

Tularemia in New York, USA, 1993–2023

Appendix

Methods for molecular detection and strain differentiation of *Francisella tularensis*

The following primer and probe sequences were designed using Primer ExpressTM software (Applied Biosystems) with GenBank accession number M32059 for reference and validated: Tul4 forward (5'-CGC-AGG-TTT-AGC-GAG-CTG-TT-3') and reverse primer (5'-AGC-TTG-CTC-AGT-AGT-AGC-TGT-CTG-A-3'), and Tul4 probe (5'-FAM-TTT-GCA-TCA-TCA-GAG-CCA-CCT-AAC-CCT-AGA-BHQ-3'). Each 25 μ L reaction contained Quanta Perfecta Low Rox MasterMix (Quanta Biosciences), 125nM Tul4 forward and reverse primers, 250nM Tul4 probe, and 5 μ L of sample. ABI 7500 Fast (Applied Biosystems) instrument run conditions included one cycle for 8 minutes at 95°C, followed by 45 cycles of 15 seconds at 95°C and one minute at 60°C. Positive and negative controls were included with each run, and thresholds were set manually with Ct < 45 considered positive for *F. tularensis*.

While the real-time PCR assay is capable of detecting multiple *F. tularensis* subspecies, including *tularensis* (Type A), *holarctica* (Type B), *novicida* (Neither Type A or B), and *mediasiatica* (Neither Type A or B), additional molecular testing is required to distinguish between clinically significant subspecies. Specifically, a secondary assay was employed to differentiate Type A from Type B strains, complemented by 16S rRNA gene sequencing for further taxonomic classification (Source: Kugeler KJ et al, doi:10.3201/eid1211.060629).