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Vesicular disease caused by Seneca Valley virus infec-
tion occurred in pigs from 5 outdoor pig farms in England
during June—September 2022. Clinical signs resembled
notifiable vesicular diseases, such as foot-and-mouth
disease. Full genome sequences shared a common an-
cestor with a virus circulating in the United States.
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Researchers reported vesicular disease associ-
ated with Seneca Valley virus (SVV; Senecavirus
valles, family Picornaviridae) in pigs imported into
the United States from Canada in 2007 (1). Similar
reports subsequently emerged from other countries,
including Brazil, China, Thailand, Chile, India, Viet-
nam, Columbia, and Mexico (2-4). We describe cases
of SVV infection in pigs from 5 pig breeding farms in
eastern England during June-September 2022.

Farm staff initially observed signs of vesicular
disease in recently inseminated sows at an outdoor
breeding unit (SVV2022-01): lameness, reluctance to
move, and lesions on the nose and feet, varying from
discrete vesicles on the coronary band and interdigi-
tal space to deep erosions and heel horn separation.
We collected blood and vesicular tissue samples as
part of an official vesicular disease investigation; all
samples tested negative by real-time reverse tran-
scription PCR (rRT-PCR) for notifiable diseases (foot-
and-mouth disease virus, swine vesicular disease
virus, and vesicular stomatitis virus) (5). However,
we observed cytopathic effect during virus isolation,
and parallel rRT-PCR testing (6) generated positive
results for SVV.

7 - -

- RN

Figure 1. Affected pigs on farm SVV2022-02, fI;om study of vesicular disease caused by Seneca Valley virus in pigs, England, 2022.

We subsequently identified vesicular disease
in recently inseminated sows on 3 additional farms
(SVV2022-02 [Figure 1], SVV2022-03 and SVV2022-
05). Again, official veterinary investigations yielded
negative results for notifiable diseases and confirmed
the presence of SVV by rRT-PCR. Gilts, young boars,
and weaners appeared clinically unaffected, despite
evidence of SVV in rectal and nasal swab speci-
mens. Retrospective tracing identified another farm
(SVV2022-04) with confirmed SVV in a group of re-
cently lame sows.

We collected samples including vesicular epithe-
lium, vesicular fluid, rectal and nasal swabs, blood,
and tonsils from dead pigs. We also collected sam-
ples from weaners derived from 4 of the 5 affected
farms and from sows and postmortem pigs at farm
5VV2022-03 for up to 4 months after the initial disease
reports. In total, 461 (35.0%) of 1,319 samples tested
positive for SVV by rRT-PCR from the 5 farms (Ap-
pendix Table). On farms SVV2022-01 and SVV2022-
02, we initially collected blood samples, with 17 of
34 positive by rRT-PCR; however, because viremia
is short-lived, that sampling matrix was not ideal for
surveillance. Analysis revealed the highest viral loads

Vesicular lesions can be seen on the coronary bands (A-C), snout (D), and interdigital cleft (E). Hoof horn separation also occurred in
some infected pigs (B). Some lesions resembled those of foot-and-mouth disease (D), but others were more deep-seated (A).
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Figure 2. Evolutionary history
and genetic relationships of
Seneca Valley viruses from study
of vesicular disease caused

by Seneca Valley virus in pigs,
England, 2022. A) Tree represents
the evolutionary history of
Seneca Valley viruses isolated
globally and reconstructed using
polyprotein-coding sequences.
Maximum-likelihood tree inferred
using the Tamura-Nei model (9)
and setting a discrete gamma
distribution for evolutionary rate
differences among sites. Colored
tips represent Seneca Valley
virus—infected farms during the
outbreak in England in 2022.
Colored internal nodes represent
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B) Genetic relationship of Seneca
Valley viruses isolated in England
during 2022 based on the full-
genome length, as reconstructed
by statistical parsimony analysis.
Nodes are colored according to
farm on which clinical cases were
observed; white nodes denote
missing unsampled haplotypes.
Hatch marks represent single-
nucleotide substitutions estimated
between the connected nodes.
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in vesicular lesion and tonsil samples (strongest cycle
threshold value 10.8). Rectal swabs were the most
frequently collected sample type (n = 914) owing to
ease of collection. Nasal swab specimens were useful
in revealing acute stages of disease, but rectal swab
specimens proved more useful in detecting SVV in
recovering pigs, despite weaker rRT-PCR respons-
es. That observation supports the use of rectal swab
sampling in pigs of unknown SVV status, where re-
sources or logistics limit sampling options. Our data
also highlight the value of testing tonsils, illustrated
by detection of SVV RNA in a tonsil from a dead pig-
let >35 days after the episode of clinical signs (farm
SVV2022-02).

Emerging Infectious Diseases « www.cdc.gov/eid « Vol. 32, No. 2, February 2026

We conducted serologic investigations 5
weeks after the disease episode at farm SVV2022-
04 and during the acute stage of disease at farm
SVV2022-01. A total of 55 of 63 serum samples from
farm SVV2022-01 and 10 of 10 samples from farm
SVV2022-04 were positive for SVV-specific anti-
bodies as determined by the virus neutralization
test using SK6 cells.

Paired rectal and semen samples collected
from boars supplying semen and historic batches
of feed and soya bean meal samples supplied to
affected farms all tested negative for SVV by rRT-
PCR. We detected SVV RNA in 76 (56.7%) of 134
environmental samples (7) collected 3.5 weeks

297



RESEARCH LETTERS

after the disease occurrence from farm SVV2022-01,
where pigs no longer remained on the premises.
Sample sites included walls, doors, feeders, drink-
ers, floors, gates, and a trailer. We also detected SVV
RNA in 6 (10.2%) of 59 samples collected 6 weeks
after the disease occurrence from farm SVV2022-
04, where pigs remained (sites included loading
area, drinker, ark, and trailer) (Appendix Figure).
Our data highlight the importance of cleaning,
disinfection, and stringent biosecurity to limit the
spread of SVV.

We characterized SVV isolates using next-gen-
eration sequencing (8) and found they share a com-
mon ancestor with a virus isolated in the United
States during 2020 (SVV/USA/TN/NADC6/2020;
GenBank accession no. MZ733975) (Figure 2), pre-
dicted to have circulated around November 2020
(95% highest posterior density June 2020-March
2021). We assigned the SVV sequences into 2 sis-
ter clades differing at >50 nt sites, consistent with
2 possible epidemiologic scenarios: a single virus
introduction, with the resulting diversity accru-
ing from within-country transmissions and evolu-
tion; or independent introductions into England
of viruses characterized by a slightly different ge-
netic signature. Further epidemiologic investiga-
tion could determine the most important risk path-
ways for introduction, transmission routes between
farms, and geographic spread of SVV infection in the
United Kingdom.

In conclusion, the clinical similarity of the SVV
disease outbreaks we describe to notifiable vesicular
diseases highlights the value of passive surveillance
and the legal requirement for pig keepers and vet-
erinarians to report vesicular lesions promptly. Cases
of SVV infection were transient, and pigs recovered
quickly, with minimal productivity losses. We alert-
ed regional veterinarians and farmers of the need to
remain vigilant for vesicular disease, and there have
been no further clinical cases of SVV in England since
September 2022.

We submitted the 14 full genome sequences associated
with this study to GenBank and received the correspond-
ing accession numbers: PV845105 (UKG/26/2022),
PV845106 (UKG/36/2022), PV845107 (UKG/52/2022),
PV845108 (UKG/53/2022), PV845109 (UKG/58/2022),
PV845110 (UKG/208/2022), PV845111 (UKG/212/2022),
PV845112 (UKG/230/2022), PV845113 (UKG/231/2022),
PV845114 (UKG/1864/2022), PV845115 (UKG/1866/2022),
PV845116 (UKG/1868/2022), PV845117 (UKG/2199/2022),
and PV845118 (UKG/2811/2022).
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African swine fever virus genotype Il is endemic in Thai-
land, typically causing acute disease. We investigated
a vaccine-like strain, characterized by 6 multigene fam-
ily gene deletions, from nonvaccinated herds. We found
this strain was associated with chronic disease in pigs.
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frican swine fever (ASF) is a fatal hemorrhagic

disease of pigs, caused by African swine fever vi-
rus (ASFV), a complex DNA virus in the Asfarviridae
family (1). Researchers first identified ASF in Kenya in
1921, and subsequent reports identified 24 genotypes
in Africa on the basis of nucleotide variations within
the partial B646L gen (2,3). Reports in the medical lit-
erature confirm incidence of only ASFV genotype I
and genotype Il outside Africa.

In 2018, researchers identified ASFV genotype 11
in China (4), and it rapidly spread across Asia within a
few months. Since then, the situation in Asia has shift-
ed from an epidemic to an endemic stage, with the
highly virulent genotype II strain causing peracute,
acute, and subacute disease. Recent research suggests
the emergence of more genetically diverse ASFV vari-
ants, including chronic disease-associated genotype
I, highly virulent recombinants of genotypes I and 1I,
and naturally and artificially attenuated strains in do-
mestic pigs in China and Vietnam (5-7).

Thailand health authorities officially reported
ASFV in Thailand in 2022 (8), and the strain was ge-
netically identical to the strain first reported in China
and Vietnam. Currently, ASF cases in Thailand in-
volve patients with chronic symptoms and low mor-
tality rates, suggesting the emergence of low-virulent
strains. We conducted a survey of ASFV from recent
outbreaks in Thailand, employing whole-genome se-
quencing to investigate the underlying causes.

Veterinary clinicians reported suspected disease
in pigs from 2 herds located in the western region
of Thailand, 500 miles apart, all displaying clinical
signs related to chronic forms of ASF: chronic respi-
ratory disease, joint swelling, slow weight gain, and
sporadic deaths. Both herds housed only finishing
pigs, operating on an all-in/all-out basis, and pigs
were not vaccinated with any types of ASF vaccines.

We submitted 25 blood and organ samples from
ASF-suspected pigs to a Biosafety Level 3 labora-
tory at the National Center for Genetic Engineering
and Biotechnology (Thailand Science Park, Pathum
Thani, Thailand). We extracted viral DNA from
samples following the protocol of the DNeasy blood
and tissue kit (QIAGEN, https://www.qiagen.com).
We detected ASFV by real-time PCR targeting the
B646L gene, according to the World Health Organ-
isation for Animal Health’s International Office of
Epizootics manual (9). We performed whole-genome
sequencing on the Illumina NovaSeq X platform (Il-
lumina, https://www illumina.com), generating 151
bp paired-end reads. We analyzed raw sequences
according to methods described in a previous study
(8). We used FastQC v0.74 to assess the raw data
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