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Appendix 

Additional Methods 

1.1 Model Overview 

An individual-based model (IBM) (RTI CassandraTM; 

https://github.com/dadedodo/Cassandra-RTI) was developed to (i) estimate the burden of cases 

and deaths, as well as (ii) the duration of the unfolding 2022 Sudan ebolavirus (SUDV) disease 

outbreak in Uganda (UGA). Additionally, we evaluated the possible effect of non-

pharmaceutical interventions (NPIs) on outbreak dynamics. The IBM-SUDV structure was based 

on a contact network representing interactions of people at the local level (e.g., within 

households, schools, and local businesses) and at the regional level (e.g., movement between 

villages and cities). The resolution levels allow the model to account for contact heterogeneity 

among people while maintaining a manageable level of abstraction (and subsequently less 

computational complexity and faster run times). 

There are three main reasons for choosing an IBM instead of, for example, an ordinary 

differential equations (ODE)-based model. First, IBMs can effectively describe the effect of 

super-spreaders in the transmission dynamics of contact-borne infectious diseases (1,2). The 

impact of super-spreaders is well-known in ebolavirus transmission, and failing to capture this 

characteristic will result in an underestimation of the effect of response interventions, including 

contact tracing (3). A main assumption in ODE models is that the simulated population is “well-

mixed,” meaning all individuals have the same number of contacts—a known incorrect 

assumption. Rather, in contact-borne infectious diseases, the number of contacts per individual 

follows a long-tailed distribution (i.e., following a power law or Pareto distribution) (4). This 
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heterogeneity in a population’s contact distribution is due to some individuals having a high 

number of contacts and commonly being responsible for 80% of infection events (5,6). Second, 

IBMs offer flexibility in describing the characteristics of the simulated population, their short- 

and long-range movement, and varying intervention efforts across locations (7). As described 

below, our model includes three main subpopulations (general population, healthcare workers, 

and frontline workers), various locations (households, health centers, schools), and different 

interventions with their implementation times. It would have been extremely difficult to create 

such a model using an ODE structure due to the number of equations required to represent all 

these characteristics, movements, and interventions. Third, an advantage of selecting an IBM is 

the simplicity of explaining its structure to those without advanced modeling training. IBMs are 

rule-based models that can be easily described without complex formulas. This is beneficial 

when epidemiologists and modelers collaborate with public health practitioners and policy 

makers who lack modeling experience. We have successfully applied the same IBM framework 

to model the transmission dynamics of Ebola in DRC (8), COVID-19 in Saudi Arabia (9), and 

other contact-borne infectious diseases in different settings, closely collaborating and engaging 

with countries’ Ministries of Health to ensure that the developed models reflected available 

disease-specific and operational data, as well as country priorities and interests. 

The IBM-SUDV contact network includes one node per person in the Ugandan 

population, estimated to be 47.3 million people (10). The links between nodes represent possible 

contacts between people and were created using publicly available and free geodata obtained by 

remote sensing and scientific literature. Geodata used by the model included population density 

maps produced by WorldPop (11) and Facebook (12) as well as accessibility maps produced by 

the Malaria Atlas Project (MAP) (13). 

The following provides a brief overview of the steps used to create the IBM: 

▪ Identified human settlements (cities and villages), including their geographic size (km2) 

and population, using density maps obtained from WorldPop (11). To improve the model run 

time, the country was then divided into 10 km x 10 km tiles. The tiles represented the 

“settlement” units in the IBM. Villages typically fit within one tile, while a city may span many 

tiles. The density was adjusted to reflect the estimated population in 2022. 
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▪ Created a dynamic network for each human settlement tile representing transmissible 

contacts of people on a per-week basis (intra-settlement network) and parameterized the network 

using information published in the scientific literature; this network represented short-range 

movement (Appendix Figure). The IBM accounted for changes in contact during an outbreak and 

included preintervention and postintervention periods to account for interventions adopted during 

an outbreak to reduce the spread of the disease. 

▪ Created links among people living in different human settlement tiles (extra-settlement 

network) using data from MAP’s accessibility map and WorldPop’s migration map and further 

merged with information from scientific literature; the links created in this process represent in-

country, long-distance movement. 

The human social network and the data used to characterize the network are described in 

more detail in Section 1.2 and Section 1.3. 

SUDV transmission in the IBM was modeled using the classical SEIR compartmental 

model structure: Susceptible (S) → Exposed (E) → Infectious (I) → Recovered (R). Infectious 

individuals were at risk of dying, and individuals who died remained infectious until they were 

buried. The transition from one status to another was a function of pathogen characteristics (e.g., 

probability of effective transmission per close contact, incubation period, infectious period, and 

fatality rate [see Appendix Table 3]) and interaction among individuals (only for S to I). 

The following steps were taken to allow the IBM to account for SUDV transmission: 

▪ Estimated the number of treatment units (clinics and hospitals, not specific to SUDV) 

and healthcare workers (HCW) per human settlement tile, based on publicly available data from 

the World Health Organization (WHO) and published literature, to allow the IBM to represent 

human treatment-seeking behavior in the case of symptomatic Ebola virus disease (EVD). 

▪ Introduced the transmission of SUDV in the IBM using parameters from published 

literature. 

▪ Introduced the modification of human behavior (i.e., a dynamic social network) linked 

to SUDV infection. 

Once the IBM was programmed with SUDV transmission and adopted interventions, the 

model was calibrated comparing outcomes with available reported data. Calibration was 
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performed using trend analysis comparing the reported data and the results obtained from the 

IBM-SUDV. The trend of obtained and simulated data was estimated using a generalized 

additive model (GAM). The trend analyses were performed to estimate the smooth trend of 

Ebola cases across the first 13 weeks of the outbreak. The model was built using case counts as 

independent variable, and epidemic week as nonlinear dependent variable. The result of the 

GAM was the mean expected number of cases per epidemiologic week and 95% confidence 

interval. We performed two GAM, one using reported cases and one using data obtained from 

1,000 IBM-SUDV simulations. The mean number of cases per epidemiologic week obtained 

from GAM for reported and simulated cases were compared using Kendall’s concordance test. 

We considered the model well-calibrated when Kendall’s W reached a value above 0.9. 

Free, open-source software was used to program the IBM. The geodata was analyzed and 

stored using the free, open-source Geographic Resources Analysis Support System (GRASS) 

software (https://grass.osgeo.org). Data analysis was programmed using the R programming 

language (The R project for Statistical Computing, https://www.r-project.org). The IBM 

structure was programmed using the Julia programming language. Julia is a programming 

language suitable for IBMs because of its high speed, easy-to-use packages, and clear writing 

style (J. Bezanson et al., unpub. data, https://arxiv.org/abs/1209.5145). The IBM-SUDV was run 

on a high-performance computer. 

1.2 Human Social Network Data 

1.2.1 Population Data 

Data on the Ugandan population were obtained from World Bank (10) and disaggregated 

at into 10 km x 10 km tiles using data obtained from WorldPop (https://www.worldpop.org/). 

WorldPop provided population estimates broken down by gender and age groupings (including 

0–1 years and by 5-year ranges up to 80+ years) at a resolution of 100 m. The estimates per each 

tile were adjusted to represent Uganda’s estimated population of 2022. The data obtained from 

WorldPop were used to estimate the size of the network for each human settlement. 

1.2.2 Human Settlements 

To identify human settlements at high resolution, a population density map created by 

Facebook (12) was used. This map identified areas with buildings at a resolution of 30 m, as 

updated to 2019. Facebook population density map data were analyzed using raster analyses 
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tools of GRASS software (i.e., to identify the position of human settlements based on presence of 

buildings). To improve the model run time, the country was then divided into 10 km x 10 km 

tiles. The population in each tile was calculated by aggregating values from the density maps. 

The tiles represented the “settlement” units in the IBM—villages typically fit within one tile, 

while a city may span many tiles. A connectivity matrix among the tiles was created to represent 

the extra-settlement movement of individuals in Uganda. 

1.2.3 Travel Time Between Settlements 

The movement of people between human settlement tiles was based on population size 

and travel times. Population sizes were calculated using WorldPop and Facebook data, as 

described previously. Travel times were calculated using the friction surface map created by 

MAP (11). The friction surface map contains the time that a person spends passing through a 

map pixel based on estimated land-based travel speeds at a resolution of 1 km. Using the friction 

surface map estimation, we calculated the travel time between tiles. 

1.2.4 Demographic Data 

The model accounted for several demographic characteristics that well represent the 

Ugandan population. Data on household size, percentage of children enrolled in schools, and the 

unemployment rate were obtained from the Global Data Lab (14), the United Nations Children’s 

Fund (UNICEF) (15) and the World Bank (10). In the IBM-SUDV, age and gender of 

individuals were used to create its contact network and assign them to each population type, as 

described below. Additional population characteristics needed to define vaccination scenarios for 

preventive vaccination, such as the number of HCW, security forces personnel, and 

transportation workers, were also obtained from World Bank and WHO sources, as described in 

Section 1.3.2. 

1.3 IBM Population Network Structure 

The IBM uses a dynamic human social network to describe interaction among 

individuals. The structure of the network is initially fixed, with all links between individuals 

assigned before the simulations begin. During each simulation run, the model becomes dynamic 

as EVD cases cause links to be “activated.” For example, infected individuals can acquire links 

as they travel to find hospitals, interact with HCWs, or interact with frontline workers (FWs) 
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outside their fixed network. Thus, all simulations start with same initial network, but the network 

evolves differently during each simulated epidemic. The use of a fixed initial network reduces 

result noise and reflects the normal routine of a country during non- outbreak periods. 

Given the SUDV transmission dynamics and the time lag of the surveillance to report 

cases, the model ran on a weekly time step. Weekly estimates also made it easier to compare 

IBM estimates with real data. The following sections provide details about the IBM human 

social network and its components. 

1.3.1 Representing the Human Social Network (Intra-settlement Network) 

The IBM captured the high heterogeneity of the contact network among people, which is 

the key driver of disease spread in communities. The IBM network was built using the “scale- 

free” and “small-world” characteristics described for several social networks. A scale-free 

network has a high fraction of nodes (representing individuals) connected to a low number of 

other nodes and a few nodes connected to high number of other nodes. The nodes that have high 

connectivity are so-called “super spreaders.” The link distribution among nodes in the scale-free 

network followed a power-law distribution: 

𝑝𝑝(𝑥𝑥) = 𝑥𝑥−𝛼𝛼 

where x is the number of links of a node, p(x) is the probability distribution, and the 

exponent α is the scaling factor. For human social networks, the power-law distributions have 

exponent α values ranging from 2 to 3 (16). A network has a “small- world” characteristic when 

two nodes in the network can reach each other through a short sequence of connected nodes 

(called a “short path”) (17). 

Interactions among individuals occurred in specific locations, which may have a key role 

in the spread of disease agents. The locations in which people spend most of their time daily are 

households, workplaces, and schools (18,19). 

However, interactions outside the routine locations (e.g., markets, restaurants, and 

theaters) are at the base of the small-world characteristic of human social networks. Age is 

another important factor that shapes the social network of an individual. People tend to have 

more interaction with individuals of the same age that they meet at school, workplaces, or in 

recreational locations (20) Thus, to be sure that the IBM accurately described the interaction 
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among people, it included the distribution of interaction among individuals, interaction at 

locations, and the effect of individuals’ ages. 

After the population size and distribution among age groups within a settlement tile were 

estimated, a contact network was created using the following steps: 

▪ Households were created using the mean size of the family cluster. The number of 

people living together in each house was determined using a Poisson distribution with the mean 

equal to the mean number of household inhabitants in Uganda by sub-regions as reported in the 

Uganda National Household Survey 2019/2020 (national mean household size was equal to 4.6 

inhabitants) (21). 

▪ The number of links (i.e., contacts) for each individual was calculated based on a 

power-law distribution with α = 2.5. Given the unavailability of data on number of contacts per 

people in Uganda, we set ‘a’ equal to 2.5, a value that it usually used to create simulation 

representing the heterogeneity of people interaction in a social networks (16).Because the 

formulation of a power-law distribution requires indicating a minimum value for x, the minimum 

number of contacts for each individual was set equal to the mean household size in Uganda. 

▪ Once the number of links was determined for each individual, the distribution of these 

links to other individuals followed age-stratified contact matrices reported for Uganda in Prem et 

al. 2021 (20). 

▪ A location attribute was assigned to each link based on the settlement tile in which the 

contact occurred. The IBM also assigned one of four location types to each link: household, 

workplace, school, or other. The probability of assigning a link to a particular group was based 

on demographic characteristics of the Ugandan population. 

▪ Links defined by the power-law distribution represent contacts based on proximity 

rather than on close contact (e.g., touching). SUDV transmits through close contact, so the 

proportion of close contacts among all contacts (0.09) was estimated by analyzing the data 

provided in by Olu et al., 2016 and Wolfe et al., 2017 (22,23). The proportion of close contacts 

was estimated by dividing the total number of contacts by the number of reported close contacts. 
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1.3.2 Representing the High-Risk Population 

Within each settlement tile, the model accounted for the fraction of the population that 

are at high risk of infection during Ebola outbreaks due to their job activities. The IBM high-risk 

population included HCWs (e.g., doctors, nurses, midwives, dentists, and pharmacists) and non-

health FWs (e.g., armed forces, teachers, and transportation workers) (24). Only individuals with 

an age above 17 years were assigned to the high-risk population. The probability of infection for 

this population was affected by the probability of being in close contact with an infectious 

individual. As infectious individuals seek treatment in hospitals or other health facilities, the 

IBM’s treatment-seeking module creates links to connect infectious individuals with HCWs and 

FWs. These created links establish the exposure to the virus for the high-risk population. Linear 

regression was used to estimate the trend in the number of HCWs per profession to estimate 

figures for 2022, when not available. 

The number of non-health FWs was estimated by type (i.e., armed forces, transportation 

workers, and other FWs) from published and public sources where possible (Appendix Table 1). 

No data were available for the number of other FWs, such as shop and market workers, clergy, 

contact tracers, and burial teams, so the model assumed a density of 3.5 per 1,000, which is 

between the density of HCWs (4.2 per 1,000) and transportation workers (2.5 per 1,000). The 

model included parameters capturing interaction in schools and universities. We calculated the 

number of teachers and professors and their interaction with students using data of the Ugandan 

education system. We gathered data on the ratio of number of students per teachers / professor 

and school / university enrollment (10). Next, to reflect that non-health FWs typically have many 

contacts in the community, these workers were assigned in the network from among individuals 

with the greatest number of contacts. Specifically, the IBM randomly selected individuals to be 

FWs from among those individuals in the 80th percentile for number of contacts. This selection 

was completed for each tile. 

Appendix Table 1 reports the number of individuals in each high-risk population group. 

1.3.3 Representing Human Movement Among Settlements 

The extra-settlement spread of SUDV in the IBM was captured using a weighted network 

that links settlement tiles (Appendix Figure). The weight of each link was determined by the 

estimated flux of people between tiles. Data about individual movement within Uganda were not 
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available, so the IBM applied a gravity model that accounted for distance between pairs of 

settlements, travel times, and population sizes (25–27). A gravity model is a modified law of 

gravitation that, in a simpler formulation (frictionless gravity model), considers the population 

size of two places and their distance apart to estimate the flow of people between them (28). This 

approach is not country specific but has been used in the past in West Africa (27). Larger 

settlements were assumed to attract more people than smaller settlements, and settlements closer 

together were assumed to share more people than settlements further apart. However, in settings 

where connections among places are not easy, the model can be adjusted by adding travel times 

(friction-based gravity model) (28). 

The distance and travel time between each pair of settlement tiles was calculated using 

the population density map (12) and the surface friction map (13). The weight of each link was 

used to calculate the probability that Ebola cases will move between two settlement tiles, causing 

the outbreak to spread to new locations. The extra-settlement network was created using the 

following steps: 

▪ Created a distance matrix among settlement tiles with columns and rows equal to the 

number of settlement tiles. Each matrix cell contained the distance between two settlement tiles. 

▪ Created a travel time matrix among settlement tiles with columns and rows equal to the 

number of settlement tiles. Each matrix cell contained the travel time between two settlement 

tiles. 

▪ Built a gravity model merging population data, the distance matrix, and the travel time 

matrix following the methods described in Balcan et al. (26) and Kraemer et al. (27). 

▪ Recorded the results of the gravity model in a flux matrix with columns and rows equal 

to the number of settlement tiles. Each matrix cell contained the estimated flow between two 

settlement tiles. This matrix is not symmetric because the model uses tile population as an 

attraction factor. Thus, tiles with high population density have a greater inward flow than tiles 

with low population density. 

Appendix Table 2 summarizes the parameters and data sources for the IBM intra-

settlement and extra-settlement networks. 
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1.4 Modeling SUDV Transmission 

1.4.1 Background 

SUDV transmission depends on disease-specific characteristics, such as transmission 

probability per close contact, incubation period, and infectious period. Transmission is also 

affected by factors linked to population demographics and behavior (e.g., characteristics of the 

social network, treatment-seeking behavior, and burial practices), individual mobility, and 

healthcare system capacity. The IBM accounted for these factors to modulate the dynamic 

transmission of Ebola and affect the size of outbreaks. The model also included preintervention 

and postintervention periods to account for interventions adopted during an outbreak to reduce 

the spread of the disease, including ring vaccination, safe burials, case isolation, contact tracing, 

extensive testing, HCW training, and availability of personal protection equipment (PPE). 

Section 1.4.2 describes the modeling of SUDV transmission, and Section 1.4.3 provides details 

about SUDV interventions included in the model. 

1.4.2 SUDV Transmission 

In the model, each simulation starts with one infected individual selected at random. 

SUDV then transmits within the population as individuals interact. Because close contacts 

between individuals may vary in duration and proximity, only a fraction result in transmission. 

Studies have estimated that Ebola transmission probability could range from 0.45 to 0.55 

(29,30). Thus, given the transmission uncertainty, the probability of effective transmission per 

close contact was randomly selected for each run of the IBM-SUDV between 0.45 and 0.55 

using a uniform distribution (Appendix Table 3). Once infected, individuals with new cases of 

EVD may experience hospitalization or death. 

Some individuals have infection-conferred immunity after surviving an Ebola infection 

during a previous outbreak. Since 2000, a total of 596 cases and 273 deaths have been reported 

in Uganda (31). Assuming 20% of cases were asymptomatic, estimated from Richardson et al., 

2016; Mbala et al., 2017 (32,33), the number of recovered cases since 2000 is 442. Accounting 

for deaths, an estimated 220 individuals are currently living with infection-conferred SUDV 

immunity in Uganda (31) (Appendix Table 3). Given the low number of publications describing 

transmission dynamics of SUDV, the parameters used in the IBM-SUDV were estimated using 
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articles describing epidemics caused by the Zaire or the Sudan virus. A summary of the 

parameters and data sources for Ebola transmission is provided in Appendix Table 3. 

1.4.3 SUDV Interventions 

The model included NPIs as implemented during the last SUDV outbreaks in Uganda; a 

therapy or vaccine against SUDV disease was not available in 2022. Interventions from the 

2018–2020 outbreaks in the DRC were chosen as it was assumed that similar interventions 

would be used in Uganda, in accordance with current guidelines (41–43). Parameters for all 

interventions are reported in Appendix Table 4. 

NPI included the use of PPE for HCWs, contact tracing of infected individuals, safe 

burials, and increased treatment seeking due to increased awareness in the population (Appendix 

Table 4). These interventions were simulated using information about the strategies employed 

during the last EVD outbreaks in Uganda. To capture this heterogeneity, each settlement tile was 

randomly assigned a percentage between 20% and 70% (uniform distribution) of contacts of 

infected individuals successfully located by contact tracing teams (estimated from WHO, 2019b, 

and WHO, 2020) (42,43). In the IBM, when a new case of EVD was identified within a 

settlement tile, linked contacts of the infected individual were randomly selected using this 

contact-traced percentage and designated as the contact-traced group. Individuals in this group 

represent those who were monitored for 21 days and hospitalized if showing any symptoms. 

Thus, individuals in the contact-traced group were not able to infect others. 

Overall, NPIs were started in the model 1 week after the first reported case. Full 

implementation of NPIs in the model was reached within 40 weeks. 

1.5 IBM Assumptions 

The model included several assumptions to populate variables for which data were not 

available, including the following: 

▪ As it is not possible to define urban and rural areas explicitly, settlements with over 

10,000 inhabitants were assumed to be urban areas. 

▪ At least one healthcare worker was present in each settlement. 
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▪ Hospitals and clinics with sufficient capacity to handle Ebola cases were located only in 

urban settlements. Cases requiring hospitalization were in contact with healthcare workers in the 

closest urban settlement. 

▪ Because the size of hospital crews var.y, the model assumed the size of hospital crews 

followed a truncated Poisson distribution, with at least 2 people and a mean of 3 people 

(information obtained by personal communication with Médecins Sans Frontières personnel). 

▪ Armed forces were present in urban settlements, and personnel were assigned 

proportionally to the settlement’s population size. 

▪ The number of people who had contact with the body during a funeral followed a 

Poisson distribution with a mean of 10. This assumption was relevant only for traditional burials, 

as the model assumed transmission did not occur during safe burials. 

1.6 Model Outcomes 

The results of each scenario tested with the IBM-SUDV were based on 1,000 runs. We 

tested the number of runs to obtain robust results. The evaluation of association between model 

runs and result robustness by comparing the uncertainty of a dummy scenario obtained from 50 

to 1,000 runs. The results showed that the uncertainty of model results did not sensibly reduce 

after 1,000 runs (Appendix Figure). 

The IBM estimated the median number of symptomatic cases and deaths as well as the 

median duration of the epidemic for each scenario analyzed. The epidemic duration was 

measured from the first case to the time at which zero cases remained. 

Additionally, a 95% credible interval (CrI) was calculated for each outcome. CrIs are 

estimated in situations where the parameter is a random variable. CrIs then represent the interval 

within which an unobserved parameter value falls with a given probability. In comparison, 

confidence intervals are estimated in situations with known, observed data, where intervals can 

be precisely calculated. For the IBM, 95% CrIs were calculated using the adjusted bootstrap 

percentile approach (48) based on 10,000 re-samplings of the simulation results. This 

bootstrapping allows better estimates of the 95% CrIs because it calculates the CrIs from an 

estimated hypothetical distribution of the results. 
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Finally, the reduction in each outcome (and the 95% CrI of the reduction) was calculated 

for the comparison between several of the scenarios. The reductions and their 95% CrIs were 

calculated using the bootstrapping method described above (48). 

Because of this, the reported reductions are not equivalent to the corresponding 

reductions in the median outcomes. 

The Julia code used to build the IBM-SUDV can be provided upon request to Dr. Donal 

Bisanzio (dbisanzio@rti.org) and Dr. Richard Reithinger (reithinger@rti.org). 
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Appendix Table 1. Uganda High-risk Population Estimated for the Year 2022* 

Population 
High-risk population per 1,000 population in 

Uganda (number of people) Reference 
HCWs   
 Physicians 0.2 (9,460) Estimated from WHO (24) 
 Nurses and midwives 0.5 (23,644) Estimated from WHO (24) 
 Other healthcare professionals (e.g., 
dentists, pharmacists, lab workers, and 
physiotherapists) 

0.6 (28,380) Estimated from WHO (24) 

 Community HCWs 3.7 (175,010) Estimated from WHO (24) 
 Total HCWs 4.9 (236,494) Calculated 
FWs   
 Armed forces 0.9 (46,000) World Bank (10) 
 Transportation workers 15.1 (709,500) Müller & Doevenspeck (25) 
 Other FWs (e.g., shop and market workers, 
clergy, contact tracers, burial teams, 
teachers/professors) 

3.5 (165,550) Assumption 

 Total FWs 19.5 (921,050) Calculated 
Total high-risk population 24.4 (1,157,544) Calculated 
*FWs, frontline workers; HCWs, healthcare workers; UNICEF, United Nations Children's Fund; WHO, World Health Organization. 

 
 
 
Appendix Table 2. IBM Population Network Parameters and Data Sources* 
Model input Input Reference 
Population Estimated from the WorldPop (2020) Lloyd et al., 2019 (11) 
Demographic data World Bank Open Data, UNICEF (2019) UNICEF, 2022 (15) 
Intra-settlement network   
 Number of contacts per individual Estimated using a power-law distribution with 

α = 2.5 
Barrat et al., 2008 (16) 

 Contact matrix Age-stratified, estimated Prem et al., 2021 (20) 
 Probability that a contact is a close 
contact 

0.09 Estimated from Olu et al., 2016; 
Wolfe et al., 2017 (22,23) 

Extra-settlement network   
 Number of settlements in Uganda Estimated from the Facebook density map Facebook CIESIN, 2019 (12) 
 Distance between settlements Estimated from the Facebook density map Facebook CIESIN, 2019 (12) 
 Travel time between settlements Estimated using MAP friction map Weiss et al., 2018 (13) 
 Extra-settlement flow of people Estimated using the gravity model Balcan et al., 2009; Kraemer et al., 

2019 (26,27) 
*CIESIN, Connectivity Lab and Center for International Earth Science Information Network; IBM, individual-based model; MAP, Malaria Atlas Project; 
UNICEF, The United Nations Children’s Fund. 

 
 
 
Appendix Table 3. SUDV Transmission Parameters and Data Sources* 
Model input Values/distribution Reference 
Probability of effective transmission per close 
contact 

0.45–0.55 
Uniform distribution 

Estimated from Xia et al., 2015; Rivers et 
al., 2014 (29,30) 

Incubation period (days to symptom onset) Mean: 12 d 
SD: 4.3 d Lognormal distribution 

Estimated from Xia et al., 2015; Rivers et 
al., 2014 ; Eichner et al., 2011 (29,30,34) 

Infectious period 2–21 d 
Uniform distribution 

Xia et al., 2015; Rivers et al., 2014 ; Malvy 
et al. 2019 (29,30,35) 

Percentage of asymptomatic cases 20% Estimated from Richardson et al. 2016; 
Mbala et al., 2017 (32,33) 

Time from symptom onset to hospitalization 5 d Conrad et al., 2016 (36) 
Days in hospital 10–15 d Uniform distribution Xia et al., 2015 (29) 
Case fatality rate by age 39% CDC 2022 (31) 
Time from symptom onset to death 5–10 d 

Uniform distribution 
Legrand et al., 2007; Agua-Agum et al., 

2015; Robert et al. 2019 (37–39) 
Days infectious before burial after death 2–7 d 

Uniform distribution 
Estimated from Conrad et al., 2016; Potluri 

et al. 2020 (36,40) 
*SD, standard deviation; WHO, World Health Organization. 
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Appendix Table 4. Parameters of Ebola nonpharmaceutical interventions* 
Model input Values/ distribution Reference 

Reduction in transmission probability due to use of PPE at 
health facilities during the postintervention period 

70% Estimated from Dunn et al., 2016; Jefferson 
et al., 2008 (44,45) 

Probability of seeking treatment at a medical facility in the 
preintervention period 

0.6 Estimated from Conrad et al., 2016 (36) 

Probability of seeking treatment at a medical facility in the 
postintervention period 

0.8 Estimated from Conrad et al., 2016 and 
Jalloh et al., 2020 (36,46) 

Probability of hospitalization among individuals seeking 
treatment in the preintervention period 

0.60 Chowell and Nishiura, 2015 (47) 

Probability of hospitalization among individuals seeking 
treatment in the postintervention period 

0.90 Chowell and Nishiura, 2015 (47) 

Among deaths in the hospital, probability of having a safe 
burial 

1.0 Assumption based on WHO reports 

Among deaths at home, probability of having a safe burial in 
the preintervention period 

0.1 Conrad et al., 2016 (36) 

Among deaths at home, probability of having a safe burial in 
the postintervention period 

0.95 Conrad et al., 2016 (36) 

Percentage of contacts (first ring) of infected individuals 
located by contact tracing team 

Beta distribution 
with mean 70% 

Estimated from WHO, 2019b; WHO, 2020 
(42,43) 

*FWs, frontline workers; GP, general population; HCWs, healthcare workers; PPE, personal protection equipment; WHO, World Health Organization. 
 

 

Appendix Figure. Optimal number of runs to perform IBM-SUDV simulations. 


	Modeling Case Burden and Duration of Sudan Ebola Virus Disease Outbreak in Uganda, 2022
	Appendix
	Additional Methods
	1.1 Model Overview
	1.2 Human Social Network Data
	1.2.1 Population Data
	1.2.2 Human Settlements

	1.2.3 Travel Time Between Settlements
	1.2.4 Demographic Data

	1.3 IBM Population Network Structure
	1.3.1 Representing the Human Social Network (Intra-settlement Network)
	1.3.2 Representing the High-Risk Population
	1.3.3 Representing Human Movement Among Settlements

	1.4 Modeling SUDV Transmission
	1.4.1 Background
	1.4.2 SUDV Transmission
	1.4.3 SUDV Interventions

	1.5 IBM Assumptions
	1.6 Model Outcomes
	References
	Appendix Table 1. Uganda High-risk Population Estimated for the Year 2022*
	Appendix Table 2. IBM Population Network Parameters and Data Sources*
	Appendix Table 3. SUDV Transmission Parameters and Data Sources*
	Appendix Table 4. Parameters of Ebola nonpharmaceutical interventions*
	Appendix Figure. Optimal number of runs to perform IBM-SUDV simulations.

