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African swine fever virus genotype Il is endemic in Thai-
land, typically causing acute disease. We investigated
a vaccine-like strain, characterized by 6 multigene fam-
ily gene deletions, from nonvaccinated herds. We found
this strain was associated with chronic disease in pigs.
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frican swine fever (ASF) is a fatal hemorrhagic

disease of pigs, caused by African swine fever vi-
rus (ASFV), a complex DNA virus in the Asfarviridae
family (1). Researchers first identified ASF in Kenya in
1921, and subsequent reports identified 24 genotypes
in Africa on the basis of nucleotide variations within
the partial B646L gen (2,3). Reports in the medical lit-
erature confirm incidence of only ASFV genotype I
and genotype Il outside Africa.

In 2018, researchers identified ASFV genotype 11
in China (4), and it rapidly spread across Asia within a
few months. Since then, the situation in Asia has shift-
ed from an epidemic to an endemic stage, with the
highly virulent genotype II strain causing peracute,
acute, and subacute disease. Recent research suggests
the emergence of more genetically diverse ASFV vari-
ants, including chronic disease-associated genotype
I, highly virulent recombinants of genotypes I and 1I,
and naturally and artificially attenuated strains in do-
mestic pigs in China and Vietnam (5-7).

Thailand health authorities officially reported
ASFV in Thailand in 2022 (8), and the strain was ge-
netically identical to the strain first reported in China
and Vietnam. Currently, ASF cases in Thailand in-
volve patients with chronic symptoms and low mor-
tality rates, suggesting the emergence of low-virulent
strains. We conducted a survey of ASFV from recent
outbreaks in Thailand, employing whole-genome se-
quencing to investigate the underlying causes.

Veterinary clinicians reported suspected disease
in pigs from 2 herds located in the western region
of Thailand, 500 miles apart, all displaying clinical
signs related to chronic forms of ASF: chronic respi-
ratory disease, joint swelling, slow weight gain, and
sporadic deaths. Both herds housed only finishing
pigs, operating on an all-in/all-out basis, and pigs
were not vaccinated with any types of ASF vaccines.

We submitted 25 blood and organ samples from
ASF-suspected pigs to a Biosafety Level 3 labora-
tory at the National Center for Genetic Engineering
and Biotechnology (Thailand Science Park, Pathum
Thani, Thailand). We extracted viral DNA from
samples following the protocol of the DNeasy blood
and tissue kit (QIAGEN, https://www.qiagen.com).
We detected ASFV by real-time PCR targeting the
B646L gene, according to the World Health Organ-
isation for Animal Health’s International Office of
Epizootics manual (9). We performed whole-genome
sequencing on the Illumina NovaSeq X platform (Il-
lumina, https://www illumina.com), generating 151
bp paired-end reads. We analyzed raw sequences
according to methods described in a previous study
(8). We used FastQC v0.74 to assess the raw data
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quality and removed adapters using BBDuk version
38.84. We aligned high-quality reads with Sscrofall.1
(GCA_000003025.6) by Bowtie2 (https://bowtie-bio.
sourceforge.net/bowtie2/index.shtml), eliminating
>95% of host-derived contamination. We assembled
cleaned reads de novo using SPAdes version 4.2.0
(https:/ /github.com/ablab/spades/releases/tag/
v4.2.0). We then mapped reads back to the assem-
bled genome using Burrow-Wheeler Aligner-MEM
(https:/ /janis.readthedocs.io/en/latest/tools/bio-
informatics/bwa/bwamem.html) and calculated
coverage depth with Samtools version 1.21 (https://
sourceforge.net/ projects/samtools) to confirm aver-
age coverage. We analyzed the assembled genomes
by BLASTn (https://blast.ncbi.nlm.nih.gov), choos-
ing the closest match as the reference genome. We
aligned 32 ASFV genomes from GenBank with the
newly determined sequences using MAFFT version
7.526 (https:/ /mafft.cbrc.jp/alignment/software). Fi-
nally, we constructed a phylogenetic tree in MEGA11
(https:/ /www.megasoftware.net) with the neighbor-
joining method and 1,000 bootstrap replicates.

We detected ASFV in 18 of 25 samples; cycle
threshold (Ct) values ranged from 19.82 to 33.83. We
performed whole-genome sequencing on samples
with the lowest Ct from each herd,(Ct 19.82 for sam-
ple TH1_24/RB and Ct 21.25 for sample TH2_24/RB).
We analyzed 2 completely sequenced ASFV genomes,
which exhibited 38.5% guanine-cytosine content and
average coverages of ~163x and >96% breadth of 10x
coverage. Wedeposited raw sequencingreadsintheNa-
tional Center for Biotechnology Information Sequence
Read Archive (https://www.ncbinlm.nih.gov/sra;
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BioProject PRJNA1344271). We submitted the ge-
nomes to GenBank (accession nos. PX119974 and
PX11995) and analyzed them in comparison with the
Georgia 2007/1 strain (accession no. FR682468). Both
genomes revealed the deletion of 6 genes in the mul-
tigene family (MGF) region (MGF 505-1R, MGF 360-
121, MGF 360-13L, MGF 360-14L, MGF 505-2R, and
MGEF 505-3R) and 2,348 bp of an Escherichia coli GusA
gene (GUS) inserted at the deletion site (Figure 1). This
deletion pattern was like a live-attenuated vaccine
strain (ASFV-G-AMGF) and a field-attenuated isolate
(ASFV-GUS-Vietnam) described in previous studies
(6,10). Phylogenetic analysis based on full-length ge-
nome indicated that the 2 isolates belonged to geno-
type II; however, the isolates were genetically distinct
from the genotype II variant responsible for the first
outbreak in Thailand (Figure 2). The 2 variants con-
tained a total of 15 mutations throughout the genome,
mostly silent and in noncoding regions, when com-
pared with the Georgia 2007/1 strain. In addition, a
3-nucleotide insertion resulted in 1 additional amino
acid in the MGF 110-10-L-MGF110-14L fusion protein.

In conclusion, we characterized a vaccine-like
genotype II strain, similar to ASFV-G-AMGEF, de-
tected in finishing pigs unvaccinated against ASFV in
Thailand. The spread of such vaccine-like strains with
MGEF deletions in this region is of concern, and the
origin of the strains remains unknown. Further ge-
nomic surveillance and epidemiologic tracing would
assist in clarifying the route of introduction. Possible
explanations include the unauthorized use of live at-
tenuated vaccines or cross-border movement of pigs
and pork products.
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Figure 1. Schematic diagram from study of vaccine-like African swine fever virus strain in domestic pigs, Thailand, 2024, showing the
deletion of the MGF gene region replaced by the B-GUS marker gene in the following strains: Georgia 2007/1, ASFV-GUS-Vietnam,
and the 2 isolates from this study, TH1_24/RB and TH2_24/RB . Reference sequences obtained from GenBank. Deleted regions
represented by dashed white arrows, intact genes by solid black arrows, and the inserted -GUS gene by a yellow arrow. GUS, GusA

gene; MGF, multigene family.
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Figure 2. Phylogenetic tree based
on whole-genome sequences of
ASFV from a study of vaccine-
like ASFV strain in domestic
pigs, Thailand, 2024. Maximum-
likelihood method and general
time reversible model used in
analyzing phylogenetic trees
in MEGA 11 software (https://
www.megasoftware.net). Red

||  triangles indicate samples from
this study; black circles indicate
first ASFV strain in Thailand
(TH1_22/CR), Georgia.2007/1,
and ASFV-GUS-Vietnam.
Genotypes are shown at right.
Bootstrap analysis performed with
1,000 replicates; only bootstrap
values >80 are shown. GenBank
accessio numbers are provided
for reference isolates. ASFV,
African swine fever virus; GUS,
GusA gene.
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A 2-dose regimen of the vaccine modified vaccinia An-
kara—Bavarian Nordic (MVA-BN) can generate neutral-
izing antibodies for monkeypox virus clades Ib and llb.
We observed higher response to clade Ilb; that result
provides evidence that MVA-BN vaccination can induce
cross-neutralizing antibodies for monkeypox virus clade
Ib as well as for clade llb.

pox is a zoonotic viral disease caused by mon-

keypox virus (MPXV), which is divided into
clades I and II; clade II is subdivided into subclades
Ila and IIb (1,2). In 2023 a new subclade of clade I,
termed clade Ib, emerged in the Democratic Repub-
lic of the Congo (DRC). Since the first human case
identified in August 1970 in DRC, mpox has been
reported in 11 countries in Africa; in 2022 a global
outbreak occurred in nonendemic areas caused by
the clade IIb strain (). More recently, the emergence
of clade Ib, designated a public health emergency
of international concern in August 2024 and associ-
ated with increased disease severity and mortality
rate, particularly among children, posed a substan-
tial public health threat (3). The World Health Or-
ganization recommends that persons at high risk of
contracting mpox, especially during an outbreak, be
vaccinated (2) with the modified vaccinia Ankara-
Bavarian Nordic (MVA-BN) smallpox vaccine, a live
attenuated vaccine (1).

Evidence demonstrates that vaccination with
MVA-BN can generate low levels of neutralizing an-
tibodies for clade IIb and clade Ia (4,5). In the United
Kingdom, 1 dose of MVA-BN gives short-term pro-
tection of 78% against mpox, predominantly in men
who have sex with men (6). Whether vaccination

"More information about the group is at the end of this article.
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