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Vesicular disease caused by Seneca Valley virus infec-
tion occurred in pigs from 5 outdoor pig farms in England 
during June–September 2022. Clinical signs resembled 
notifiable vesicular diseases, such as foot-and-mouth 
disease. Full genome sequences shared a common an-
cestor with a virus circulating in the United States.
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Researchers reported vesicular disease associ-
ated with Seneca Valley virus (SVV; Senecavirus 

valles, family Picornaviridae) in pigs imported into 
the United States from Canada in 2007 (1). Similar 
reports subsequently emerged from other countries, 
including Brazil, China, Thailand, Chile, India, Viet-
nam, Columbia, and Mexico (2–4). We describe cases 
of SVV infection in pigs from 5 pig breeding farms in 
eastern England during June–September 2022. 

Farm staff initially observed signs of vesicular 
disease in recently inseminated sows at an outdoor 
breeding unit (SVV2022-01): lameness, reluctance to 
move, and lesions on the nose and feet, varying from 
discrete vesicles on the coronary band and interdigi-
tal space to deep erosions and heel horn separation. 
We collected blood and vesicular tissue samples as 
part of an official vesicular disease investigation; all 
samples tested negative by real-time reverse tran-
scription PCR (rRT-PCR) for notifiable diseases (foot-
and-mouth disease virus, swine vesicular disease 
virus, and vesicular stomatitis virus) (5). However, 
we observed cytopathic effect during virus isolation, 
and parallel rRT-PCR testing (6) generated positive 
results for SVV.

We subsequently identified vesicular disease 
in recently inseminated sows on 3 additional farms 
(SVV2022-02 [Figure 1], SVV2022-03 and SVV2022-
05). Again, official veterinary investigations yielded 
negative results for notifiable diseases and confirmed 
the presence of SVV by rRT-PCR. Gilts, young boars, 
and weaners appeared clinically unaffected, despite 
evidence of SVV in rectal and nasal swab speci-
mens. Retrospective tracing identified another farm 
(SVV2022-04) with confirmed SVV in a group of re-
cently lame sows.

We collected samples including vesicular epithe-
lium, vesicular fluid, rectal and nasal swabs, blood, 
and tonsils from dead pigs. We also collected sam-
ples from weaners derived from 4 of the 5 affected 
farms and from sows and postmortem pigs at farm 
SVV2022-03 for up to 4 months after the initial disease 
reports. In total, 461 (35.0%) of 1,319 samples tested 
positive for SVV by rRT-PCR from the 5 farms (Ap-
pendix Table). On farms SVV2022-01 and SVV2022-
02, we initially collected blood samples, with 17 of 
34 positive by rRT-PCR; however, because viremia 
is short-lived, that sampling matrix was not ideal for 
surveillance. Analysis revealed the highest viral loads 

Figure 1. Affected pigs on farm SVV2022-02, from study of vesicular disease caused by Seneca Valley virus in pigs, England, 2022. 
Vesicular lesions can be seen on the coronary bands (A-C), snout (D), and interdigital cleft (E). Hoof horn separation also occurred in 
some infected pigs (B). Some lesions resembled those of foot-and-mouth disease (D), but others were more deep-seated (A).
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in vesicular lesion and tonsil samples (strongest cycle 
threshold value 10.8). Rectal swabs were the most 
frequently collected sample type (n = 914) owing to 
ease of collection. Nasal swab specimens were useful 
in revealing acute stages of disease, but rectal swab 
specimens proved more useful in detecting SVV in 
recovering pigs, despite weaker rRT-PCR respons-
es. That observation supports the use of rectal swab 
sampling in pigs of unknown SVV status, where re-
sources or logistics limit sampling options. Our data 
also highlight the value of testing tonsils, illustrated 
by detection of SVV RNA in a tonsil from a dead pig-
let >35 days after the episode of clinical signs (farm 
SVV2022-02).

We conducted serologic investigations 5 
weeks after the disease episode at farm SVV2022-
04 and during the acute stage of disease at farm 
SVV2022-01. A total of 55 of 63 serum samples from 
farm SVV2022-01 and 10 of 10 samples from farm 
SVV2022-04 were positive for SVV-specific anti-
bodies as determined by the virus neutralization 
test using SK6 cells.

Paired rectal and semen samples collected 
from boars supplying semen and historic batches 
of feed and soya bean meal samples supplied to 
affected farms all tested negative for SVV by rRT-
PCR. We detected SVV RNA in 76 (56.7%) of 134  
environmental samples (7) collected 3.5 weeks  

Figure 2. Evolutionary history 
and genetic relationships of 
Seneca Valley viruses from study 
of vesicular disease caused 
by Seneca Valley virus in pigs, 
England, 2022. A) Tree represents 
the evolutionary history of 
Seneca Valley viruses isolated 
globally and reconstructed using 
polyprotein-coding sequences. 
Maximum-likelihood tree inferred 
using the Tamura-Nei model (9) 
and setting a discrete gamma 
distribution for evolutionary rate 
differences among sites. Colored 
tips represent Seneca Valley 
virus–infected farms during the 
outbreak in England in 2022. 
Colored internal nodes represent 
the percentage of trees in which 
the associated taxa clustered 
together on >50%. Evolutionary 
analyses were conducted in 
MEGA11 (10). Scale bar indicates 
nucleotide substitutions per site. 
B) Genetic relationship of Seneca 
Valley viruses isolated in England 
during 2022 based on the full-
genome length, as reconstructed 
by statistical parsimony analysis. 
Nodes are colored according to 
farm on which clinical cases were 
observed; white nodes denote 
missing unsampled haplotypes. 
Hatch marks represent single-
nucleotide substitutions estimated 
between the connected nodes.
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after the disease occurrence from farm SVV2022-01, 
where pigs no longer remained on the premises. 
Sample sites included walls, doors, feeders, drink-
ers, floors, gates, and a trailer. We also detected SVV 
RNA in 6 (10.2%) of 59 samples collected 6 weeks 
after the disease occurrence from farm SVV2022-
04, where pigs remained (sites included loading 
area, drinker, ark, and trailer) (Appendix Figure). 
Our data highlight the importance of cleaning, 
disinfection, and stringent biosecurity to limit the  
spread of SVV.

We characterized SVV isolates using next-gen-
eration sequencing (8) and found they share a com-
mon ancestor with a virus isolated in the United 
States during 2020 (SVV/USA/TN/NADC6/2020; 
GenBank accession no. MZ733975) (Figure 2), pre-
dicted to have circulated around November 2020 
(95% highest posterior density June 2020–March 
2021). We assigned the SVV sequences into 2 sis-
ter clades differing at >50 nt sites, consistent with 
2 possible epidemiologic scenarios: a single virus 
introduction, with the resulting diversity accru-
ing from within-country transmissions and evolu-
tion; or  independent introductions into England 
of viruses characterized by a slightly different ge-
netic signature. Further epidemiologic investiga-
tion could determine the most important risk path-
ways for introduction, transmission routes between 
farms, and geographic spread of SVV infection in the  
United Kingdom.

In conclusion, the clinical similarity of the SVV 
disease outbreaks we describe to notifiable vesicular 
diseases highlights the value of passive surveillance 
and the legal requirement for pig keepers and vet-
erinarians to report vesicular lesions promptly. Cases 
of SVV infection were transient, and pigs recovered 
quickly, with minimal productivity losses. We alert-
ed regional veterinarians and farmers of the need to 
remain vigilant for vesicular disease, and there have 
been no further clinical cases of SVV in England since 
September 2022. 

We submitted the 14 full genome sequences associated 
with this study to GenBank and received the correspond-
ing accession numbers: PV845105 (UKG/26/2022), 
PV845106 (UKG/36/2022), PV845107 (UKG/52/2022), 
PV845108 (UKG/53/2022), PV845109 (UKG/58/2022), 
PV845110 (UKG/208/2022), PV845111 (UKG/212/2022), 
PV845112 (UKG/230/2022), PV845113 (UKG/231/2022), 
PV845114 (UKG/1864/2022), PV845115 (UKG/1866/2022), 
PV845116 (UKG/1868/2022), PV845117 (UKG/2199/2022), 
and PV845118 (UKG/2811/2022).
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African swine fever (ASF) is a fatal hemorrhagic 
disease of pigs, caused by African swine fever vi-

rus (ASFV), a complex DNA virus in the Asfarviridae 
family (1). Researchers first identified ASF in Kenya in 
1921, and subsequent reports identified 24 genotypes 
in Africa on the basis of nucleotide variations within 
the partial B646L gen (2,3). Reports in the medical lit-
erature confirm incidence of only ASFV genotype I 
and genotype II outside Africa. 

In 2018, researchers identified ASFV genotype II 
in China (4), and it rapidly spread across Asia within a 
few months. Since then, the situation in Asia has shift-
ed from an epidemic to an endemic stage, with the 
highly virulent genotype II strain causing peracute, 
acute, and subacute disease. Recent research suggests 
the emergence of more genetically diverse ASFV vari-
ants, including chronic disease–associated genotype 
I, highly virulent recombinants of genotypes I and II, 
and naturally and artificially attenuated strains in do-
mestic pigs in China and Vietnam (5–7). 

Thailand health authorities officially reported 
ASFV in Thailand in 2022 (8), and the strain was ge-
netically identical to the strain first reported in China 
and Vietnam. Currently, ASF cases in Thailand in-
volve patients with chronic symptoms and low mor-
tality rates, suggesting the emergence of low-virulent 
strains. We conducted a survey of ASFV from recent 
outbreaks in Thailand, employing whole-genome se-
quencing to investigate the underlying causes.

Veterinary clinicians reported suspected disease 
in pigs from 2 herds located in the western region 
of Thailand, ≈500 miles apart, all displaying clinical 
signs related to chronic forms of ASF: chronic respi-
ratory disease, joint swelling, slow weight gain, and 
sporadic deaths. Both herds housed only finishing 
pigs, operating on an all-in/all-out basis, and pigs 
were not vaccinated with any types of ASF vaccines. 

We submitted 25 blood and organ samples from 
ASF-suspected pigs to a Biosafety Level 3 labora-
tory at the National Center for Genetic Engineering 
and Biotechnology (Thailand Science Park, Pathum 
Thani, Thailand). We extracted viral DNA from 
samples following the protocol of the DNeasy blood 
and tissue kit (QIAGEN, https://www.qiagen.com). 
We detected ASFV by real-time PCR targeting the 
B646L gene, according to the World Health Organ-
isation for Animal Health’s International Office of 
Epizootics manual (9). We performed whole-genome 
sequencing on the Illumina NovaSeq X platform (Il-
lumina, https://www.illumina.com), generating 151 
bp paired-end reads. We analyzed raw sequences 
according to methods described in a previous study 
(8). We used FastQC v0.74 to assess the raw data 

African swine fever virus genotype II is endemic in Thai-
land, typically causing acute disease. We investigated 
a vaccine-like strain, characterized by 6 multigene fam-
ily gene deletions, from nonvaccinated herds. We found 
this strain was associated with chronic disease in pigs.


