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African swine fever (ASF) is a fatal hemorrhagic 
disease of pigs, caused by African swine fever vi-

rus (ASFV), a complex DNA virus in the Asfarviridae 
family (1). Researchers first identified ASF in Kenya in 
1921, and subsequent reports identified 24 genotypes 
in Africa on the basis of nucleotide variations within 
the partial B646L gen (2,3). Reports in the medical lit-
erature confirm incidence of only ASFV genotype I 
and genotype II outside Africa. 

In 2018, researchers identified ASFV genotype II 
in China (4), and it rapidly spread across Asia within a 
few months. Since then, the situation in Asia has shift-
ed from an epidemic to an endemic stage, with the 
highly virulent genotype II strain causing peracute, 
acute, and subacute disease. Recent research suggests 
the emergence of more genetically diverse ASFV vari-
ants, including chronic disease–associated genotype 
I, highly virulent recombinants of genotypes I and II, 
and naturally and artificially attenuated strains in do-
mestic pigs in China and Vietnam (5–7). 

Thailand health authorities officially reported 
ASFV in Thailand in 2022 (8), and the strain was ge-
netically identical to the strain first reported in China 
and Vietnam. Currently, ASF cases in Thailand in-
volve patients with chronic symptoms and low mor-
tality rates, suggesting the emergence of low-virulent 
strains. We conducted a survey of ASFV from recent 
outbreaks in Thailand, employing whole-genome se-
quencing to investigate the underlying causes.

Veterinary clinicians reported suspected disease 
in pigs from 2 herds located in the western region 
of Thailand, ≈500 miles apart, all displaying clinical 
signs related to chronic forms of ASF: chronic respi-
ratory disease, joint swelling, slow weight gain, and 
sporadic deaths. Both herds housed only finishing 
pigs, operating on an all-in/all-out basis, and pigs 
were not vaccinated with any types of ASF vaccines. 

We submitted 25 blood and organ samples from 
ASF-suspected pigs to a Biosafety Level 3 labora-
tory at the National Center for Genetic Engineering 
and Biotechnology (Thailand Science Park, Pathum 
Thani, Thailand). We extracted viral DNA from 
samples following the protocol of the DNeasy blood 
and tissue kit (QIAGEN, https://www.qiagen.com). 
We detected ASFV by real-time PCR targeting the 
B646L gene, according to the World Health Organ-
isation for Animal Health’s International Office of 
Epizootics manual (9). We performed whole-genome 
sequencing on the Illumina NovaSeq X platform (Il-
lumina, https://www.illumina.com), generating 151 
bp paired-end reads. We analyzed raw sequences 
according to methods described in a previous study 
(8). We used FastQC v0.74 to assess the raw data 

African swine fever virus genotype II is endemic in Thai-
land, typically causing acute disease. We investigated 
a vaccine-like strain, characterized by 6 multigene fam-
ily gene deletions, from nonvaccinated herds. We found 
this strain was associated with chronic disease in pigs.
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quality and removed adapters using BBDuk version 
38.84. We aligned high-quality reads with Sscrofa11.1 
(GCA_000003025.6) by Bowtie2 (https://bowtie-bio.
sourceforge.net/bowtie2/index.shtml), eliminating 
>95% of host-derived contamination. We assembled 
cleaned reads de novo using SPAdes version 4.2.0 
(https://github.com/ablab/spades/releases/tag/
v4.2.0). We then mapped reads back to the assem-
bled genome using Burrow-Wheeler Aligner-MEM 
(https://janis.readthedocs.io/en/latest/tools/bio-
informatics/bwa/bwamem.html) and calculated 
coverage depth with Samtools version 1.21 (https://
sourceforge.net/projects/samtools) to confirm aver-
age coverage. We analyzed the assembled genomes 
by BLASTn (https://blast.ncbi.nlm.nih.gov), choos-
ing the closest match as the reference genome. We 
aligned 32 ASFV genomes from GenBank with the 
newly determined sequences using MAFFT version 
7.526 (https://mafft.cbrc.jp/alignment/software). Fi-
nally, we constructed a phylogenetic tree in MEGA11 
(https://www.megasoftware.net) with the neighbor-
joining method and 1,000 bootstrap replicates.

We detected ASFV in 18 of 25 samples; cycle 
threshold (Ct) values ranged from 19.82 to 33.83. We 
performed whole-genome sequencing on samples 
with the lowest Ct from each herd,(Ct 19.82 for sam-
ple TH1_24/RB and Ct 21.25 for sample TH2_24/RB). 
We analyzed 2 completely sequenced ASFV genomes, 
which exhibited 38.5% guanine-cytosine content and 
average coverages of ≈163× and >96% breadth of 10× 
coverage. We deposited raw sequencing reads in the Na-
tional Center for Biotechnology Information Sequence 
Read Archive (https://www.ncbi.nlm.nih.gov/sra;  

BioProject PRJNA1344271). We submitted the ge-
nomes to GenBank (accession nos. PX119974 and 
PX11995) and analyzed them in comparison with the 
Georgia 2007/1 strain (accession no. FR682468). Both 
genomes revealed the deletion of 6 genes in the mul-
tigene family (MGF) region (MGF 505-1R, MGF 360-
12L, MGF 360-13L, MGF 360-14L, MGF 505-2R, and 
MGF 505-3R) and 2,348 bp of an Escherichia coli GusA 
gene (GUS) inserted at the deletion site (Figure 1). This 
deletion pattern was like a live-attenuated vaccine 
strain (ASFV-G-ΔMGF) and a field-attenuated isolate 
(ASFV-GUS-Vietnam) described in previous studies 
(6,10). Phylogenetic analysis based on full-length ge-
nome indicated that the 2 isolates belonged to geno-
type II; however, the isolates were genetically distinct 
from the genotype II variant responsible for the first 
outbreak in Thailand (Figure 2). The 2 variants con-
tained a total of 15 mutations throughout the genome, 
mostly silent and in noncoding regions, when com-
pared with the Georgia 2007/1 strain. In addition, a 
3-nucleotide insertion resulted in 1 additional amino 
acid in the MGF 110-10-L-MGF110-14L fusion protein.

In conclusion, we characterized a vaccine-like 
genotype II strain, similar to ASFV-G-ΔMGF, de-
tected in finishing pigs unvaccinated against ASFV in 
Thailand. The spread of such vaccine-like strains with 
MGF deletions in this region is of concern, and the 
origin of the strains remains unknown. Further ge-
nomic surveillance and epidemiologic tracing would 
assist in clarifying the route of introduction. Possible 
explanations include the unauthorized use of live at-
tenuated vaccines or cross-border movement of pigs 
and pork products. 

Figure 1. Schematic diagram from study of vaccine-like African swine fever virus strain in domestic pigs, Thailand, 2024, showing the 
deletion of the MGF gene region replaced by the β-GUS marker gene in the following strains: Georgia 2007/1, ASFV-GUS-Vietnam, 
and the 2 isolates from this study, TH1_24/RB and TH2_24/RB . Reference sequences obtained from GenBank. Deleted regions 
represented by dashed white arrows, intact genes by solid black arrows, and the inserted β-GUS gene by a yellow arrow. GUS, GusA 
gene; MGF, multigene family.
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Mpox is a zoonotic viral disease caused by mon-
keypox virus (MPXV), which is divided into 

clades I and II; clade II is subdivided into subclades 
IIa and IIb (1,2). In 2023 a new subclade of clade I, 
termed clade Ib, emerged in the Democratic Repub-
lic of the Congo (DRC). Since the first human case 
identified in August 1970 in DRC, mpox has been 
reported in 11 countries in Africa; in 2022 a global 
outbreak occurred in nonendemic areas caused by 
the clade IIb strain (1). More recently, the emergence 
of clade Ib, designated a public health emergency 
of international concern in August 2024 and associ-
ated with increased disease severity and mortality 
rate, particularly among children, posed a substan-
tial public health threat (3). The World Health Or-
ganization recommends that persons at high risk of 
contracting mpox, especially during an outbreak, be 
vaccinated (2) with the modified vaccinia Ankara-
Bavarian Nordic (MVA-BN) smallpox vaccine, a live 
attenuated vaccine (1).

Evidence demonstrates that vaccination with 
MVA-BN can generate low levels of neutralizing an-
tibodies for clade IIb and clade Ia (4,5). In the United 
Kingdom, 1 dose of MVA-BN gives short-term pro-
tection of 78% against mpox, predominantly in men 
who have sex with men (6). Whether vaccination 

1More information about the group is at the end of this article.

A 2-dose regimen of the vaccine modified vaccinia An-
kara–Bavarian Nordic (MVA-BN) can generate neutral-
izing antibodies for monkeypox virus clades Ib and IIb. 
We observed higher response to clade IIb; that result 
provides evidence that MVA-BN vaccination can induce 
cross-neutralizing antibodies for monkeypox virus clade 
Ib as well as for clade IIb.


