Socioeconomic and Behavioral Factors Leading to Acquired Bacterial Resistance to Antibiotics in Developing Countries

Iruka N. Okeke,* Adebayo Lamikanra,* and Robert Edelman†
*Obafemi Awolowo University, Ile-Ife, Nigeria; and †University of Maryland School of Medicine, Baltimore, Maryland, USA

In developing countries, acquired bacterial resistance to antimicrobial agents is common in isolates from healthy persons and from persons with community-acquired infections. Complex socioeconomic and behavioral factors associated with antibiotic resistance, particularly regarding diarrheal and respiratory pathogens, in developing tropical countries, include misuse of antibiotics by health professionals, unskilled practitioners, and laypersons; poor drug quality; unhygienic conditions accounting for spread of resistant bacteria; and inadequate surveillance.

Acquired bacterial resistance is common in isolates from healthy persons and from patients with community-acquired infections in developing countries, where the need for antibiotics is driven by the high incidence of infectious disease (1). Among isolates of diarrheal, respiratory, and commensal enteric pathogens (2-5), resistance is increasing, particularly to first-line, inexpensive, broad-spectrum antibiotics (Table 1). Furthermore, introduction of newer drugs (e.g., fluoroquinolones) has been followed relatively quickly by the emergence and dissemination of resistant strains (5). The selection and spread of resistant organisms in developing countries, which can often be traced to complex socioeconomic and behavioral antecedents, contribute to the escalating problem of antibiotic resistance worldwide.

Table 1. Pathogens with a steadily increasing prevalence of acquired antibiotic resistance in developing tropical countries

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Drug(s)</th>
<th>Country (years)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shigella flexneri, S. dysenteriae</td>
<td>ampicillin, tetracycline, sulfonamides (alone or with trimethoprim), nalidixic acid</td>
<td>Bangladesh (1983-1990)</td>
<td>(6)</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>ampicillin, chloramphenicol, cotrimethoxazole</td>
<td>Bangladesh (1989-1993)</td>
<td>(3)</td>
</tr>
<tr>
<td>Salmonella (nontyphoidal)</td>
<td>cotrimethoxazole</td>
<td>Thailand (1981-1995)</td>
<td>(5)</td>
</tr>
<tr>
<td>Enterotoxigenic Escherichia coli</td>
<td>cotrimethoxazole</td>
<td>Thailand (1981-1995)</td>
<td>(5)</td>
</tr>
</tbody>
</table>

Address for correspondence: Robert Edelman, Center for Vaccine Development, 685 West Baltimore St., Room 480, Baltimore, MD 21201, USA; fax: 410-706-6205; e-mail: redelman@umppa1.ab.umd.edu.
Misuse of Antibiotics by Physicians in Clinical Practice

Antibiotic use provides selective pressure favoring resistant bacterial strains; inappropriate use increases the risk for selection and dissemination of antibiotic-resistant bacteria, which are placed at a competitive advantage. Therefore, one would expect that drugs more commonly affected by bacterial resistance in developing countries are generally inexpensive and popular broad-spectrum agents (2-5,13). However, the relationship between antibiotic use and the emergence and spread of resistance is complex. Antibiotic use in clinical practice alone cannot explain the high frequency of resistant organisms in developing countries (14,15). Nevertheless, excessive clinical use (a form of misuse) is at least partially responsible for the escalating rates of resistance, especially in hospital settings, worldwide. The unnecessary prescription of antibiotics seen in industrialized nations has also been documented in many developing countries, particularly in cases of acute infantile diarrhea and viral respiratory infections (16-22). Clinical misuse of antibiotics may be more common among private practitioners than among public health personnel—private practitioners charge higher fees, the demand for antibiotics seen in private patients is higher, and more drugs are available in private clinics than in public hospitals (23-25).

Several strategies have been proposed for combating the inappropriate use of antibiotics by clinicians (26). Antibiotic monitoring systems and hospital formularies or antibiotic treatment protocols often reduce antibiotic prescription rates (24,27). Adoption of a national essential drug list can limit the antibiotics available to prescribers (28,29). However, implementation of these strategies does not guarantee optimal antibiotic use by clinicians in developing countries because the irregular drug supply, availability of drugs from unofficial sources, and financial constraints also affect antibiotic choices (30-32).

Continuing medical education changes the attitude of clinicians. Studies of antibiotic misuse in Cuba and Pakistan (33,34) recommend continuing medical education for health workers as the single most important tool for combating antibiotic misuse. A study in Zambia has demonstrated the efficacy of education in reducing antibiotic prescription rates (35). However, education has not been successfully implemented in many developing countries, where too often, governments and health workers cannot afford the time and money required for continuing medical education (36).

Health workers in many developing countries have almost no access to objective health information (24). Pharmaceutical company representatives typically outnumber practitioners and often adversely influence their prescription habits (37), as reflected by sales of nonessential drugs and drug combinations (38). Drug labels and package inserts often fail to provide accurate information (39), and in industrialized countries, patients often pressure physicians to prescribe antibiotics (19).

Misuse of Antibiotics by Unskilled Practitioners

In many developing countries, well-trained health personnel are scarce and cannot serve the entire population, especially in rural areas. Community health workers and others with minimal training treat minor ailments (40). The qualifications and training of community health workers, as well as the quality of care they provide, vary from country to country. Unskilled personnel are less aware of the deleterious effects of inappropriate antibiotic use. For example, pharmacy technicians in Thailand prescribed rifampicin for urethritis and tetracycline for young children (41). Unqualified drug sellers offer alternative drugs when the prescribed drugs are out of stock or refill prescriptions without consulting the prescriber (42,43). In India, traditional healers often dispense antibiotics (44). A high proportion of patients in some developing countries are treated by untrained practitioners simultaneously with oral and injectable antibiotics administered with contaminated needles and syringes (45-47) for misdiagnosed noninfectious diseases (48).

Misuse of Antibiotics by the Public

In most developing countries, antibiotics can be purchased without prescription, even when the practice is not legal. In many African, Asian, and Latin American countries, antibiotics are readily available on demand from hospitals, pharmacies, patent medicine stalls (drugstores), roadside stalls, and hawkers (17,43,46,49-53). In rural Bangladesh, for example, 95% of drugs consumed for 1 month by more than 2,000 study participants came from local pharmacies; only
8% were prescribed by physicians (54). People are encouraged to buy from unofficial distributors because drugs often are not available in government hospitals (55). Drug vendors usually have little or no knowledge of the required dosage regimen, indications, or contraindications (43,45,55). In markets and public transport in West African countries such as Cameroon (49) and Nigeria (Okeke and Lamikanra, pers. obs.), the vendor (usually a medically untrained salesman) tries to convince potential buyers to purchase the drug, even if they are not ill.

To save time and keep drug-hunting to a minimum, a patient may start at a source more likely to stock the desired drug, forgoing the expertise of a doctor. Unofficial sources are generally more accessible than official sources. For example, in Nepal, retail drug outlets are four times as numerous as government health posts and hospitals (46). Alternate sources offer the option of purchasing small quantities of medicines, while hospitals require purchase of the complete 5- or 7-day antibiotic regimen (17,43,52). The purchase of small samples is exceedingly common, particularly for most customers, who buy without prescription (52). These subinhibitory antibiotic regimens predispose for selection of resistant bacterial strains.

Antibiotic use in developing countries is underestimated. The quantity of drugs distributed within a country is calculated under the assumption that each person purchases a complete regimen (56). However, medication can be purchased in small aliquots from roadside stalls, and distribution of locally produced or counterfeit antibiotics is not recorded. The motives for self-medication and antibiotic overuse by laypersons are similar to those for clinical abuse by health professionals: to cut costs and act expeditiously to treat confirmed or suspected bacterial infection (57). For example, 50% to 80% of Bangladeshi patients infected with Shigella admitted that they had taken at least one antibiotic in the 15 days before a hospital visit (58), as had 18% to 70% of pediatric patients with acute respiratory infection in two Chinese studies (20,59). The proportion of patients who self-medicate is probably higher, because patients are often reluctant to admit having taken antibiotics before visiting a hospital (60).

Common cultural beliefs about antibiotics include the notions that there is a pill for every symptom; antibiotics can heal many illnesses, including dyspepsia and headaches; and injections are more powerful than pills. The misuse of antibiotics frequently becomes integrated into the local culture (62) (e.g., antibiotics are used to prevent diarrhea after eating suspected contaminated foods or [by prostitutes] to prevent sexually transmitted diseases [52,63]).

Another cause of antibiotic abuse and selection for resistant bacteria is poor patient compliance. First, physician-patient interactions are often inadequate. They can be short (e.g., a mean of 54 sec was recorded in a Bangladeshi study [16]) and of poor quality (e.g., in Mexico, poor patient-physician communication was partially responsible for the noncompliance of patients with antibiotic regimens [21]). Second, because patients often travel long distances and incur large expenses for medical care, they are unlikely to return for follow-up visits. The reverse situation—the prescriber visiting his patient—is difficult logistically, especially in rural Africa (64). In addition, the patient may be unable to read medicine labels. Finally, because many drugs are expensive, indigent patients purchase incomplete regimens whenever possible and discontinue treatment when symptoms disappear but before the pathogen is eliminated (52).

Poor Quality of Antibiotics

Lack of Quality Compliance and Monitoring

Besides the risk for therapeutic failure, degradation products or adulterants in poor quality antibiotics can produce subinhibitory concentrations in vivo, which increase the selection of resistant strains. Drugs that do not comply with minimum standards are illegal in all countries. However, the quality of many antibiotics and other drugs in developing countries is often below standards in the formulary. In Nigeria for example, substandard ampicillin, ampicillin/cloxacillin, tetracycline, and oxytetracycline capsules have been detected (53,65-67). In many cases, therapeutic failure is the only indication of substandard drugs. Analytic laboratories to detect substandard drugs are uncommon, and when they exist, health workers, distributors, and consumers are often unaware of them.

Degraded Antibiotics

The shelf lives of drugs developed and marketed in temperate countries are determined
by storage temperatures. During distribution in tropical countries, conditions of transport and storage are poorly controlled, and the drugs may be degraded. Ballereau et al. (68) recorded temperatures of 26°C to 40°C and 30% and 90% humidity in Guinea-Bissau during a 2-year period (temperatures of greater than 25°C can degrade antibiotics). Many antibiotics, being heat- and moisture-labile, are particularly vulnerable. Of seven drugs that lost 10% or more of their active constituents when stored in pharmacies in Guinea-Bissau for 2 years, six were antimicrobial drugs (68). Drug consignments are exposed to such adverse conditions during shipment (69) or at tropical ports while they await lengthy port clearance. Drugs are often handled by untrained workers who may store them incorrectly. Hawkers and small traders in Nigeria frequently display large glass jars containing different types of antibiotic capsules mixed together, fully exposed to harsh sunlight and high ambient temperature and humidity. In a Nigerian study of eight batches of tetracycline capsules, only the batch obtained directly from the manufacturer was not excessively degraded and contained active drug levels within formulary limits (Table 2) (53,70). Studies conducted in Thailand and Nigeria demonstrated similar degradation of chloroquine and amoxicillin (67,70).

Expired Antibiotics

Some pharmacologically active drugs produced in industrialized countries have expired when distributed in developing countries—they were shipped at the end of the drugs’ shelf lives or their clearance and distribution after transcontinental shipment were delayed. Expired drugs may receive new labels, be dumped without a label change, or be donated rather than sold (71-73). Tax deductions and the cost of liquidation are incentives for donating expired or near-expired drugs. Effective enforcement of the World Health Organization (WHO) guidelines on drug donations may curtail such practices (74).

Counterfeit Drugs

Some drugs sold in developing countries do not contain the concentration of active substances stated on their labels, even at the time of manufacture. These counterfeit drugs flourish, despite efforts of local regulatory agencies to stop their production and distribution (75-77). Approximately 65% of the 751 instances of counterfeit pharmaceuticals reported to WHO or to Interpol from 28 countries in the past 15 years were produced in developing countries (77). Counterfeit drugs include products with little or no active ingredients (e.g., in Nigeria, Indonesia, Brazil, Thailand, Bangladesh, Malaysia, and Francophone African countries [39,76,78,79]) or products for which excipients have been replaced by less expensive alternatives (e.g., substitution of ethylene glycol for propylene glycol in pediatric paracetamol formulations, which caused many deaths in Nigeria, Argentina, Bangladesh, India, and Haiti [76,78]). Counterfeit drugs, like other counterfeit materials, compete favorably in the markets of developing countries. The analytic facilities available to law enforcement agencies often cannot detect these drugs before they reach the patient. Multinational pharmaceutical companies, which probably possess the best analytic facilities for in-house quality assurance in developing countries, try to detect counterfeit drugs to protect their income and reputation; however, such efforts are directed primarily at counterfeits of these companies’ own products. Because of the profusion of generic drugs in developing countries, a substantial proportion of counterfeit drugs go undetected.

Table 2. Source and quality of tetracycline capsules in a Nigerian suburban town (compiled with data from [53]).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Source</th>
<th>Tetra-cycline content (% of label claim)</th>
<th>Content of ATC (%)</th>
<th>Bioavailability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Manufacturer</td>
<td>105.9</td>
<td>None</td>
<td>100</td>
</tr>
<tr>
<td>C2</td>
<td>Hospital</td>
<td>107.5</td>
<td>5.3</td>
<td>63.4d</td>
</tr>
<tr>
<td>C3</td>
<td>Roadside stall</td>
<td>104.5</td>
<td>1.1</td>
<td>80.5d</td>
</tr>
<tr>
<td>C4</td>
<td>Pharmacy</td>
<td>66.1</td>
<td>2.4</td>
<td>65.2d</td>
</tr>
<tr>
<td>C5</td>
<td>Patent medicine stall</td>
<td>84.5</td>
<td>1.9</td>
<td>87.6d</td>
</tr>
<tr>
<td>C6</td>
<td>Roadside stall</td>
<td>67.8</td>
<td>1.5</td>
<td>Not tested</td>
</tr>
<tr>
<td>C7</td>
<td>Patent medicine stall</td>
<td>89.6</td>
<td>1.8</td>
<td>Not tested</td>
</tr>
</tbody>
</table>

*Anhydrotetracycline, one of four tetracycline degradation products.
*Measured from cumulative excretion of tetracycline in the urine of five volunteers.
*Reference standard obtained from the manufacturer.
*Significantly different from C1 (p = 0.01, Wilcoxon signed rank test).
Perspectives

Adulterated Drugs
Herbal preparations in developing countries are often adulterated with orthodox medicaments. For example, in one study, 24% of Chinese herbal preparations marketed in Taiwan contained one or more of such adulterants (80). Although the adulteration of such products with antibiotics has not been reported, such practices may be common (81). A Nigerian traditional healer, for example, admitted to ‘augmenting’ herbal preparations with tetracycline from commercially available capsules (82).

Bioinequivalent Antibiotics and Biopharmaceutic Interactions
In the last 2 decades, the importance of bioavailability has been underscored by the recognition that chemically equivalent generic drug formulations do not always deliver the expected amount of drug to the bloodstream. Slowly absorbed and acid-labile antibiotics are particularly prone to bioinequivalence and consequent therapeutic failure. In addition, poorly absorbed antibiotics remain in the gut to facilitate the selection of resistant organisms. The few published studies from the developing world have found bioinequivalence in antibiotic formulations, and the problem may be widespread (Table 2) (53,83). Inexpensive generic antibiotics commonly used in developing countries usually are not subject to bioavailability studies.

The bioavailability of an antibiotic formulation is modulated by conditions surrounding its administration; conditions unique to developing countries are rarely investigated. Drug combinations used in the tropics but rarely elsewhere may not be optimally absorbed. For example, coadministration of chloroquine and ampicillin lowers the bioavailability of ampicillin (84). A Nigerian meal lowered the biologic availability of orally administered nitrofurantoin (85). Chewing of Khat, a popular Yemeni stimulant, adversely affected the bioavailability of ampicillin and amoxicillin (86). By contrast, the Ayurvedic preparation Trikatu enhanced the absorption of several drugs (87). Whether traditional medicines with antimicrobial properties enhance antibiotic resistance is unknown.

Dissemination of Resistant Organisms

Crowding and Unhygienic Conditions
Residents of developing countries often carry antibiotic-resistant fecal commensal organisms (13,88). Visitors to developing countries passively acquire antibiotic-resistant gut Escherichia coli, even if they are not taking prophylactic antibiotics, which suggests that they encounter a reservoir of antibiotic-resistant strains during travel (89). Apparently healthy people in developing countries carry potentially pathogenic, antibiotic-resistant organisms asymptptomatically (90). Several factors, such as urban migration with crowding and improper sewage disposal, encourage the exchange of antibiotic-resistant organisms between people and the exchange of resistance genes among bacteria, thereby increasing the prevalence of resistant strains. In Nigeria, resistant E. coli isolates from persons in an urban metropolis (Lagos) were significantly more likely to be resistant to ampicillin and streptomycin (p ≤ 0.05), and possibly more resistant to sulphathiazole and tetracycline (p ≤ 0.10), than isolates from residents of nearby smaller towns and villages (Table 3) (91). Moreover, strains isolated from Lagos were more likely to show resistance to 4 to 6 of 7 antibiotics tested, whereas strains from rural areas were in most cases resistant to only 0 to 3 antibiotics (91).

In 1991, 80% of residents of developing countries had no sanitary facilities for sewage disposal (92). Pipe-borne water, often scarce in developing countries, is not always potable. The

Table 3. Antibiotic resistance of Escherichia coli strains isolated from residents of an urban area (Lagos) or rural/suburban areas (southwest Nigeria) (from [91])

<table>
<thead>
<tr>
<th>Antimicrobial agent</th>
<th>Percentage of resistant isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urban (n = 30)</td>
</tr>
<tr>
<td>Ampicillin<sup>a</sup></td>
<td>53</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>13</td>
</tr>
<tr>
<td>Streptomycin<sup>a</sup></td>
<td>63</td>
</tr>
<tr>
<td>Sulphathiazole<sup>b</sup></td>
<td>73</td>
</tr>
<tr>
<td>Tetracycline<sup>b</sup></td>
<td>87</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>53</td>
</tr>
</tbody>
</table>

^aSignificant differences between the two groups at p ≤ 0.05 (Chi-square test)
^bSignificant differences between the two groups at p ≤ 0.10 (Chi-square test)
development of sanitation and other facilities is not always proportionate to the rapid rises in urban populations (93,94). As urban migration continues, overcrowding increases and hygiene declines, increasing the probability of spread of antibiotic-resistant and commensal pathogens. Potable water, well-ventilated housing and proper waste disposal should reduce infections, the need for antibiotics, and subsequent development of antibiotic resistance.

Because tropical conditions encourages the survival of bacteria, more pathogens and commensals are found in tropical environments than in temperate climates (95). The warm and humid tropical climate and the low levels of health care, hygiene, and sanitation contribute to a relatively high prevalence of infectious disease in developing countries.

Inadequate Hospital Infection Control Practices

Infection control practices in many hospitals in developing countries are rudimentary and often compromised by economic shortfalls and opposing traditional values (96). The resulting nidus of nosocomial pathogens and resistant organisms may be disseminated to the outside community. Improper disposal of hospital waste accentuates such spread. Untreated hospital waste in Uganda was often dumped into public sewers or thrown into rubbish heaps ravaged by scavengers (97).

Inadequate Surveillance

Susceptibility Testing and Surveillance

Information from routine susceptibility testing of bacterial isolates and surveillance of antibiotic resistance, which provides information on resistance trends, including emerging antibiotic resistance, is essential for clinical practice and for rational policies against antibiotic resistance. Bacterial infections are often treated after they become life-threatening, which encourages empirical selection of broad-spectrum antibiotics (98,99). The antibiotic susceptibility pattern of bacterial isolates in much of the developing world is unknown, and little guides empirical prescribing. Susceptibility testing cannot be done readily because equipment, personnel, and consumables are scarce and expensive (59,100). In most all infections, no clinical specimens are cultured. Where available, community-based antibiotic surveillance data may be useful to prescribers in the absence of patient-specific antibiotic-susceptibility results. For example, Ringertz et al. (101) demonstrated that resistance among respiratory pathogens was infrequent in parts of Ethiopia. This information would help local Ethiopian prescribers to treat such infections with inexpensive, broad-spectrum antibiotics.

National surveillance programs for antibiotic resistance, the norm in industrialized nations, are less common and less elaborate in developing countries (4). Current inferences about antibiotic resistance trends in developing countries are based on a small number of reports, generated by a handful of microbiology laboratories in urban areas—data not representative of a country, because wide variations in antibiotic resistance patterns may exist within countries (Table 3). Moreover, surveillance should be conducted regularly and continuously because resistance rates can vary in one region of a country over time (Table 1) (102).

Defective Antibiotic Susceptibility Assays

Well-standardized antibiotic susceptibility assays provide more reliable results (103). However, standard bacterial strains with which to assay new batches of antibiotics or antibiotic disks are not available in laboratories in many developing countries. Delayed transportation and breakdown of cold storage also affects the quality of antibiotics used as diagnostic reagents. Degraded antibiotic powders and antibiotic disks used for susceptibility testing lead to exaggerated estimates of bacterial resistance levels. The frequent recovery of bacteria resistant to the beta-lactams or tetracyclines in tropical countries could reflect, in part, the temperature and moisture lability of test reagents. Laboratory scientists in developing countries face difficulties in obtaining research supplies, which often require them to improvise by, for example, using injectable antibiotic formulations to measure MICs when standard antibiotic powders are not available. The report that clinical microbiologists in developing countries make their own disks from “local blotting papers” (104) illustrates how improvisation can lead to inconsistent laboratory results and unreliable data.
Economic and Political Factors

Lack of resources hampers implementation of most strategies against antibiotic resistance. Statistics from the World Bank show that developing countries spent $41 per person on health in 1990, compared with the $1,500 per person spent by industrialized countries. Disease prevalence as measured by disability-adjusted life years and by communicable disease in particular is much greater in developing than in industrialized countries (93,105-107). As a result of such gross underfunding, the drug supply is chronically inadequate or at best erratic in health facilities in many countries, including Nigeria (43,105,106).

Armed conflicts have recently led to a breakdown in health services and sanitation and rapid dissemination of resistant pathogens, particularly in sub-Saharan Africa and Asia (108,109,110). During an outbreak of cholera and bacillary dysentery in Rwandan refugees, resistance to multiple first-line antibiotics in clinical isolates of *Vibrio cholerae* and *Shigella dysenteriae* contributed to high death rates (109).

Even in developing countries not at war, political corruption and mismanagement of funds, personnel, and development programs have created large populations living in abject poverty and at high risk for infection (111). Medical expenses, days lost from work, and transportation costs account for substantial economic loss. The cost of medical treatment, even subsidized treatment, is beyond the means of many patients. Poorly paid health workers sometimes extort fees from patients (111). Thus, persons with communicable diseases, unable to afford medical treatment, may infect others. Poverty also interferes with patient compliance, which in turn promotes the emergence of antibiotic resistance during short-term therapy of acute infections and long-term therapy of chronic infections, such as tuberculosis (111).

Combating the Problem of Antibiotic Resistance

The recommendations of WHO for ensuring proper drug use (79) can be adapted to combat the escalation of community-acquired antibiotic resistance in developing countries. The misuse of antibiotics by health-care professionals, unskilled practitioners, and patients can be alleviated by auditing antibiotics, limiting antibiotic choice, developing prescription guide-

lines, and emphasizing continuing medical and public education. The quality of antibiotics can be improved by emphasizing quality compliance and monitoring antimicrobial drugs manufactured or dispensed. Such reforms will help control substandard drugs that are degraded, counterfeit, or bioinequivalent. Dissemination of resistant organisms in the community can be impeded by improved public sanitation and hygienic practices and upgraded hospital infection control. Finally, strategies to ensure that these recommendations are adopted and implemented under difficult economic and political conditions can be formulated. Antimicrobial resistance will continue to escalate in developing countries unless corrective measures are instituted.

Acknowledgments

We thank the International Program in the Chemical Sciences, which supports the current research in antibiotic resistance by I.N. Okeke and A. Lamikanra. Ms. I.N. Okeke thanks the Fulbright Commission and the United States Information Service for a fellowship and Dr. James B. Kaper for his support.

Ms. Okeke, lecturer in pharmaceutical microbiology at Obafemi Awolowo University, Ile-Ife, Nigeria, and Ph.D. candidate, is a Fulbright Fellow at the Center for Vaccine Development in Dr. James Kaper’s laboratory at the University of Maryland School of Medicine in Baltimore, working on molecular genetics of enteric bacteria. Her interests include clinical pharmacology and research on the pharmacology of antibiotics and natural products. She is studying antibiotic resistance and virulence characteristics of enteric organisms in Nigeria.

References

Emerging Infectious Diseases Vol. 5, No. 1, January–February 1999

58. Shahid NS, Rahaman MM, Haider K, Banu H, Rahman
57. Abosede OA. Self-medication: an important aspect of
56. Calva JJ, Ceron E, Bojalil R, Holbrook A. Antibiotic
55. Goel P, Ross-Degnan D, Berman P, Soumerai S. Retail
53. Okeke I, Lamikanra A. Quality and bioavailability of
52. Lansang MA, Lucas-Aquino R, Tupasi TE, Mina VS,
51. Obaseki-Ebor EE, Akerele JO, Ebea PO. A survey of
49. Van der Geest S. Marketplace conversations in
48. Fagbule D, Kalu A. Case management by community
46. Kafle KK, Gartoulla RP, Pradhan YM, Shrestha AD,
45. Haak H. Pharmaceuticals in two Brazilian villages: lay
43. Dua V, Kunin CM, White LV. The use of antimicrobial
42. Kigotho AW. Ugandan doctors request antibiotic
41. Thamlikitkul V. Antibiotic dispensing by drug store
36. Kigotho AW. Ugandan doctors request antibiotic
35. Calva JJ, Ceron E, Bojalil R, Holbrook A. Antibiotic
33. Okeke I, Lamikanra A. Quality and bioavailability of