antimalarial treatment. Studies published in 2020 
and 2021 identified a major role of PfHRP3 in the ac-
curacy of PfHRP2 RDTs, particularly at low parasit-
emia, where cross-binding can mask pfhrp2 deletions 
and result in a positive test (9,10). In contrast, absence 
of PfHRP3 in pfhrp2-deleted strains results in a false-
negative RDT and ultimately leads to positive selec-
tion of pfhrp2-deleted P. falciparum. Those results are 
particularly relevant in areas of low transmission and 
with extensive use of PfHRP2 RDTs and antimalarial 
treatment (3; O.J. Watson et al., unpub. data, http://
medrxiv.org/lookup/doi/10.1101/2023.10.21.2329
7352). The frequency of pfhrp2 and pfhrp3 deletions 
is much lower in West and Central Africa countries 
that have a high transmission rate (O.J. Watson et al.,  
unpub. data).

Use of different molecular tests provided valu-
able insights into the challenges of deletion detection 
and nature of pfhrp3 gene deletion. We confirmed 
4-plex qPCR results by using 3 PCRs with commonly 
used primers and highlight that outcomes might vary 
depending on the assays applied. pfhrp3 deletions 
might contribute to the spread of pfhrp2-deleted P. 
falciparum and should be routinely monitored along 
with pfhrp2 in deletion surveillance studies.
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Jimma 66 18 (1–73) 46 54 63 19 (30.2) 0 (0) 2 (3.2) 
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Highly pathogenic avian influenza (HPAI) H5 vi-
ruses of clade 2.3.4.4b continue to affect diverse 

regions and species worldwide. Since 2020, this ongo-
ing panzootic has reached unprecedented scale, caus-
ing the death or culling of >130 million poultry across 
67 countries, substantially threatening food security 
(1). Mass mortality in wild birds and spillover to >48 
mammal species across 26 countries have raised con-
servation and zoonotic concerns (2).

Although most countries rely on poultry depop-
ulation and movement restrictions to control HPAI, 
France recently implemented preventive vaccination 
(3). Since October 2023, domestic ducks in the pro-
duction stage are vaccinated with the Volvac B.E.S.T. 
AI+ND vaccine (Boehringer Ingelheim, https://
www.boehringer-ingelheim.com), administered at 
10 and 28 days, and, in high-risk zones and during 
winter, a third dose at 56 days (4). In May 2024, the 
campaign expanded to include the RESPONS AI H5 
vaccine (Ceva Animal Health, https://www.ceva.
us). Vaccinating breeder ducks remains optional. As 
of July 1, 2024, >35 million ducks had received 2 doses 
and 1.5 million had received 3 doses (4).

In 2023–2024, only 10 HPAI H5 poultry outbreaks 
were reported, substantially reduced from 1,374 in 
2021–2022 and 396 in 2022–2023 (Figure, panels A, B). 

Highly pathogenic avian influenza causes substantial 
poultry losses and zoonotic concerns globally. Duck 
vaccination against highly pathogenic avian influenza 
began in France in October 2023. Our assessment pre-
dicted that 314–756 outbreaks were averted in 2023–
2024, representing a 96%–99% reduction in epizootic 
size, likely attributable to vaccination.
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