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Diseases in cattle caused by Mycoplasma bovis in-
clude bronchopneumonia, mastitis, and arthritis 

(1,2). M. bovis was first isolated in 1961 (3) and, over 
the past >6 decades, it has become widespread world-
wide. Bovine mycoplasmosis caused by M. bovis is an 
emerging disease in China. Since the first isolation of 
M. bovis strains in China’s Hubei region in 2008, those 
strains have spread rapidly and extensively to most 
provinces in China (4–6). However, the epidemiologic 
features of M. bovis in China are unknown. Antimi-
crobial drugs are currently a critical means of control-
ling M. bovis infections (7,8). Fluoroquinolones have a 
substantial bactericidal effect against Mycoplasma spp.; 
however, their effectiveness has been gradually de-
clining (9,10). Fluoroquinolone resistance in Mycoplas-
ma spp. relies primarily on gene point mutations (7).
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We investigated quinolone resistance in Mycoplasma 
bovis samples isolated in China during 2008–2023. 
Sequence type 52 was the dominant genotype; GyrA 
(S83F/Y) and ParC (S80R) protein double mutations 
caused high resistance to fluoroquinolones. Increased 
vigilance and surveillance of M. bovis infections in cattle 
will be needed to prevent disease.
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To elucidate molecular epidemiologic features of 
M. bovis in China, we performed a genetic evolution-
ary analysis of whole-genome sequences from 77 M. 
bovis isolates collected during 2008–2023 from 16 prov-
inces in China; 34 isolates were identified in this study 
and 43 isolates were from GenBank (Appendix Table 
1, https://wwwnc.cdc.gov/EID/article/31/8/24-
1137-App1.pdf). We deposited sequence data for the 
M. bovis isolates from this study in the National Cen-
ter for Biotechnology Information BioProject database 

(https://www.ncbi.nlm.nih.gov/bioproject; accession 
nos. PRJNA1124599–601). 

We explored the contribution of genetic factors 
to fluoroquinolone resistance. We confirmed that se-
quence type (ST) 52, the primary genotype responsible 
for the M. bovis infection outbreak in 2008, was the 
most prevalent genotype in China; however, the topo-
logic structure of the phylogenetic tree classified the 
77 isolates into 5 distinct clusters (I–V) (Figure 1). Five 
of those isolates represented new multilocus sequence 
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Figure 1. Phylogenetic analysis of Mycoplasma bovis in study of emergence of novel fluoroquinolone resistance mutations, China, 
2008–2023. Maximum-likelihood tree shows 77 M. bovis isolates according to single-nucleotide polymorphisms identified by referencing 
the complete genome sequence of M. bovis strain HB0801. Name of isolate, year isolated, province, sequence type, and clustering are 
indicated. Scale bar indicates nucleotide substitutions per site.
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typing (MLST) genotypes, which were primarily con-
centrated in cluster IV (which contained 4 MLST geno-
types) (Figure 1; Appendix Figure 1), suggesting that 
isolates within cluster IV might have undergone rapid 
genetic changes. During the disease outbreak in 2008, 
ST53, ST56, and ST72 genotypes were also identified. 
Although those 3 genotypes were distributed sporadi-
cally, they have been isolated only in China and belong 
to the same clonal complex (CC) 52 as ST52 (Appendix 
Figure 1), exhibiting a high degree of genetic related-
ness. That observation suggests that ST52 underwent 
genetic variation after spreading extensively in China. 
ST89 was isolated from cows with pneumonia and 
mastitis in China during 2018–2019 (Appendix Table 
2); however, that genotype does not belong to CC52 
(Appendix Figure 1). The isolation of only 3 ST89 
strains suggested that strains with other genotypes 
might be infecting cattle in China.

We analyzed mutations within quinolone resis-
tance–determining regions of the 77 isolated genomes 
from China. Mutations in those regions occurred pri-
marily in parC and gyrA genes, leading to amino acid 
changes (Appendix Figure 2). Specifically, the GyrA 
protein contained S83Y and S83F mutations (Figure 2, 
panel A), and ParC contained S80R and D84G (Figure 
2, panel B). The S80R mutation in ParC is uncommon  

in M. bovis and has not been reported in China. The 
binding energies of the GyrA S83F and S83Y and 
ParC S80R mutants with ciprofloxacin were higher 
than those for wild-type GyrA and ParC proteins. The 
mean + SD binding energy increased from −46.115 + 
8.72 in wild-type GyrA to −10.242 + 2.892 in the GyrA 
S83Y mutant (Appendix Table 3). The ParC S80R mu-
tant had considerably higher binding energy than 
wild-type ParC, increasing from −19.973 + 2.445 in 
wild-type protein to 26.861 + 5.14 in the mutant. Those 
mutations led to a decreased and unstable binding ca-
pacity of GyrA and ParC with ciprofloxacin.

We investigated the effect of mutations on fluoro-
quinolone susceptibility of M. bovis. Clinical isolates 
with the GyrA S83Y/F and ParC S80R double muta-
tions exhibited lower susceptibility to fluoroquino-
lones than strains that had the GyrA S83F and ParC 
D84G double mutations (Appendix Table 4, Figure 
3), suggesting that S83Y/F in GyrA combined with 
S80R in ParC conferred high resistance to fluoroqui-
nolones; the S80R ParC mutation appeared to be the 
main reason for increased fluoroquinolone resistance. 
Molecular dynamic simulations revealed that resi-
due S80 of M. bovis ParC interacts with enrofloxacin 
through van der Waals forces (Appendix Figure 4). 
Strains with GyrA and ParC mutations were mainly 
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Figure 2. Amino acid sequence alignments of quinolone resistance-determining regions of Mycoplasma bovis isolates from China, 
2008–2023. Multiple alignments of conserved GyrA (A) and ParC (B) protein sequences for M. bovis ParC protein–ciprofloxacin complex 
are shown. Escherichia coli K12 and M. bovis PG45 strains were used as controls. Red arrows and black rectangular borders indicate 
amino acid mutation sites. 
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concentrated in cluster II (Figure 1), suggesting that 
cluster II strains are more prone to developing genetic 
features that confer resistance to fluoroquinolones.

In conclusion, we report that ST52 is the domi-
nant M. bovis genotype circulating in China; however, 
ST52 strains gradually formed 2 subgroups with domi-
nant genetic variation and fluoroquinolone resistance 
through widespread dissemination. The double muta-
tion, S83F in GyrA and S80R in ParC, appears to be the 
current widespread mutation combination in China, 
and the emergence of high resistance to fluoroquino-
lones is driven by the ParC S80R mutation. Widespread 
resistance to fluoroquinolones poses a substantial chal-
lenge to the prevention and treatment of infections 
caused by Mycoplasma species; thus, increased vigi-
lance and surveillance of M. bovis infections in cattle 
will be needed to prevent disease spread.
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