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DISPATCHES

Highly pathogenic avian influenza (HPAI) A(H5N1) 
has been causing a panzootic since its resurgence in 

2021 (1). H5N1 clade 2.3.4.4b virus has spread among do-
mestic and wild animals; multiple spillovers into distinct 
mammal species have occurred (2). This virus reached 
South America in late 2022, causing numerous mortal-
ity events in wild birds and mammals along the coasts 
of Peru, Chile, Argentina, Uruguay, and Brazil (2,3). By 
late 2023, the virus had extended its range to the South 
Atlantic and Antarctic Oceans; virus was detected on the 
Malvinas/Falkland Islands and Bird Island, South Geor-
gia (4,5). Bird Island is a subantarctic island located near 
the Antarctic Peninsula, raising concerns about potential 
virus spread to previously unaffected ecosystems. 

In early 2024, H5N1 virus reached Antarctica; 
11 cases were reported during the 2023–24 summer  

season (6). The virus primarily affected skuas sea-
birds but has also been detected in Adélie pen-
guins, Antarctic fur seals, snowy sheathbills, kelp 
gulls, and southern elephant seals, according to the 
Scientific Committee on Antarctic Research (SCAR, 
https://scar.org/library-data/avian-flu#cases). 
We genetically characterized HPAI H5N1 virus 
samples collected on March 3, 2024, from brown 
skuas (Stercorarius antarcticus) on James Ross Island, 
located near the eastern side of the Antarctic Penin-
sula (latitude –63.7989S, longitude –57.8105W). The 
Faculty of Veterinary Sciences Ethics Committee, 
Universidad de Chile, approved the study (code 
no. 13–2022), which we registered with the Institu-
tional Animal Care and Use Committee (code no. 
22603-VET-UCH).

The Study
We collected 6 pooled swab samples from dead brown 
skuas during a mass mortality event and confirmed 
the presence of H5N1 clade 2.3.4.4 virus in 5 birds by 
using a US National Veterinary Services Laboratories 
protocol (6). Those were the only positive samples 
from a Chilean Antarctic Institute/University of Chile 
surveillance program conducted during the Southern 
Hemisphere summer of 2023–24 (6). We performed full 
virus genome sequencing by using multisegment PCR 
and MinION nanopore sequencing (Oxford Nanopore 
Technologies, https://www.nanoporetech.com), as 
previously described (7). After obtaining consensus ge-
nomes, we checked sequences for quality and annotated 
them by using the Influenza Virus Sequence Annotation 
Tool (https://www.ncbi.nlm.nih.gov/genomes/FLU/ 
annotation). We performed H5 clade classification by 
using the Subspecies Classification tool (Bacterial and 
Viral Bioinformatics Resource Center, https://www.
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In 2024, we sequenced highly pathogenic avian influen-
za virus A(H5N1) clade 2.3.4.4b genomes isolated from 
5 brown skuas from James Ross Island, Antarctica. Phy-
logenetic analysis suggested the virus reached Antarc-
tica through South America. Continued genetic surveil-
lance will be critical to elucidate H5N1 virus transmission 
dynamics within Antarctica and surrounding areas.
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bv-brc.org). We deposited sequences in GenBank  
(Appendix 1 Table, https://wwwnc.cdc.gov/EID/ 
article/ 31/8/25-0186-App1.pdf).

We aligned sequences from the H5N1 samples 
with sequences from GISAID (https://www.gisaid.
org) and GenBank by using MAFFT (8). We aligned 
245 neuraminidase (NA), 259 hemagglutinin (HA), 229 
polymerase basic 2, 256 nucleoprotein, 231 polymerase 
basic 1, 233 polymerase acidic, 254 nonstructural (NS), 
and 249 matrix gene sequences. We inferred time-diver-
gent phylogenetic trees by using BEAST version 1.10.4 
(9) and the Hasegawa-Kishino-Yano plus gamma dis-
tribution 4 substitution model, an uncorrelated relaxed 
clock with a lognormal distribution, and an exponential 
growth tree prior. We ran a Markov Chain Monte Carlo 
chain for 500 million generations, logging parameters 
every 50,000 iterations. We assessed the convergence of 
parameters by using Tracer version 1.7.2 (http://beast.
community/tracer). The final trees had an effective 
sample size (ESS) of >200, except the trees for NS and 
polymerase acidic segments, which each had an ESS of 
<200; no trees had an ESS of <100. We visualized the 
trees and annotations by using iTol (10).

We obtained 6 influenza A virus genomes, all clas-
sified as HPAI H5N1 clade 2.3.4.4b, displaying minimal 
variation; we observed >99.9% identity in the HA genes 
and consistent results across other genomic segments. 
The closest HA sequence identified via BLAST (https://
blast.ncbi.nlm.nih.gov) was A/Kelp Gull/South Geor-
gia and the South Sandwich Islands/32/2023 (H5N1) 
virus (GenBank accession no. PQ113961.1), along with 
related sequences from the same outbreak. Similar find-
ings were observed for all other segments.

Phylogenetic analysis of HA grouped the 6 se-
quences into a monophyletic cluster (Appendix 1 Fig-
ure 1), which was part of a larger clade of sequences 
previously reported from South Georgia and the South 
Sandwich Islands and derived directly from South 
America (5). Another subcluster contained sequences 
from King George Island (Antarctica), detected on De-
cember 25, 2024, suggesting a different introduction; 
however, those viruses were still related to the viruses 
from South America and subantarctic regions. We ob-
served similar patterns across all other H5N1 segments 
(Appendix 1 Figures 2–8), indicating the virus reached 
Antarctica through local migrations and progressive-
ly spread across the region. The timeline suggests an 
initial introduction into southern South America, fol-
lowed by spread across the South Atlantic Ocean to 
South Georgia and finally to the Antarctic Peninsula 
and the islands on its western and eastern coasts.

To identify key mutations, we analyzed all avail-
able H5N1 sequences from Antarctica and subantarctic  

regions, along with sequences from humans, dairy 
cows, seals, and chickens, by using FluSurver (http://
flusurver.bii.a-star.edu.sg) and compared those against 
genome segments from the reference strain A/goose/
Guangdong/1/96 (GenBank accession nos. AF144300–
7). The polymerase basic 2 D701N mutation, associated 
with mammal adaptation, was detected in a virus from 
a subantarctic kelp gull, South Georgia A/Kelp_Gull/
Harpon_Bay/133943/2023 (GISAID accession no. EPI_
ISL_18592427). Mutations associated with mammal 
adaptations were absent in virus sequences obtained 
from skuas. However, we detected mutations associ-
ated with high-level resistance to amantadine (matrix, 
V27A) (11), antigenic drift (NA, I396M and N366I) (12), 
and virulence (NS, S48X and I205X) in the 5 sequences 
from skuas (13) (Appendix 2 Table, https://wwwnc.
cdc.gov/EID/article/31/8/25-0186-App2.xlsx).

The first limitation of our study is that it was based 
solely on sequences from 1 outbreak detected in 2024. 
However, other sequences from this region are not 
available, suggesting potential limitations in sequenc-
ing capacity or research efforts. To address those limi-
tations, increased collaboration among research teams 
will be crucial to expand sequencing and elucidate vi-
rus spread in the region. Cost-effective technologies, 
such as nanopore sequencing, which enables whole-
genome influenza A virus sequencing by using afford-
able equipment, should be prioritized to strengthen se-
quencing capabilities and data availability. Second, we 
only have sequences from brown skuas, which have 
been proposed to be the same species as south polar 
skuas (Stercorarius maccormicki) (14). Obtaining more 
H5N1 sequences from other species is essential to de-
termine potential transmission pathways or virus ad-
aptations that might occur across different hosts. Fur-
thermore, SCAR data indicate the virus remained in 
Antarctica during the 2024–25 season, making it criti-
cal to study its dynamics and persistence in the region.

Antarctica has a plausible risk for H5N1 virus re-
assortment events, particularly those involving gene 
segments from strains from South America. The re-
gion’s animal populations, including penguins, skuas, 
gulls, and marine mammals, can act as mixing vessels 
for virus strains with distinct genetic backgrounds, 
promoting genetic exchange between viruses circu-
lating in South America and other global regions.  
Reassortment in HA and NA genes, key determinants of 
virus fitness, host tropism, and transmissibility, is of par-
ticular concern. Those segments might undergo selective 
pressure from local host species, leading to adaptations 
that influence virus infectivity. For example, a H5N5 strain 
isolated from a chinstrap penguin, A/chinstrap_pen-
guin/Antarctica/B04/2015 (H5N5) low pathogenicity  
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avian influenza virus (AIV), showed phylogenetic links 
to AIVs from both North America and South America, 
suggesting potential reassortment events (15). In addi-
tion, the overlap of migratory bird routes with penguin 
breeding colonies creates a dynamic interface for AIV 
spillover and interspecies transmission, further support-
ing a role for Antarctica as a critical site for AIV reassort-
ment and emergence of novel virus strains.

Conclusions
We genetically characterized HPAI A(H5N1) clade 
2.3.4.4b viruses found in skuas in Antarctica. That clade 
has also been detected farther south on the Antarctic 
Peninsula (according to SCAR); however, those se-
quences are not yet publicly available for analysis. Our 
findings indicate that continued genetic surveillance 
and collaborative efforts to expand sequencing across 
diverse species in Antarctica will be critical to elucidate 
transmission dynamics, host adaptation, and spread of 
HPAI H5N1 in Antarctica and surrounding areas.
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