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Species of the genus Borrelia cause human
and animal infections (1). In North America,
Lyme disease and endemic relapsing fever pose
the greatest threat to human health and have
received the most attention of the borrelial
diseases. Approximately 14,000 cases of Lyme
disease are reported in the United States each
year; however, the actual number of cases may be
10-fold higher (2). Lyme disease was not
recognized as a distinct clinical entity in North
America until the 1970s (3). The causative agent,
a previously uncharacterized spirochete trans-
mitted through the bite of infected ticks of the
Ixodes ricinus complex (I. scapularis in the
Northeast and Midwest and I. pacificus on the
West Coast) (4,5), was classified in the genus
Borrelia and named B. burgdorferi. With the
emergence of Lyme disease and the identification
of its etiologic agent, Borrelia research focused on

the development of reliable Lyme disease
diagnostic assays and vaccines, and the phenotypic
and genotypic diversity of Borrelia was thor-
oughly analyzed. Through modern molecular
taxonomic techniques, several newly described
species of Borrelia have emerged as possible
causative agents of Lyme disease or at least as
agents genetically related to B. burgdorferi (6-15).
The B. burgdorferi sensu lato complex is
composed of the following species: B. turdae, B.
tanukii, B. bissettii, B. valaisiana, B. lusitaniae,
B. bissettii, B. andersonii, B. japonica, B. garinii,
and B. afzelii. Of these, B. burgdorferi, B. garinii,
and B. afzelii are the dominant species associated
with infection in humans.

Relapsing fever has been studied not only for
its impact on human health but also as a model
system for antigenic variation. There are two
general forms of relapsing fever, epidemic (louse
borne—Pediculus humanus) and endemic (tick
borne—Ornithodoros spp.) (1). Epidemic relaps-
ing fever tends to be associated with poor living
conditions and social disruption (famine and war)
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and is rare in the United States. Endemic
relapsing fever is more prevalent, predominantly
in the western regions. Three closely related
Borrelia species, B. hermsii, B. turicatae, and
B. parkeri, are associated with this disease.
Hallmark features of relapsing fever include cyclic
fever and spirochetemia. The molecular basis for
these features can be attributed to the differential
production of dominant variable surface antigens of
the Vmp protein families (16). The 40 or so
plasmid-carried vmp related genes in the
B. hermsii genome are expressed only one at a
time. A single expression locus exists, and genes
not at this site lack a promoter element and are
therefore not transcribed (17). The expressed
Vmp becomes a primary target of a vigorous
humoral immune response that kills most of the
spirochetal population. However, at a frequency
of approximately of 1 x 10-3 to 1 x 10-4 per
generation, the identity of the expressed Vmp
changes (18) through gene conversion (19). The
net effect of this nonreciprocal event is to replace
the gene located in the expression locus with one
that was previously silent. Production of a new
antigenically distinct Vmp allows evasion of the
humoral immune response. This ongoing change
in Vmp synthesis allows the relapsing fever
spirochete population to reestablish itself in the
host, thus leading to spirochetemia and the
relapse of fever. Antigenic variation systems have
also been identified in the Lyme disease
spirochetes; however, they appear to exert a more
subtle effect (20).

While clinical relapsing fever and Lyme
disease differ from each other in many ways, their
causative agents share many similarities at both
the biologic and genetic levels. At the biologic
level, they are host associated and undergo
similar environmental transitions in the course of
cycling between mammals and arthropods. In
view of the distinctly different characteristics of
these environments, the spirochetes must be able
to adapt rapidly. Evidence suggests that the
relapsing fever and Lyme disease spirochetes use
related proteins to adapt to or carry out similar
functions in changing environments. For ex-
ample, homologs of the plasmid-carried ospC
gene of the Lyme disease spirochetes are carried
by several other Borrelia species, including the
relapsing fever spirochetes (21). Both ospC and
its relapsing fever spirochete homolog (vmp33)
are selectively expressed during the early stages
of infection, which suggests that they play a

common functional role (22,23). The B. burgdorferi
Rep or Bdr protein family is also distributed
genuswide. Members of this polymorphic protein
family possess highly conserved putative func-
tional motifs and structural properties, which
suggests that they may also carry out an
important genuswide role (24,25).

The Borrelia Genome
At the molecular level, a unique feature of

Borrelia is the unusual organization and
structure of their genome. Unlike most bacteria,
which carry their genetic material in the form of a
single, circular DNA molecule, Borrelia have a
segmented genome (26-28). Most genetic ele-
ments carried by these bacteria are linear with
covalently closed termini or telomeres (27). The
telomeres are characterized by short hairpin
loops of DNA (29). If heat denatured, these linear
molecules relax to form a single-stranded circular
molecule. If reannealed, they base-pair upon
themselves to form a double-stranded linear
molecule that by physical necessity possesses a
short single-stranded hairpin loop at each
telomere. Genetic elements of this structure are
rare in bacteria and are reminiscent of certain
viral genomes. In B. burgdorferi (isolate B31), the
largest of the linear genomic elements is the 911-
kb chromosome (30). The chromosome carries 853
putative ORFs, most of which are thought to
encode housekeeping functions. The remaining
12 linear and 8 circular genetic elements are
plasmids. The plasmids might best be thought of
as mini-chromosomes, since as a group they are
indispensable in situ and may carry genes
encoding proteins involved in housekeeping
functions (31). In addition, they may further
deviate from the true definition of a plasmid in
that their replication may not be independent and
may instead be tightly coordinated with the
replication of the chromosome (32,33).

Nearly 50% of the plasmid-carried ORFs lack
homology with known sequences, which suggests
that their encoded proteins may define the
unique biologic and pathogenetic aspects of
Borrelia (30). Several of the proteins derived from
these plasmid-carried genes of unknown function
are antigenic or selectively expressed during
infection, which indicates that they function in
the mammalian environment (20,34-37). A
striking feature of the plasmid-carried ORFs is
that they are organized into 175 paralogous gene
families of two or more members (30). Hence, the
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Table 1. Borrelia species carrying bdr-related genes or expressing proteins immunoreactive with anti-Bdr antisera
Species  Associated disease Arthropod vector        Bdr-related information
B.burgdorferi Lyme disease, I. scapularis,  All bdr-gene family members (18 total)

 endemic worldwide  I. ricinus,  total) have been identified in isolate
 I. pacificus  B31G (30), bdr-alleles that are

 organized into 3 subfamilies (D,E,F)
 (25), the genes are carried on variably
 sized linear and circular plasmids (30)

B. afzelii Lyme disease, I. ricinus, Single bdr gene has been sequenced
 Eurasia  I. persulcatus  (43); several Bdr-related proteins have

 been detected by immunoblot analysis
 (this report)

B. garinii Lyme disease, I. ricinus, Bdr proteins detected by immunoblot
 Eurasia  I. persulcatus  analyses only (this report)

B. tanukii Not associated I. tanuki Bdr proteins detected by
 with human disease  immunoblot analyses only (this report)

B. turdae Not associated I. turdus Bdr proteins detected by immunoblot
 with human disease  analyses only (this report)

B. bissettii Not associated I. pacificus, Bdr proteins detected by immunoblot
 with human disease  I. scapularis,  analyses only (this report)

 I. spinipalpis
B. andersonii Not associated I. dentatus bdr genes detected by hybridization

 with human disease  and Bdr-related proteins by
 immunoblot analyses (this report,
 data not shown)

B. valaisiana Not associated I. columnae, Bdr proteins detected by immunoblot
 with human disease I. ricinus  analyses only (this report)

B. japonica Not associated I. ovatus Bdr proteins detected by immunoblot
 with human disease  analyses only (this report)

B. hermsii Endemic relapsing Onithodoros hermsii Numerous bdr genes have been
 fever, United States  described and are carried on both

 linear and circular plasmids (25,46);
 several Bdr proteins have been
 detected by immunoblot analyses
 (this report) (44)

B. parkeri Endemic relapsing Onithodoros parkeri Two bdr-related genes have been
 fever, United States  sequenced (25), and others have been

 detected by hybridization with genes
 residing on both linear and circular
 plasmids (46); several Bdr proteins
 detected by immunoblot analyses
 (this report)

B. turicatae Endemic relapsing O. turicata At least nine bdr-related genes have
 fever, United States  been described and are present on

 linear plasmids ranging from 25 to 220
 kb in size (24,46); several Bdr proteins
 have been detected by immunoblotting
 (this report) (24,44)

B. miyamotoi Relapsing fever? I. persulcatus Bdr proteins detected by
 immunoblotting only (this report)

B. coriaceae Epizootic bovine abor- O. coriaceus bdr-related genes and proteins
 tion, United States  detected by hybridization (46) or

 immunoblotting (this report)
B. anserina Avian spirochetosis, Argas persicus bdr-related sequences have been

 United States  detected by hybridization (46); Bdr-
 related proteins were not detected in
 in vitro cultivated bacteria (this report)

DNA content of the plasmids is highly redundant.
Since the maintenance of DNA is energetically
expensive, it is likely that this redundant DNA is
of biologic importance to Borrelia. The paralogous
gene families of Borrelia have been the focus of
intensive research as they are thought to play
important roles in pathogenesis and to influence
genome organization and evolution (20,30,35,38-40).

Identification of Borrelia Direct
Repeat (bdr) Related Genes

The bdr gene family is a large, polymorphic,
plasmid-carried, paralogous gene family of
unknown function that was originally identified
in B. burgdorferi (41,42). Members of this gene
family have been characterized in several
Borrelia species and isolates (Table 1) and have
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Table 2. Borrelia Bdr homology groups and gene nomenclature
Species/revised Accession

Bdr subfamily gene or TIGR Previous
designation designation number gene names Ref.
Subfamily A

B. turicatae OZ-1 bdrA1 AF062395 repA (46)
B. turicatae OZ-1 bdrA2,A3,A4 AF128445-AF128447 none (25)
B. hermsii YOR-1 bdrA1,A2,A3 AF143473-AF143475 none (25)
B. hermsii HS1 bdrA1,A2 AF143457-AF143458 none (25)
B. hermsii MAN bdrA1,A2 AF143465, AF143467 none (25)
B. parkeri bdrA1 AF143455 none (25)

Subfamily B
B. turicatae OZ-1 bdrB1,B2,B3,B4,B5 AF128448-AF128452 none (24)
B. hermsii MAN bdrB1,B2,B3 AF143463, AF143464, none (25)

 AF143466
Subfamily C

B. parkeri bdrC1 AF143455 none (25)
B. hermsii MAN bdrC1,C2,C3,C4,C5 AF143468-AF143472 none (25)
B. hermsii HS1 bdrC1,C2,C3,C4 AF143459-AF143462 none (25)
B. hermsii YOR-1 bdrC1 AF143476 none (25)
B. parkeri bdrC2 AF143456 none (25)

Subfamily D
B. burgdorferi B31G bdrD1,D2,D3, BBL35, BBM34, BBO34 bdrO, bdrK, bdrM (30)
B. burgdorferi B31G bdrD4,D5,D6 BBP34, BBQ42, BBS37 bdrA, bdrV, bdrE (30)
B. burgdorferi B31 bdrD7 X87201 ORF-E (lp50 allele) (41)
B. burgdorferi B31 bdrD8 X87127 ORF-E (cp30.5 allele) (41)
B. burgdorferi B31 bdrD9 U42599 ORF-E (cp18 allele) (41)
B. burgdorferi B31 bdrD10 BBN34 bdrQ (30)
B. burgdorferi B31 bdrD11 BBR35 bdrG (30)

Subfamily E
B. burgdorferi B31G bdrE1,E2,E3 BBL27, BBN27, BBO27 bdrP, none, bdrN (30)
B. burgdorferi B31G bdrE4,E5,E6 BBR27, BBS29, BBQ34 bdrH, bdrF, bdrW (30)
B. burgdorferi 297 bdrE1,E2 U45421, U45422 rep+2.9-1, rep+2.9-2 (42)
B. burgdorferi 297 bdrE3,E4 U45423, U45424 rep+2.9-3, rep+2.9-4 (42)
B. burgdorferi 297 bdrE 5 U45425 rep+2.9-5 (42)
B. burgdorferi 297 bdrE 6 AF046998 rep+2.9-8 (45)
B. burgdorferi 297 bdrE 7 AF046999 rep+2.9-9 (45)

Subfamily F
B. afzelii DK1 bdrF1 Y08143 p21 (43)
B. burgdorferi B31G bdrF1,F2,F3 BBF03, BBG33, BBH13 bdrS, bdrT, bdrU (30)

been assigned various gene names (25,41-44)
(Table 2). We have adopted the bdr designation in
the context of a nomenclature system (25),
summarized below. Genes belonging to the bdr
gene family were first identified through the
analysis of repeated DNA sequences in B.
burgdorferi sensu lato complex isolates (41,42).
Seven nonidentical but closely related copies of a
plasmid-carried repeated element were identi-
fied in B. burgdorferi 297 (42). Three additional
copies of this repeated sequence were further

identified in B. burgdorferi 297 (45). These loci
carry several ORFs that were designated as rep+,
rep-, LPA, LPB (the LP genes have recently been
redesignated as mlp for multicopy lipoprotein
[45]), rev, and the orfABCD operon (note: ORFs A
and B have been redesignated as blyA and blyB).
Some of these genes, particularly rep and mlp,
exhibit allelic variation and encode polymorphic
proteins, the functions of which are under
investigation. Focusing specifically on the rep or
bdr genes, the rep designation was originally
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Figure 1. Restriction fragment length polymorphism
pattern analysis of the rep or bdr genes of the Lyme
disease spirochetes. Total DNA, isolated from
Borrelia cultures, was digested with Xba1, fraction-
ated by electrophoresis, and transferred onto
membranes for hybridization. Hybridization was
performed by the bdrAB-R1 oligonucleotide (46). The
species and isolates analyzed are indicated above each
lane. MW markers in kb are indicated.

chosen to reflect a central repeat motif carrying
domains in the deduced amino acid sequences.
The + and - designations were assigned to
indicate that the overlapping rep+ and rep- genes
are located on opposing DNA strands. Plasmid-
carried repeated DNA sequences were also
identified in B. burgdorferi B31 and found to carry
either all or a subset of seven ORFs, designated A
through G (41). Of relevance to this discussion are
the ORF-E sequences that are rep or bdr
homologs. A bdr-related gene was also identified
in B. afzelii DK1 and designated as p21 (43).
B. afzelii causes Lyme disease in Europe and
Asia. The rep+, ORF-E, and p21 designations
have recently been replaced with bdr gene
designations (24,25,44).

To assess and compare the composition and
complexity of the bdr gene family among species
and isolates of the B. burgdorferi sensu lato
complex, restriction fragment length polymor-
phism (RFLP) patterns were determined (Appen-
dix). Genomic DNA digested with Xba1 was
Southern blotted and probed with an oligonucle-
otide targeting the bdr genes (Figure 1). A
variable number of hybridizing bands of different
size were detected. These analyses demonstrate
that extensive bdr gene families are carried by
B. burgdorferi sensu lato complex isolates and
that the RFLP patterns vary at the inter- and
intraspecies level. Hybridization analyses of
other Borrelia species showed that they also carry
bdr-related gene families (24,25,46). bdr-related
genes have been detected by hybridization in
B. turicatae, B. hermsii, B. parkeri, B. coriaceae,
and B. anserina (25,46). Isolates of these species
also exhibit substantial variation in their bdr
RFLP patterns at the intraspecies level. Table 1
lists the Borrelia species that carry bdr-related
genes and indicates the methods by which these
genes or proteins were detected.

Sequences flanking some bdr alleles also
appear to be distributed genus wide. Some bdr
alleles of B. turicatae, B. parkeri, and B. hermsii
are flanked by genes that are homologs of genes
carried by the Lyme disease spirochetes (24,25).
As a specific example, the B. turicatae bdrA1 gene
is flanked by ORFs that are homologs of the
BBG34 and BBG30 genes of B. burgdorferi
(24,25). In the Lyme disease spirochetes, BBG34
is part of a three-member paralogous gene family,
while BBG30 is a single-copy gene (30). Located
between BBG30 and BBG34 is BBG33, a member
of the bdr gene family (recently redesignated as

bdrF2) (25). Although these divergent Borrelia
species carry related genes, their organization
differs (24), which indicates that rearrangement
has taken place in the ancestral plasmid that
carried these homologs. Figure 2 compares the
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Figure 2. General organization of two bdr loci in Borrelia turicatae and B. burgdorferi. The gene arrangement
depicted for B. turicatae was determined through cloning and sequence analysis of a 2,217 base-pair XbaI
restriction fragment. The arrangement for the bdr-carrying locus of B. burgdorferi was previously determined
through the sequencing of the B. burgdorferi B31 genome (30). The arrows indicate the direction of transcription.
Genes exhibiting homology are indicated by similar shading or hatch marks. Genes indicated by unfilled arrows
are not homologous. The numbering is indicated for scale and is not indicative of the positioning of these genes
on the plasmids that carry them.

organization of two bdr loci from B. turicatae and
B. burgdorferi.

Evolutionary Analyses of bdr-Related
Sequences: Revised Nomenclature for
the Bdr-Related Proteins

To simplify the complicated nomenclature of
bdr-related genes, a bdr nomenclature system
has been developed that assigns gene names on
the basis of phylogenetic relationships inferred
from comparative analysis of genetically stable
regions of the bdr genes (25). This system, which
is applicable genuswide, allows for a ready
assessment of relationships among bdr paralogs
and orthologs. The rationale for this system
stemmed from the results of a comprehensive
evolutionary analysis of >50 bdr-related se-
quences from five Borrelia species that demon-
strated that bdr sequences are organized into six
distinct subfamilies, designated A through F (25).
Subfamilies are not necessarily species specific;
some contain bdr alleles from different Borrelia
species (25). Since members of a given subfamily
are closely related to one another with identity
values for the N terminal domain being >95%,
each member is assigned the same gene name

designation, and paralogs are distinguished by a
numerical subscript. In B. turicatae OZ-1, two bdr
subfamilies, bdrA and bdrB, contain at least four
and five members, respectively (24). Members of
the bdrA subfamily are designated bdrA1, bdrA2,
bdrA3, and bdrA4, while members of the bdrB
family are designated bdrB1 through bdrB5.
This revised Bdr nomenclature scheme was
modeled after that proposed for bacterial
polysaccharide synthesis genes (47) and is in
accordance with the nomenclature guidelines
established by Demerec (48).

The subfamily affiliation of bdr genes can be
readily determined through comparative se-
quence analyses of the amino acid segment
preceding the polymorphic repeat motif region of
these proteins (described in detail below) (25).
Relationship assessments based on the geneti-
cally stable N terminal domain (vs. complete
sequences) are preferable because the calculated
evolutionary distances and clustering relation-
ships are not artificially skewed by the variable
number of repeat motifs present in the repeat
motif domain. Since the genetically unstable
repeat motif domain comprises as much as 50% of
the total coding sequence in some alleles, it can
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Figure 3. Key features and putative functional domains of the Bdr proteins. The schematic depicts a prototype
Bdr protein with the characteristics of each domain indicated. The abbreviation, ID%, is for percentage amino
acid identity at either the inter- or intra-family level as indicated in the figure. Standard amino acid
abbreviations are used in the figure to denote the conserved C-terminal lysine (K) or asparagine (N) residues,
which are thought to be exposed in the periplasm and the cytoplasmically located core tripeptide of the repeat
motif (lysine-isoleucine-aspartic acid; KID).

have a substatial impact on inferred relation-
ships. In addition, extensive sequence variation
in the carboxyl termini of the Bdr proteins at the
inter-species level makes it difficult to align this
domain with confidence, which further influences
the inferred relationships.

bdr evolutionary analyses show that Borrelia
species carry members of at least two bdr
subfamilies (25,44). In fact, B. burgdorferi carries
three distinct subfamilies. Multiple Bdr subfami-
lies in diverse Borrelia species suggest that there
has been selective pressure to maintain multiple
bdr alleles and bdr genetic diversity. This genetic
diversity may increase the functional diversity of
the Bdr proteins.

Molecular Features and Physical
Properties of the Bdr Proteins

While early analyses of Borrelia bdr genes
demonstrated their multicopy nature (41,42,46),
the full extent of the complexity of the bdr gene
family in the Lyme disease spirochetes was not
fully recognized until the B. burgdorferi genome
sequence was determined (30). B. burgdorferi
B31 was found to carry 17 distinct bdr-related
genes (and one truncated variant) distributed
among different linear and circular plasmids. B.
turicatae, which carries at least nine different bdr
alleles, carries these genes exclusively on linear
plasmids (24,25,46). Other relapsing fever
spirochete species (B. parkeri and B. hermsii) are
similar to the Lyme disease bacteria in that they
carry bdr genes on both linear and circular

plasmids (25). In the Lyme disease spirochetes
each of the 32-kb circular plasmids, with the
exception of plasmids M and P, carry two
different bdr genes separated by seven or eight
ORFs. Each of these circular plasmids carries one
bdrD subfamily member and one bdrE subfamily
member. The maintenance of genes belonging to
different subfamilies on a single plasmid is
consistent with the possibility that each carries
out a different function. In contrast, in the Lyme
disease spirochetes, the bdrF subfamily members
are localized to linear plasmids with only a single
bdr gene per plasmid. These observations suggest
that there has been selective pressure to
maintain the association of specific subfamilies
with specific types of plasmids. Less is known about
the bdr-carrying plasmids and the organization of
the bdr genes and subfamilies in the relapsing
fever borreliae. However, as in the Lyme disease
spirochetes, in B. turicatae most bdr-carrying
plasmids carry two bdr genes, one from subfamily
bdrA and one from subfamily bdrB (24).

The sequence of more than 50 bdr alleles from
five different Borrelia species has been deter-
mined (Table 2) (24,25,41-43,46). These exten-
sive comparative sequence analyses led to the
identification of conserved features that provide
insight into the possible biologic roles of the Bdr
proteins. For example, all bdr alleles carry
centrally located repeat motif domains (Figure 3).
Although conserved in sequence, these domains
vary in length among alleles as a result of varying
numbers of the repeat motif. The core tripeptide
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the repeat is the sequence KID. The repeat motifs
encode consensus casein kinase 2 phosphoryla-
tion (CK2P) motifs of the sequence T/SKID/E
(43). While it may appear somewhat paradoxical
for bacteria to carry casein kinases, casein kinase
is a descriptive term broadly applied to at least
two classes of ubiquitous protein kinases for
which the substrates may include various
enzymes and noncatalytic proteins involved in
important cellular regulatory functions (49).
Most proteins phosphorylated by CK2-like
kinases are highly acidic, as are the Borrelia Bdr
proteins (isoelectric points between 5 and 6). The
phosphorylation site in CK2P motifs is either the
Ser or Thr residue of the motif. Although
histidine kinases have been known to exist in
some bacteria, it has been widely held that
bacteria lack Ser - Thr kinases. However, Ser -
Thr kinases have recently been identified in
several bacterial species, including Myxococcus,
Anabeana, Freymella, Yersinia, and Streptomy-
ces (50). Most importantly, analysis of the
B. burgdorferi genome sequence identified a
putative Ser - Thr kinase designated BB0648
(30,50). This ORF carries a domain that exhibits
homology with the active site of Ser - Thr kinases.
B. burgdorferi also carries a homolog of the PPM
family of eucaryotic protein Ser - Thr phos-
phatases (30,50). The presence of these genes in
B. burgdorferi suggests that the Borrelia possess
the machinery necessary for Ser - Thr
phosphorylation and dephosphorylation.

Another important conserved feature identi-
fied through sequence analyses is the hydropho-
bic carboxyl terminal domain of approximately 20
amino acids. Computer analyses conducted with
the TMpred program indicate that this domain
has a high propensity to form a transmembrane
helix (24,25). The Tmpred values for the 20 aa C-
terminal domains are 2,000 to 2,600. A value of
500 or greater is considered significant (24,25).
Comparison of the Bdr putative transmembrane
domain sequences from the Lyme disease
spirochetes with those from the relapsing fever
spirochetes indicates that, while there is
conservation in physical properties, there is
essentially no conservation of primary sequence.
However, sequence conservation does exist at the
subfamily level (24,25). Since the Bdr proteins
lack an obvious export signal, membrane
association would most likely be with the
spirochetal inner membrane, with the rest of the
protein, which is hydrophilic, extending into the

cytoplasm. The terminal residue of the protein is
in almost all cases a positively charged amino
acid (lysine or asparagine). This residue could
extend into the periplasm and serve to anchor the
Bdr proteins to other cellular components, such
as the peptidoglycan.

Immunologic Analyses of the Bdr Proteins
The presence of multiple bdr alleles and bdr

subfamilies within isogeneic populations has
prompted speculation that there may be
differential expression at either the subfamily or
individual allele level, possibly in response to
environmental stimuli (46). Limited studies of
bdr expression and production, based on either
mRNA detection or immunoblot analyses, have
been performed. Porcella et al. (42) used
Northern hybridization to determine if expres-
sion of B. burgdorferi bdr-related genes occurs
during cultivation in the laboratory under
standard culture conditions (33°C in BSK media).
Bdr transcripts were not detected by this
approach. Similarly, in an earlier analysis, we
also conducted Northern hybridization experi-
ments to assess bdr expression (46). We detected
expression of B. turicatae OZ1 bdrA subfamily
members in bacteria cultivated under standard
laboratory growth conditions (46). However,
when reverse transcriptase (RT)-PCR methods
were applied, transcription of a single bdrA allele
was detected (46). B. turicatae OZ-1 was later
demonstrated to carry at least nine bdr alleles,
four of which belong to the bdrA subfamily.
Analysis of the sequence of these alleles showed
that all four should have been readily amplified
by the RT-PCR primer set because of the
conservation of the primer binding sites (24). The
lack of detection of transcript derived from these
alleles suggested that only a subset of the bdr A
subfamily alleles is expressed. This raised the
possibility that other bdr alleles are either
nonfunctional genes or their expression requires
different environmental stimuli. The transcrip-
tional expression of the bdrB subfamily has not
been specifically assessed. Thorough transcrip-
tional analyses using allele-specific probes and
primers are an important step, since they allow
specific assessment of the expression of
individual bdr alleles under differing environ-
mental conditions. In addition, analyses of the
upstream DNA sequences of individual bdr alleles
and their genomic location may elucidate the
molecular basis for bdr transcriptional regulation.
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Figure 4. Immunoblot analyses demonstrating the variation in Bdr protein expression in Borrelia species and
isolates. Bacteria were cultivated and prepared for analysis as described in the methods. Proteins were
fractionated by SDS-PAGE, immunoblotted and screened with anti-BdrF1-B.afzelii DK1 antisera. The species and
isolates analyzed are indicated above each lane in panels A, B and C. The migration positions of the protein
standards are indicated in each panel.

Immunologic analyses have provided a somewhat
different overall picture regarding Bdr produc-
tion. Immunologic analyses described in this
report and elsewhere (44) demonstrate that
several members of the bdr gene family are
expressed during in vitro cultivation. We
conducted a comprehensive analysis of the
expression of Bdr proteins among Borrelia
species. When antisera raised against recombi-
nant B. afzelii BdrF1 (24) were used in
immunoblot analyses, several immunoreactive
proteins were detected in cell lysates of all
Borrelia species tested (Figure 4). The only
exception was B. anserina, a causative agent of
avian spirochetosis. Although bdr-related se-
quences have been detected in B. anserina by
hybridization techniques (46), immunoreactive
proteins were not detected in immunoblot
analyses. Additional analyses are required to
determine if this indicates absence of transla-
tional expression or the lack of epitope
conservation in this species. In any event, the fact
that immunoreactive bands were not detected in
this species attests to the specificity of the anti-
Bdr antisera. As a further demonstration of the

specificity of the antisera and to highlight the fact
that the Bdr proteins are unique to Borrelia, a cell
lysate of Leptospira interrogans was included in
the immunoblot analyses. Immunoreactivity
with proteins in the Bdr size range was not
observed with the anti-Bdr antisera in this
spirochete species. Borrelia species that ex-
pressed immunoreactive proteins included
B. garinii, B. burgdorferi, B. turdae, B. tanukii,
B. japonica, B. valaisiana, B. afzelii, B. coriaceae,
B. bissettii, B. miyamotoi, B. parkeri, B. hermsii,
and B. turicatae (Table 1). Particularly striking
was the extensive variation in the number and
molecular weight of the immunoreactive proteins
expressed, with up to 12 distinct Bdr proteins
detected. Variation in expression patterns was
observed at both the inter- and intraspecies level.
Analysis of three B. burgdorferi isolates (B31G,
cN40, and CA12) demonstrated variability in
both the size and number of expressed Bdr
proteins. Isolate B31G has been demonstrated by
genomic sequencing to carry 18 distinct bdr alleles.
Immunoblot analyses show that not all alleles are
expressed during in vitro cultivation; therefore,
some alleles may be differentially regulated.
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The broad immunoreactivity of the antisera
with diverse Borrelia species indicates that some
epitopes are conserved genuswide. In view of the
sequence divergence in the N and C terminal
domains of the Bdr proteins derived from
different subfamilies, it is likely that the cross-
reactive epitopes reside in the conserved repeat
motif region. Consistent with this, computer
analyses of the repeat domain of all determined
Bdr protein sequences predict them to be alpha
helical and to have a surface exposed on the
protein and a positive Jameson-Wolf antigenic
index (24,25,44). The conservation and synthesis
of these polymorphic proteins in such a diverse
group of Borrelia species suggest that they play
an important role in Borrelia biology genuswide.

The Bdr Proteins and Borrelia
Biology: An Overview

Bdr genes and extensive bdr gene families
have now been identified and characterized in
several diverse Borrelia species (24,25,42-44,46).
Comparative sequence analyses, which have
identified conserved putative functional do-
mains, have provided the basis for the
development of hypotheses regarding Bdr
function and cellular location. The Bdr proteins,
which lack known consensus export signals, are
likely anchored to the cytoplasmic membrane
through their conserved, hydrophobic, putative
transmembrane spanning domain. The C-
terminal positively charged amino acid may be
exposed to the periplasm, where it may interact
with other cellular components that may include
the peptidoglycan. The repeat motif domain,
which is predicted by computer analyses to be
hydrophilic and surface exposed on the protein,
likely extends into the cytoplasm. The conserved
repeat motif domain that carries the putative Ser
- Thr phosphorylation motifs may then be
accessible for phosphorylation or to interact with
other cytoplasmic proteins or DNA to form a
membrane anchored complex. As with numerous
other proteins, phosphorylation and dephospho-
rylation could play a regulatory role, perhaps in
signaling or sensing.

Multiple polymorphic bdr alleles may
increase the functional range and diversity of the
Bdr proteins. Functional partitioning among Bdr
proteins could offer a possible explanation of why
Borrelia expend such biologic energy to maintain
these genes in large gene families and express
variants of these proteins. The homology among

bdr alleles may also allow or lead to the continual
modification of these genes through homologous
recombination. In fact, the variable nature of the
repeat motif region, which is clearly not
evolutionarily stable, has likely arisen from
slipped-strand mispairing, recombination, or
rearrangement. In view of the extensive genetic
redundancy of the plasmid component of the
Borrelia genome, recombination in and among
related sequences on different plasmids could
affect the organization and evolution of the
genome and ultimately host-pathogen interac-
tion. Inter- or intra-plasmid exchange of DNA
sequences could provide a mechanistic basis for
the extensive genetic variability that has been
widely described for Borrelia plasmids (28,29,51-
59). In spite of the apparent necessity for at least
most of the plasmids for survival, as inferred from
their ubiquitous distribution among Borrelia
isolates, these bacteria are able to tolerate
remarkable genomic variability. Diversity in the
plasmids and the genes they carry may actually
be exploited as a tool for phenotypic diversity and
rapid environmental adaptation.
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Appendix

Bacterial Cultivation, DNA Isolation, and Southern
Hybridization Analyses

Isolates belonging to the Borrelia burgdorferi sensu lato
complex were cultivated in complete BSK-H media (Sigma)
at 33°C. To cultivate the relapsing fever borreliae and other
Borrelia species, the complete BSK-H media were
supplemented with additional rabbit sera (Sigma) to a final
concentration of 12% (vol/vol). Bacteria were harvested by
centrifugation and washed with phosphate buffered saline
(pH 7.0), and DNA was extracted (25). For Southern
hybridization analyses, 5 �g of DNA from each isolate was
digested under standard conditions with Xba1 and
fractionated by electrophoresis in 0.8% GTG agarose gels.
(The DNA was transferred onto membranes for hybridiza-
tion by vacuum blotting using the VacuGene system as
described by the manufacturer (Pharmacia). All other
Southern hybridization methods were as previously
described (39).
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Immunoblot Analyses
Bacterial cultures were grown and harvested as

described above. One OD600 equivalent of cells was pelleted
and resuspended in 100 �l of standard SDS-sample buffer
with reducing agents. The cell lysates (7 �l) were fractionated
by electrophoresis in 15% SDS-PAGE gels and electroblotted
onto Immobilon P membranes (38). The immunoblots were
blocked overnight in blocking buffer (1X PBS, 0.2% Tween,
0.002% NaCl, and 5% nonfat dry milk) and then incubated
with a 1:1,000 antisera dilutions. ImmunoPure Goat anti-
mouse IgG (H+L) peroxidase conjugate served as the
secondary antibody. The secondary antibody was incubated
with the blots for 1 hour at room temperature at a 1:40,000-

fold dilution and then the blots were washed three times with
wash buffer. For chemiluminescent detection, the Supersignal
West Pico Stable Peroxide solution and the Supersignal West
Pico Luminol/Enhancer solution were used. Both reagents
were from Pierce Chemical Company, Rockford, IL and were
used as described by the manufacturer. The immunoblots
were exposed to film for time frames of 5 to 30 seconds.


