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Bacteria in the genus Borrelia are causative agents 
of 2 diseases of substantial public health concern, 

Lyme borreliosis and relapsing fever. Lyme bor-
reliosis is the most frequently reported vectorborne 
infection in the Northern Hemisphere; its vector is Ix-
odidae family ticks (1). By contrast, relapsing fever is 
globally distributed; its vector is  predominantly Ar-
gasidae family ticks, and thousands of cases of febrile 
illness in humans are attributed to it annually (2).

Two of the 3 well-recognized monophyletic Bor-
relia clades are the B. burgdorferi sensu lato complex 
that causes Lyme borreliosis and the relapsing fever 
group that causes relapsing fever; the third clade is 
a group hosted by reptiles and echidnas (3). Borrelia 
from the B. burgdorferi s.l. and relapsing fever clades 
are harbored by a broad range of vertebrate hosts, 
including birds, reptiles, and mammals. Identifying 

reservoir hosts and clarifying their role in propagat-
ing Borrelia are critical for monitoring and mitigat-
ing spillover risk. For example, migratory birds can 
contribute to the long-distance dispersal of B. burg-
dorferi s.l. by transporting millions of ticks within and  
across continents (4).

Bats might play an underrecognized role in the 
dispersal and enzootic maintenance of Borrelia bacte-
ria. Bats are volant mammals that have been known for 
more than a century to harbor borrelial spirochaetes 
(5), and surveys within the last 5 years indicate bats 
can host Borrelia spp. from the relapsing fever group 
and from a clade adjacent to B. burgdorferi s.l. (6,7). 
Evidence has shown that bat-associated Borrelia infec-
tions can be zoonotic because Borrelia lineages recov-
ered from bats and bat ticks have been implicated in 
febrile illness in humans (8). Therefore, the expansion 
of Borrelia research in chiropteran hosts could provide 
more information about the current and future wel-
fare of both bat and human populations.

Pteropodidae family flying foxes (Pteropus spp. 
bats) represent a group that is highly prominent 
at the human–wildlife interface in Australia and 
therefore a target for Borrelia bacteria surveillance.  
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DISPATCHES

We explored the role of black flying foxes (Pteropus alecto) 
in Australia as reservoirs of Borrelia bacteria. We found 
bats infected with 2 Borrelia haplotypes phylogenetically 
distinct from Lyme or relapsing fever clades. Efforts to 
sample black flying foxes and their ectoparasites are need-
ed to evaluate zoonotic potential of those Borrelia lineages.
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DISPATCHES

The increasing propensity for flying foxes to roost 
in or near human settlements could increase the 
overlap of humans and bat ectoparasites and cre-
ate a potential Borrelia bacteria spillover pathway 
(9,10). Although black flying foxes (P. alecto) have 
been the subject of extensive research as reservoir 
hosts of Hendra virus, relatively little study has 
been devoted to their bacterial communities, in-
cluding those that could be pathogenic (11). We 
assessed the presence, diversity, and phylogenetic 
placement of Borrelia spp. associated with black fly-
ing foxes in Australia.

The Study
As part of ongoing research on the ecology of Hen-
dra virus, we collected blood samples from 840 black 
flying foxes across 6 sites in southern Queensland 
and northern New South Wales, Australia, dur-
ing May 2018–September 2020 (Figure 1). We cap-
tured bats with mist nets, anesthetized them with  

isoflurane, and took blood samples and preserved on  
Whatman FTA cards (QIAGEN, https://www.qia-
gen.com) until further processing (12). The Mon-
tana State University Institutional Animal Care 
and Use Committee (approval no. 201750, https://
www.montana.edu/ric/iacuc/iacuc-committee.
html) and Griffith University Animal Ethics Com-
mittee (approval nos. ENV/10/16/AEC and 
ENV/07/20/AEC, https://www.griffith.edu.au/
research/research-services/research-ethics-integ-
rity/animal/animal-ethics-committee) approved 
the field protocols. 

We used QIAamp DNA Investigator Kits (QIA-
GEN) to extract genomic DNA from blood (four to 
five 2-mm punches per sample), according to the 
manufacturer’s instructions. To determine Borrelia 
spp. infection, we used PCR targeting of the 16S rRNA 
gene, flagellin (flaB) gene, and 16S–23S rRNA inter-
genic spacer (IGS) (Appendix Table 1, https://ww-
wnc.cdc.gov/EID/article/31/7/24-1864-App1.pdf).  
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Figure 1. Sampling sites in eastern Australia (Queensland and New South Wales) of Borrelia lineages adjacent to zoonotic clades in 
black flying foxes (Pteropus alecto), Australia, 2018–2020. P. alecto geographic distribution (beige shading) is shown as defined by the 
International Union for Conservation of Nature. Circles are colored by the presence or absence of Borrelia spp. infections detected in 
blood samples from bats at each site. Black box at left indicates area enlarged at right, showing donut plots with the fraction of PCR-
positive samples in black; circles are scaled by sample size.
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We purified PCR products within the expected 
size range for positive results with the Wizard SV 
Gel and PCR Clean-Up System (Promega, https://
www.promega.com) and had the products Sanger 
sequenced in both directions at Eurofins Genom-
ics (https://ww.eurofinsgenomics.com). We report 
prevalence data for IGS, but that gene was not in-
cluded in phylogenetic analyses because of insuf-
ficient reference sequences in GenBank. We manu-
ally edited and trimmed the Borrelia spp. sequences 
from black flying foxes and aligned those sequences 
with reference sequences in GenBank by using the 
MUSCLE algorithm in Geneious version 2024.0.5 
(https://www.geneious.com). 

We constructed single-marker phylogenies 
by using both Bayesian and maximum-likelihood 
methods because too few bat-associated refer-
ence sequences of either flaB or 16S were avail-
able in GenBank to provide an informative concat-
enated analysis. For Bayesian analyses, we used 
MrBayes version 3.2 (https://nbisweden.github.
io/MrBayes/download.html) with 10 million Mar-
kov chain Monte Carlo generations and a default 
burn-in of 25%. For maximum-likelihood analyses, 
we used RAxML version 8.0 (https://github.com/
amkozlov/raxml-ng) and a starting tree obtained 
by searching for the best-scoring maximum-like-
lihood tree in a single run and calculating branch 
support with 1,000 rapid bootstrap replicates. For 
all trees, we used a general time reversible with a 
proportion of invariable sites and gamma distribu-
tion nucleotide substitution model (13).

Across our ≈2-year study period and 6 roosts, 
17 (2% [95% CI 1.3%–3.2%]) of 840 black flying 

foxes tested positive for Borrelia spp. by using PCR 
(Table). Roost-specific infection prevalence ranged 
from 0 of 20 samples (no infection found in 3 of the 6 
roosts) to 3 (15% [95% CI 5.2%–36.0%]) of 20 samples 
in Gympie, Queensland, Australia. The roosts with 
greatest sampling volume were in Toowoomba (402 
bats sampled, 3 [0.7%] infected) and Redcliffe (374 
bats sampled, 11 [2.9%] infected) in Queensland, 
Australia (Appendix Table 2). Most (13/17) infect-
ed bats yielded usable sequence data from either 
16S rRNA or flaB gene targets, which represented 
2 haplotypes (p-distances = 8.2% for flaB and 1.3% 
for 16S rRNA). Topologies were similar across tree-
building methods (Appendix Figures 1, 2) but were 
somewhat discordant between gene targets. The flaB 
phylogeny grouped black flying fox Borrelia spp. 
with lineages from Macaregua Cave in Colombia in 
a clade sister to B. burgdorferi s.l. (Figure 2), but 16S 
rRNA sequence data are not available from Maca-
regua Cave as of 2025, and no other sequences from 
bats in Australia are available. The 16S rRNA phy-
logeny (Figure 3) was also less effective at resolv-
ing relationships across the relapsing fever and B. 
burgdorferi s.l. groups supported in previous analy-
ses using multiple markers (3). All sequences in-
cluded here are available at GenBank (accession nos. 
PQ488732–41 [16S rRNA], PQ492350–60 [flaB], and 
PQ490736–46 [16S–23S IGS]).

Conclusions
This study corroborated that bats can host Borrelia 
infections evolutionarily distinct from recognized 
clades. However, the clades are more closely related 
to B. burgdorferi s.l. than the relapsing fever group. 
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Table. Metadata on bats PCR positive for Borrelia spp. in lineages adjacent to zoonotic clades in black flying foxes (Pteropus alecto), 
Australia, 2018–2020 
Bat no. Site Date collected Sex Life stage Borrelia sequence GenBank accession nos. 
ACGMP001-1 Gympie 2019 Jan F Adult PQ492350,* PQ490736† 
ACGMP001-4 Gympie 2019 Jan F Adult PQ492351,* PQ490737† 
ACGMP001-5 Gympie 2019 Jan F Adult PQ488732,‡ PQ490738† 
ACRED001-15 Redcliffe 2018 May M Adult PQ488733,‡ PQ492352,* PQ490739† 
ACRED003-23 Redcliffe 2018 Sep M Subadult PQ488734,‡ PQ492353,* PQ490740† 
ACRED004-31 Redcliffe 2018 Dec F Adult PQ488735‡ 
ACRED006-54 Redcliffe 2019 May F Adult PQ488736,‡ PQ492354,* PQ490741† 
ACRED007-51 Redcliffe 2019 Jul F Adult PQ488737,‡ PQ492355,* PQ490742† 
ACRED008-54 Redcliffe 2019 Sep F Adult PQ492356,* PQ490743† 
ACRED009-72 Redcliffe 2019 Dec M Subadult PQ488738,‡ PQ492357* 
ACRED010-32 Redcliffe 2020 Mar M Adult PQ488739,‡ PQ492358* 
ACRED010-42 Redcliffe 2020 Mar F Adult PQ488740,‡ PQ490744† 
ACRED011-45 Redcliffe 2020 May F Adult PQ492359,* PQ490745† 
ACRED011-60 Redcliffe 2020 May M Adult PQ488741,‡ PQ492360,* PQ490746† 
ACTOW001-15 Toowoomba 2018 Jun F Adult No sequences 
ACTOW002-30 Toowoomba 2018 Jul F Subadult No sequences 
ACTOW006-21 Toowoomba 2019 Mar F Subadult No sequences 
*Flagellin gene. 
†16S–23S rRNA intergenic spacer. 
‡16S rRNA. 
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DISPATCHES

We recovered sequences from 11 of 17 infected bats 
in 2 Borrelia spp. lineages (Figure 2). Haplotype 1 
was represented by a single host that shared a roost 
in Gympie with a bat infected with haplotype 2,  
suggesting that variation is unlikely to be structured 
by geographic isolation. Phylogenetic reconstruction  

of flaB and 16S rRNA suggested Borrelia infections 
from black flying foxes belong to a clade adjacent 
to existing B. burgdorferi s.l. and that relapsing fe-
ver groups and are most closely related to Borrelia 
spp. hosted by phyllostomid bats (Chiroptera order)  
in Colombia (7).
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Figure 2. Bayesian phylogenetic tree of flaB gene in a study of Borrelia lineages adjacent to zoonotic clades in black flying foxes 
(Pteropus alecto), Australia, 2018–2020. The tree displays evolutionary relationships between Borrelia spp. and Borrelia lineages 
from black flying foxes. The tree was constructed by using a general time reversible with a proportion of invariable sites and gamma 
distribution substitution model and 10 million Markov chain Monte Carlo generations. Colors represent major Borrelia groups and clades 
of interest: blue, relapsing fever group; green, Borrelia burgdorferi sensu lato complex; yellow, Borrelia spp. from Macaregua Cave, 
Colombia; light orange, new Borrelia haplotypes from black flying foxes in Australia. Red node text represents posterior probabilities 
<0.70. Host associations are noted when GenBank lineages were isolated from vertebrates, barring experimental infections. GenBank 
accession numbers are provided. Lineages associated with bats or bat ticks are marked with a bat graphic (sourced from Noun Project, 
https://thenounproject.com).

http://www.cdc.gov/eid
https://thenounproject.com
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Our results are a base for establishing the pres-
ence and phylogenetic placement of Borrelia infec-
tions in flying foxes but underscore research gaps 
in characterizing their zoonotic potential. Viru-
lence of those lineages in flying foxes is unknown. 
Although bats are tolerant of multiple viruses, le-
thal Borrelia infections in bats are documented (14).  
The arthropod vector of lineages described in this 
study also remains unidentified, but host specificity 

and geographic range of that vector should strongly 
influence zoonotic risk. For example, certain ixodid 
bat ticks have generalist feeding habits that could 
position them as an epidemiologic link between 
bats, domestic animals, and humans (15). Targeted 
efforts to sample black flying foxes and their ecto-
parasites across their range are needed to clarify 
information regarding the zoonotic potential of the 
novel Borrelia lineages described in this study.
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Figure 3. Bayesian phylogenetic tree 16S rRNA gene in a study of Borrelia lineages adjacent to zoonotic clades in black flying 
foxes (Pteropus alecto), Australia, 2018–2020. The tree displays evolutionary relationships between Borrelia spp. and Borrelia 
lineages from black flying foxes. The tree was constructed by using a general time reversible with a proportion of invariable sites 
and gamma distribution substitution model and 10 million Markov chain Monte Carlo generations. Colors represent major Borrelia 
groups and clades of interest: blue, relapsing fever group; green, Borrelia burgdorferi sensu lato complex; light orange, new 
Borrelia haplotypes from black flying foxes in Australia. Red node text represents posterior probabilities <0.70. Host associations 
are noted when GenBank lineages were isolated from vertebrates, barring experimental infections. GenBank accession numbers 
are provided. Lineages associated with bats or bat ticks are marked with a bat graphic (sourced from Noun Project, https://
thenounproject.com).
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This article was preprinted at https://www.biorxiv.org/
content/10.1101/2024.12.20.629695v1.
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