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Highly pathogenic avian influenza viruses 
(HPAIVs) cause severe clinical signs and high 

mortality rates in gallinaceous birds, leading to sub-
stantial economic losses in the poultry industry (1). 
Among HPAIVs, the A/Goose/Guangdong/1/1996 
(gs/GD) lineage of H5Nx, which emerged in China 
in 1996, has caused outbreaks and diverged into 10 
primary clades (nos. 0–9) and multiple subclades 

(2–4). Wild waterfowl play a crucial role in the wide 
and rapid geographic spread of gs/GD lineage 
highly pathogenic avian influenza (HPAI) H5Nx vi-
rus (5). Of note, HPAI H5Nx clade 2.3.4.4b viruses 
have caused widespread outbreaks across diverse 
geographic regions, including Asia, Europe, North 
America, South America, Africa, and even Antarc-
tica (6–10). Increasing reports of HPAI clade 2.3.4.4b 
virus infections in diverse mammalian hosts, includ-
ing dairy cows in North America, raise substantial 
public health concerns (11,12).

In South Korea, 6 major HPAI clade 2.3.4.4b out-
breaks occurred during 2017–2024 (13–16). During 
the 2022–2023 HPAI outbreak, 174 cases of HPAI 
H5N1 clade 2.3.4.4b virus infection in various wild 
bird species were reported throughout South Ko-
rea (17). Spatiotemporal analysis of HPAI H5N1 
clade 2.3.4.4b viruses revealed multiple hot spots 
in the Korean Peninsula that were responsible for 
the maintenance and spread of the viruses during 
the outbreak (18,19). Phylodynamic analysis inte-
grating host trait information revealed a complex 
intertwined relationship between different regions 
inside and outside the Korean Peninsula and cross-
species transmission of viruses among susceptible 
wild bird hosts (17,20). Whole-genome sequencing 
(WGS) of isolates from that outbreak also revealed 
emergence of diverse genotypes resulting from ex-
tensive reassortment (21).

During September 2023–March 2024, two differ-
ent HPAI clade 2.3.4.4b virus subtypes, H5N1 and 
H5N6, caused influenza outbreaks in wild birds and 
poultry farms in South Korea (22–24). In particular,  
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We analyzed 15 cases of highly pathogenic avian in-
fluenza (HPAI) clade 2.3.4.4b virus infections detected 
in wild birds in South Korea during September 2023–
March 2024. We isolated and sequenced 8 H5N1 and 
7 H5N6 viruses. We investigated spatiotemporal trans-
mission dynamics by using a Bayesian discrete trait 
phylodynamic model that incorporated geographic and 
host species information. Our source–sink dynamics 
support introductions of H5N1 viruses from northern 
Japan to South Korea and subsequent spread through 
multiple regions in South Korea. The H5N6 viruses 
were most likely introduced into southwestern South 
Korea and spread northeastward. Wild waterfowl, es-
pecially wild ducks, played a key role in transmission 
of both H5N1 and H5N6 viruses. Our data showed 
multiple introductions and extensive spread of HPAI 
clade 2.3.4.4b viruses and bidirectional transmission 
between Japan and South Korea. Our results highlight 
the value of enhanced active surveillance for monitor-
ing HPAI viruses, which can provide insight into pre-
venting future outbreaks.
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the index case in poultry was identified as a co- 
infection of H5N1 and H5N6 on a chicken farm (24). 
However, the evolutionary history and spread pat-
tern of H5N1 and H5N6 viruses have not been clearly 
identified. To clarify the spatiotemporal diffusion and 
transmission dynamics between host species, we per-
formed WGS on HPAIV isolates collected from wild 
birds during the 2023–2024 outbreak and performed 
a Bayesian phylodynamic analysis incorporating host 
species and sampling locations.

Materials and Methods

Virus Detection and Isolation
During September 2023–March 2024, the National 
Institute of Wildlife Disease Control and Prevention 
(NIWDC) of the Ministry of Environment of South 
Korea collected samples from wild birds as part of 
the national HPAI surveillance program. Samples 
were collected from wild bird feces (n = 11,294), car-
casses (n = 555), and captured birds (n = 1,058) from 
87 major migratory bird habitats across all provinces 
of South Korea.

Oropharyngeal and cloacal swab samples from 
captured birds and carcasses and bird fecal samples 
were placed in phosphate-buffered saline with 0.1% 
volume of 400 mg/mL gentamicin and homogenized. 
We then filtered the supernatant by using a 0.45-µm 
Minisart Syringe Filter (Sartorius, https://www.sar-
torius.com) and inoculated into the allantoic cavity 
of 10-day-old specific pathogen–free embryonated 
chicken eggs. After 72 hours of incubation at 37°C, we 
harvested the allantoic fluids from eggs and tested for 
hemagglutination activity by using 10% chicken red 
blood cells. We extracted RNA from allantoic fluid 

samples positive for hemagglutination activity by us-
ing the Maxwell RSC Simply RNA Tissue Kit (Pro-
mega, https://www.promega.com) and screened for 
the avian influenza virus matrix (M) gene and H5  
gene using real-time reverse transcription PCR (rRT-
PCR) (25–27).

WGS and Assembly
We sequenced 8 H5N1 and 7 H5N6 viruses in this 
study. We synthesized complementary DNA for M 
gene and H5 rRT-PCR–positive samples by using 
the SuperScript III First-Strand Synthesis System  
(Thermo Fisher Scientific, https://www.thermofisher. 
com). For samples confirmed as HPAIV via hemag-
glutinin (HA) gene sequencing, we amplified all 8 
gene segments (HA, M, neuraminidase [NA], nucleo-
protein [NP], nonstructural [NS], polymerase acidic 
[PA], and polymerase basic [PB] 1 and 2) by using Ac-
cuPrime Pfx DNA Polymerase (Invitrogen), accord-
ing to methods described in a previous study (28). We 
constructed DNA libraries by using the Nextera DNA 
Flex Library Prep Kit (Illumina, https://www.illu-
mina.com) and 96 dual-index barcodes, according to 
the manufacturer’s instruction. We conducted WGS 
on the MiSeq platform (Illumina) with 150 bp paired-
end reads. We used CLC Genomics Workbench 24.0.1 
software (QIAGEN, https://www.qiagen.com) to 
trim and assemble reads and identified HPAIV-pos-
itive samples (Table).

Phylogenetic Analysis
To determine the genotypes and temporal signal of 
datasets for molecular clock analysis, we conducted 
maximum-likelihood analysis. We conducted BLAST 
searches (https://blast.ncbi.nlm.nih.gov) of all viral 

 
Table. Detailed information on highly pathogenic avian influenza A(H5N1) and A(H5N6) virus isolates from wild birds during 2023–
2024 outbreak, in chronological order, South Korea* 

No.† 
Collection 

date Sample ID Region Sample type Host species Subtype Isolate ID 
1 2023 Nov 27 23WS022-22 Jeollabuk-do Captured Eurasian wigeon H5N1 EPI_ISL_18717640 
2 2023 Dec 1 23WC066 Gyeongsangbuk-do Carcass Whooper swan H5N1 EPI_ISL_20051148 
3 2023 Dec 2 23WC068 Gyeongsangbuk-do Carcass Whooper swan H5N1 EPI_ISL_20051147 
4 2023 Dec 4 23WC069 Gyeongsangbuk-do Carcass Whooper swan H5N1 EPI_ISL_20051146 
7 2023 Dec 8 23WC075 Gyeongsangbuk-do Carcass Whooper swan H5N6 EPI_ISL_18853568 
9 2023 Dec 19 23WF435 Jeollabuk-do Feces Mandarin duck H5N6 EPI_ISL_18853569 
10 2023 Dec 21 23WC111 Gyeongsangbuk-do Carcass Bean goose H5N6 EPI_ISL_18853650 
11 2023 Dec 22 23WC116 Gyeongsangbuk-do Carcass Whooper swan H5N6 EPI_ISL_18853651 
12 2023 Dec 22 23WC117 Gyeongsangbuk-do Carcass Whooper swan H5N1 EPI_ISL_20051145 
13 2024 Jan 10 23WC160 Gyeongsangnam-do Carcass Bean goose H5N6 EPI_ISL_20051144 
14 2024 Jan 10 23WS033-1 Gwang-ju Feces Mandarin duck H5N6 EPI_ISL_20051143 
16 2024 Jan 26 23WC195 Jeju island Carcass Northern shoveler H5N1 EPI_ISL_20051142 
17 2024 Jan 30 23WC215 Jeju island Carcass Gadwall H5N1 EPI_ISL_20051141 
18 2024 Feb 4 23WC224 Gyeongsangbuk-do Carcass Peregrine falcon H5N1 EPI_ISL_20051140 
19 2024 Feb 6 23WC229 Gyeongsangnam-do Carcass Great cormorant H5N6 EPI_ISL_20051139 
*ID, identification. 
†Indicates the order of occurrence among the 19 confirmed cases of highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b identified in wild birds 
during November 2023–February 2024, of which 15 viruses were detected and isolated by National Institute of Wildlife Disease Control and Prevention. 
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genomes sequenced in this study against the GISAID 
database (https://www.gisaid.org). We used the re-
trieved results as reference sequences for phylogenet-
ic analysis. We used ElimDupes software (https://
www.hiv.lanl.gov/content/sequence/elimdupesv2/
elimdupes.html) to remove identical sequences. We 
aligned nucleotide sequences of each gene segment 
by using MAFFT version 7.490 (https://mafft.cbrc.
jp). We constructed maximum-likelihood trees for 
each gene (PB2, PB1, PA, HA, NP, NA, M, and NS) 
by using RAxML version 8.0 (https://github.com/
stamatak/standard-RAxML) and the general time-
reversible model with 1,000 bootstrap iterations. We 
used iTOL (https://itol.embl.de) to visualize the trees 
and considered a cluster monophyletic only when it 
had a bootstrap support value >70 and a nucleotide 
sequence identity >97% (29).

We focused the phylodynamic analysis on the 
HA gene because of its variability and role as a key 
antigen. We extracted HA gene sequences belonging 
to same clade of our sequences from the maximum-
likelihood phylogenetic tree. We used TempEst 
version 1.5.3 (http://tree.bio.ed.ac.uk/software/
tempest) to conduct root-to-tip regression analysis 
and assess the temporal signal. Upon confirming 
a significant temporal signal (R2 >0.5), we used da-
tasets to investigate transmission dynamics across 
geographic regions and host species. We conducted 
Bayesian discrete trait phylodynamic analyses of the 
HA gene by using BEAST version 1.10.4 (https://
beast.community). We broadly categorized traits into 
host and region, and to reduce bias among traits, we 
performed subsampling, resulting in 6 major datasets 
(Appendix Table 1, https://wwwnc.cdc.gov/EID/
article/31/8/25-0373-App1.pdf). For H5N1, we con-
structed 2 datasets for phylogeography. The discrete 
categories for estimation of international virus spread 
consisted of South Korea (n = 10), northern Japan (n 
= 10), central Japan (n = 6), southern Japan (n = 12), 
and outside of Korean Peninsula (i.e., Russia and Chi-
na, n = 10). The discrete categories for estimation of 
virus spread between provinces within South Korea 
included Gyeong-buk (southeast province of South 
Korea, n = 5), Jeonbuk (southwest province of South 
Korea, n = 1), Jeonnam (south-southwest province of 
South Korea, n = 2), Jeju (southern island of South Ko-
rea, n = 3), and Japan (n = 10). Similarly, the regional 
dataset for H5N6 viruses included Gyeong-buk (n = 
3), Gyeong-nam (south-southeast province of South 
Korea, n = 2), Jeonbuk (n = 1), Jeonnam (n = 3), and 
Japan (n = 1).

For datasets analyzing transmission among 
hosts, we categorized H5N1 sequences into raptors 

(n = 1), domestic ducks (n = 2), and wild water-
fowl (n = 8) from South Korea and wild waterfowl 
(n = 4) and crows (n = 6) from Japan. The H5N6 
sequence dataset included domestic ducks (n = 
2) and wild waterfowl (n = 7) from South Korea, 
1 raptor from Japan, and H5N1 sequences from 
East Asia collected during 2022–2023 (n = 36). We 
categorized the viruses identified from East Asia 
during 2022–2023 as a discrete nominal category 
regardless of animal species and sampling location 
because the viruses from wild birds and poultry 
across that region during the 2022–2023 epidemic 
were the most probable ancestral origins inferred 
from the ML phylogenetic analysis. To elucidate 
the role of wild waterfowl in transmission, we 
combined H5N1 and H5N6 data to form datasets 
comprising wild ducks (n = 8), geese (n = 9), swans 
 (n = 8), and other hosts (n = 10).

For Bayesian inferences, we applied a Hasegawa-
Kishino-Yano substitution model plus gamma, an 
uncorrelated log-normal distribution, and a Gaussian 
Markov random field Bayesian skyride coalescent pri-
or (30). We executed Markov chain Monte Carlo runs 
of the configuration in parallel across 3 separate chains, 
each consisting of 100 million steps. We combined sam-
ples from those chains after a 10% burn-in period. We 
used Tracer version 1.5 (https://beast.community/
tracer) to analyze parameters with adequate effective 
sample sizes (>200). We generated a maximum clade 
credibility tree by using TreeAnnotator (https://beast.
community/treeannotator) and visualized the tree by 
using FigTree version 1.4.4 (http://tree.bio.ed.ac.uk/
software/Figtree). To quantify the support for trans-
mission routes, we used SpreaD3 version 1.0.7 (https://
beast.community/spread3) and interpreted results as 
positive support when the Bayes factor (BF) was >3 
and the posterior probability (PP) was >0.5 and strong 
support when the BF was >20, and the PP was >0.9 
(31). We also used FluMutGUI 3.1.1 (https://github.
com/izsvenezie-virology/FluMutGUI) to identify mo-
lecular markers for mammalian adaptation across the 8  
viral genes.

Results

Overview of 2023–2024 HPAI viruses from  
Wild Birds in South Korea
During November 27, 2023–February 6, 2024, a total 
of 8 cases of H5N1 and 11 cases of H5N6 were report-
ed from wild birds in South Korea (22,23) (Appendix 
Figure 1). Among those cases, we isolated 8 H5N1 and 
7 H5N6 viruses (Table). Next-generation sequenc-
ing yielded total read counts ranging from 21,507 to 
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756,810 and average coverage depths ranging from 
240.80 to 8,442.09. During the 2023–2024 winter sea-
son, HPAI H5N1 was detected in a Eurasian wigeon 
(Mareca penelope) on November 27, 2023, six days be-
fore the initial H5N1 and H5N6 outbreak in poultry. 
The index H5N6 was detected in a Mandarin duck 
(Aix galericulata) on December 4, 2023. The number of 
cases gradually increased over time, reaching a peak 
in December 2023 (Figure 1).

Origin and Genotypes of H5N1 and H5N6 HPAI Viruses
Maximum-likelihood phylogenetic analysis of the 
8 genes revealed that the HA and M genes of H5N1 
and H5N6 shared >97% nucleotide sequence iden-
tity and formed a monophyletic cluster. The other 5 
internal genes of isolates from South Korea formed 
distinct monophyletic clades within their respective 
subtypes (Appendix Figures 2–9). The phylogenies 
showed that the H5N1 viruses consisted of genes de-
rived from HPAI H5N1 strains previously circulating 
in East Asia. In contrast, the H5N6 viruses were re-
assortants between PB2, PA, NP, and NS genes from 
low pathogenicity avian influenza viruses from Eur-
asia and the NA gene from H5N6 viruses identified in 
China. Those findings were consistent with findings 
observed in genetic analysis of index cases (22,23), 
suggesting no further reassortment occurred in wild 
birds during that outbreak.

According to recommendations from the Eu-
ropean Food Safety Authority (32), we screened 14 
selections of molecular markers associated with the 
pandemic potential of avian influenza viruses (HA, 

222L; PB2, 271A, 292V, 526R, 588V, 591K, 627K, 627V, 
631L, and 701N; PA, 356R; NP, 52N; and MP, 95K) 
by using the deduced amino acid sequences of all 15 
isolates. We analyzed mammalian adaptation mark-
ers, but did not detect major markers (PB2: E627K, 
D701N), and we identified only a few minor markers 
(Appendix Table 2). Among other minor mutations, 
we observed 156A in HA, which is associated with in-
creased binding to α2,6-sialic acid, and N66S in PB1-
F2, which is associated with increased virulence and 
replication in mice.

Transmission Dynamics of HPAI H5N1 Viruses  
in South Korea during 2023–2024
The maximum clade credibility phylogeny con-
structed from the HA gene of HPAI H5N1 viruses 
suggested that the virus initially entered northern Ja-
pan from China or Russia, then subsequently spread 
to central Japan and South Korea. Within Japan, the 
virus spread southward from the northern region to 
the southern region (Figure 2). In South Korea, we  
identified at least 2 separate H5N1 virus introduc-
tions, which most likely entered through the east-cen-
tral region (Gyeong-buk province) and the southwest 
region (Jeon-nam province). The virus subsequently 
spread southwestward (Jeon-buk) and, finally, to Jeju 
Island in southern South Korea (Figure 3). Of note, 
within South Korea, virus dissemination from north-
ern Japan to South Korea (BF 33.57, PP 0.91), from 
Japan to Gyeong-buk (BF 41.24, PP 0.926), and from 
Gyeong-buk to Jeon-buk (BF 31.701, PP 0.906) were 
among the most probable H5N1 transmission routes 
(BF >30 and high support values) (Appendix Tables 
3, 4). Our findings suggest the virus was transmitted 
from Japan to South Korea through migratory wild 
waterfowl (Figure 4, panels A, B; Appendix Table 5). 
In particular, H5N1 virus was transmitted from wild 
waterfowl to raptors (BF 4.725, PP 0.591) and domes-
tic ducks (BF 13.376, PP 0.803) in South Korea, as well 
as to crows in Japan (BF 46.186, PP 0.934) (Figure 4, 
panel A). We also estimated source–sink dynamics 
between wild waterfowl, including wild ducks, geese, 
swans, and other wild waterfowl. Our data suggest 
that wild ducks played a major role in transmitting 
the virus to other hosts (Figure 4, panel C).

Transmission Dynamics of HPAI H5N6 Viruses  
in South Korea during 2023–2024
The HA gene of HPAI H5N6 isolated during 2023–
2024 was highly similar to that of the HPAI H5N1 vi-
ruses circulating in northeast Asia during the 2022–23 
winter season (23). Phylogenetic analysis suggested 
that, after reassortment with the N6 gene originating  

Figure 1. Number of detections per month in a study of transmission 
dynamics of highly pathogenic avian influenza A(H5N1) and A(H5N6) 
viruses in wild birds, South Korea, 2023–2024. 
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Figure 2. Discrete phylogeographic 
reconstruction of diffusion dynamics of 
highly pathogenic avian influenza A(H5N1) 
virus in wild birds, East Asia, 2023–2024. 
A) Maximum clade credibility tree 
constructed by using the hemagglutinin 
gene of H5N1 viruses. Each branch is 
colored according to the geographic 
location. GISAID (https://www.gisaid.org) 
accession numbers are shown. Scale bar 
shows years of detection in decimal year 
format. B) Visualization of transmission 
dynamics inferred by using the geographic 
location trait of countries adjacent to South 
Korea. Arrows represent the direction of 
the viral transmission; annotated values 
along arrows represent Bayes factors. 
Thick arrows indicate strongly supported 
routes (Bayes factor >20, posterior 
probability >0.8). Maps provided by 
d-maps.com (https://d-maps.com).

http://www.cdc.gov/eid
https://www.gisiad.org
http://d-maps.com
https://d-maps.com


Figure 3. Transmission dynamics of highly pathogenic avian 
influenza A(H5N1) virus in wild birds, South Korea, 2023–
2024. A) Maximum clade credibility tree constructed using the 
hemagglutinin gene of H5N1 viruses. Each branch is colored 
according to the geographic location. Scale bar shows 
years of detection in decimal year format. B) Visualization 
of transmission dynamics inferred by using the geographic 
location trait in South Korea. Arrows represent the direction 
of the viral transmission; annotated values along arrows 
represent Bayes factors. Thick arrows indicate strongly 
supported routes (Bayes factor >20, posterior probability 
>0.8). Maps provided by d-maps.com (https://d-maps.com).
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in China, H5N6 likely entered the southwestern re-
gion of the Korean Peninsula (Jeonnam) and sub-
sequently spread northeastward (Gyeong-buk and 
Gyeong-nam). Our findings also supported trans-
mission from southern South Korea (Jeon-nam and 
Gyeong-nam) to southern Japan (Figure 5). Among 
the various HPAI H5N6 transmission routes, our 
findings supported movement from Jeonnam to 
Gyeong-nam (BF 24.176, PP 0.850) and Gyeong-buk 
(BF 10.022, PP 0.701) (Appendix Table 6). For virus 
transmission between host species, H5N6 most likely 
was transmitted from South Korea to Japan via wild 
waterfowl (Figure 4, panel C). Our findings sup-
ported virus spread from wild waterfowl to raptors 

in Japan (BF 18.752, PP 0.893) and to domestic ducks 
in South Korea (BF 14.932, PP 0.869). Consistent with 
the H5N1 viruses, wild ducks played the most promi-
nent role in transmission to other species (Figure 4; 
Appendix Table 7).

Discussion
Over the past decade, molecular epidemiologic stud-
ies in South Korea have helped clarify the genetic 
diversity and transmission dynamics of HPAI clade 
2.3.4.4 viruses (16,33). Genomic sequencing and phy-
lodynamic analysis have shown that, since 2014, 
multiple introductions of reassortant HPAI H5Nx 
clade 2.3.4.4 viruses by wild waterfowl have occurred  

Figure 4. Transmission 
dynamics of highly pathogenic 
avian influenza (HPAI) A(H5N1) 
and A(H5N6) viruses in wild 
birds, South Korea and Asia, 
2023–2024. A, B) Transmission 
dynamics inferred using the 
hemagglutinin gene of H5N1 
(A) and H5N6 (B) viruses, 
incorporating the host trait. C) 
Transmission dynamics inferred 
using the hemagglutinin genes of 
both HPAI H5N1) clade 2.3.4.4b 
and H5N6 viruses. Arrows 
represent the direction of the 
viral transmission; annotated 
values represent Bayes factors. 
Thick arrow indicates a strongly 
supported route (Bayes factor 
>20, posterior probability >0.8). 
Orange indicates the largest 
source trait.

http://www.cdc.gov/eid


Figure 5. Discrete phylogeographic reconstruction of 
diffusion dynamics of influenza A(H5N6) viruses in East 
Asia during 2022–2023 used in a study of transmission 
dynamics of highly pathogenic avian influenza A(H5N1) 
and A(H5N6) viruses in wild birds, South Korea, 2023–
2024. A) Maximum clade credibility tree constructed 
using the hemagglutinin gene of H5N6 viruses. Each 
branch is colored according to the geographic location. 
Scale bar shows years of detection in decimal year 
format. B) Visualization of transmission dynamics 
inferred by using the geographic location traits within 
South Korea. Arrows represent the direction of the viral 
transmission; annotated values represent Bayes factors. 
Thick arrow indicates a strongly supported route (Bayes 
factor >20, posterior probability >0.8). Maps provided by 
d-maps.com (https://d-maps.com).
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almost every fall migration season in South Korea, 
and then viral detections gradually decrease or disap-
pear within ≈5 months, around the end of waterfowl 
migration season (13–15,34,35). Previous phylogeog-
raphy studies on HPAIV outbreaks in South Korea 
and Japan during 2022–2023 and 2023–2024 revealed 
bidirectional virus exchange between those coun-
tries (17,22,23). Consistent with those findings, our 
data also highlight the bidirectional virus exchange 
between South Korea and Japan. In November 2023, 
HPAI H5N1 viruses initially entered South Korea’s 
Gyeongbuk and Jeonnam regions from northern Ja-
pan and subsequently spread southwestward. Given 
that H5N1 virus was dominant early in the season, 
that spread likely was associated with the southward 
movement of migratory birds in both South Korea 
and Japan during the early phase of the season. In 
addition, movement of H5N1 from the mid-latitude 
regions of South Korea to central Japan follows a pat-
tern observed in previous seasons, suggesting that 
transmission might have occurred between regions at 
similar latitudes (17).

In December 2023, HPAI H5N6 appears to have 
entered the Jeonnam region and displayed a more ir-
regular transmission pattern than H5N1, likely influ-
enced by movement of wild birds within their win-
tering sites. Furthermore, given its introduction into 
the Jeonnam region, H5N6, unlike H5N1, likely was 
not introduced from Japan but rather from proximal 
countries to the west, such as China or Russia. We 
also observed a notable transmission link between 
southern Japan and southern South Korea, resem-
bling patterns of viral movements from previous sea-
sons where transmission occurred through hooded 
cranes (Grus monacha) in southern Japan and southern 
South Korea (17,36).

Migratory waterfowl disseminate HPAIVs dur-
ing fall migration through north-to-south migration 
routes (33,37–39), including wild ducks (40), geese 
(41), and swans (37) that migrate from Siberia to South 
Korea and Japan. Those species share stopover and 
wintering habitats around inland water bodies and 
play a crucial role in the maintenance and transmis-
sion of HPAIVs. In this study, we largely attributed 
the diffusion of H5N1 and H5N6 viruses to wild wa-
terfowl. Our findings indicate that wild ducks played 
a major role in virus transmission not only to other 
wild waterfowl species, including geese and swans, 
but also to crows, raptors, and domestic ducks. Dur-
ing the outbreak, whooper swans (Cygnus cygnus) ac-
counted for the highest (44.45%) percentage of H5N1 
cases among wild birds in South Korea, which might 
be because of their high susceptibility to HPAIVs and 

distinctive morphology (37). During outbreaks in 
South Korea, we also detected HPAIVs from raptors 
that likely were infected by hunting infected birds or 
scavenging virus-contaminated carcasses (17,42). Of 
note, we detected H5N6 virus from a great cormorant 
(Phalacrocorax carbo) found dead. The great cormo-
rant used to breed in Primorsky Krai and Sakhalin, 
Russia, and descend to South Korea and Japan every 
winter but is now an invasive species in South Korea, 
where it has been endemic since the 2000s because of 
the effects of climate change; the current population 
is estimated to be 23,000–30,000 (43). HPAI virus in-
fection in this new waterfowl population is a concern 
because it can substantially affect the epidemiology 
and ecology of the virus.

Since 2014, HPAI clade 2.3.4.4 viruses have 
evolved through reassortment with prevailing lo-
cal low pathogenicity avian influenza viruses (44). A 
wide range of avian species, including wild and do-
mestic waterfowl, appear to be permissive for infec-
tion and transmission of clade 2.3.4.4 viruses. Among 
those species, domestic ducks play a key role in the 
maintenance, amplification, and spread of HPAIVs 
of wild bird origin to terrestrial poultry (45). In this 
study, estimation of the host transmission dynamics 
supports that H5N1 and H5N6 viruses are transmit-
ted from wild waterfowl to domestic ducks in South 
Korea. Because domestic ducks can host a variety of 
avian influenza viruses as a natural reservoir species, 
that population can accelerate the genetic and anti-
genic evolution of viruses, potentially giving rise to 
new strains with altered antigenicity, pathogenicity, 
or increased zoonotic potential. To prevent dissemi-
nation of HPAI from wild birds to poultry, biosecu-
rity measures should be enhanced at poultry farms, 
especially those located near wild bird habitats, to 
block contact with wild birds or their excreta.

To minimize the impact of HPAIV in wild and do-
mestic animals, effective information sharing among 
countries along migratory bird flyways and timely 
reporting of genomic surveillance data are essential. 
Next-generation sequencing–based genomic surveil-
lance activities enable rapid and accurate characteriza-
tion of complete viral genome and evolutionary histo-
ry of viruses (46–48). Despite those advances and the 
high number of HPAIV cases reported in Eurasia in re-
cent years, the amount of complete genome sequence 
data available in public databases was limited in 
terms of representativeness across different countries 
and species. In particular, the limited availability of 
recent genomic sequence data from poultry outbreaks 
could hinder the accurate reconstruction of trans-
mission dynamics at the wildlife–domestic poultry  
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interface in South Korea. The limited sample sizes for 
certain discrete traits in this study might have intro-
duced unrecognized biases in the inferred transmis-
sion dynamics. Nonetheless, our findings underscore 
the need for enhanced genomic sequencing and rapid 
sharing of poultry-derived viral sequences to better 
track viral evolution and spread.

In conclusion, public sharing of genome sequence 
data varies substantially between different countries 
and laboratories (49,50). In the last few years, we 
have tried to rapidly provide updated information on 
HPAIVs identified in wild birds in South Korea by 
generating and sharing HPAIV sequence data from 
extensive genomic surveillance efforts conducted by 
NIWDC (16,17,22,23). Enhanced genomic surveil-
lance in both wild and domestic animals are needed 
to monitor evolution and spread of HPAIVs, which 
can provide insights into preventing future outbreaks 
and assessing zoonotic potential.
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China, 2009–2023 

•  Multisystemic Disease and  
Septicemia Caused by Presumptive 
Burkholderia pseudomallei in  
American Quarter Horse, Florida, USA  

•  Environmental Exposures Relative 
to Locally Acquired Hansen Disease, 
United States 

•  Community Infections Linked with 
Parvovirus B19 Genomic DNA in 
Wastewater, Texas, USA, 2023–2024 

•  Extensively Drug-Resistant Neisseria 
gonorrhoeae Strain, Canada 

•  Human Infections by Novel Zoonotic 
Species Corynebacterium silvaticum, 
Germany 

•  Detection of Novel Orthobunyavirus 
Reassortants in Fatal Neurologic  
Case in Horse and Culicoides Biting 
Midges, South Africa
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