A Dynamic Transmission Model for Predicting Trends in *Helicobacter pylori* and Associated Diseases in the United States

Marcia F.T. Rupnow,* Ross D. Shachter,* Douglas K. Owens,*† and Julie Parsonnet*

*Stanford University, Stanford, California, USA; †Department of Veterans Affairs Health Care System, Palo Alto, California, USA

Appendix

The mathematical equations underlying our compartmental model of *Helicobacter pylori* are a system of partial differential equations:

\[
\begin{align*}
\frac{dI}{dt} + \frac{dI}{da} &= -\mu(a) \cdot I(a,t) \\
\frac{dS}{dt} + \frac{dS}{da} &= -\left[\lambda_1(a,t) + \lambda_2(a,t) + \mu(a)\right] \cdot S(a,t) \\
\frac{dAG}{dt} + \frac{dAG}{da} &= \lambda_1(a,t) \cdot S(a,t) - \left[\delta_1(a) + \delta_2(a) + \mu(a)\right] \cdot AG(a,t) \\
\frac{dCG}{dt} + \frac{dCG}{da} &= -\lambda_2(a,t) \cdot S(a,t) - \left[\delta_3(a) + \mu(a)\right] \cdot CG(a,t) \\
\frac{dDU}{dt} + \frac{dDU}{da} &= \delta_4(a) \cdot AG(a,t) - \left[\delta_4(a) + \mu(a)\right] \cdot DU(a,t) \\
\frac{dCAG}{dt} + \frac{dCAG}{da} &= \delta_5(a) \cdot DUG(a,t) + \delta_4(a) \cdot CG(a,t) - \left[\delta_3(a) + \mu(a)\right] \cdot CAG(a,t) \\
\frac{dGC}{dt} + \frac{dGC}{da} &= \delta_5(a) \cdot CAG(a,t) - \left[\delta_3(a) + \mu(a)\right] \cdot GC(a,t)
\end{align*}
\]

The mathematical equations underlying our compartmental model of *H. pylori* is a system of partial differential equations:

\[
\begin{align*}
\lambda_1(a,t) &= p(a) \cdot \int_{a'} \beta(a',a) \cdot \left[AG(a',t) + CG(a',t) + DU(a',t) + \alpha \cdot CAG(a',t) + GC(a',t)\right] da' \\
\lambda_2(a,t) &= (1 - p(a)) \cdot \int_{a'} \beta(a',a) \cdot \left[AG(a',t) + CG(a',t) + DU(a',t) + \alpha \cdot CAG(a',t) + GC(a',t)\right] da'
\end{align*}
\]

where:
Publisher: CDC; Journal: Emerging Infectious Diseases
Article Type: Perspective; Volume: 6; Issue: 3; Year: 2000; Article ID: 00-0302
DOI: 10.321/eid0603.000302; TOC Head: Perspective

\[I(0,t) = p_I \cdot \Pi \]
\[S(0,t) = (1 - p_I) \cdot \Pi \]
\[AG(0,t) = CG(0,t) = DU(0,t) = CAG(0,t) = GC(0,t) = 0 \]

Notation:

\(a, a' \) age index
\(t \) time index
\(\Pi \) birth rate per unit time
\(I(a,t) \) number of isolated (not-susceptible) individuals of age \(a \), at time \(t \)
\(S(a,t) \) number of susceptible individuals of age \(a \), at time \(t \)
\(AG(a,t) \) number of infected individuals of age \(a \) with antrum-predominant gastritis, at time \(t \)
\(CG(a,t) \) number of infected individuals of age \(a \) with corpus-predominant gastritis, at time \(t \)
\(DU(a,t) \) number of individuals of age \(a \) with duodenal ulcer, at time \(t \)
\(CAG(a,t) \) number of individuals of age \(a \) with chronic atrophic gastritis, at time \(t \)
\(GC(a,t) \) number of individuals of age \(a \) with gastric cancer, at time \(t \)
\(p_I \) proportion of population that is not-susceptible at birth
\(\lambda_1(a,t) \) rate at which one susceptible of age \(a \) acquire infection and develop antrum-predominant gastritis
\(\lambda_2(a,t) \) rate at which one susceptible of age \(a \) acquire infection and develop corpus-predominant gastritis
\(\beta(a',a) \) transmission parameter; probability that an infective of age \(a' \) will infect a susceptible of age \(a \)
\(p(a) \) proportion of newly infected individuals of age \(a \) developing antrum (vs. corpus) predominant gastritis
\(\delta_1(a) \) transition rate from antrum- to corpus-predominant gastritis in age group \(a \)
\(\delta_2(a) \) progression rate from antrum-predominant gastritis to duodenal ulcer in age group \(a \)
\(\delta_3(a) \) transition rate from duodenal ulcer to chronic atrophic gastritis in age group \(a \)
\(\delta_4(a) \) progression rate from corpus-predominant gastritis to chronic atrophic gastritis in age group \(a \)
\(\delta_5(a) \) progression rate from chronic atrophic gastritis to gastric cancer in age group \(a \)
\(\mu(a) \) age-specific background mortality rate due to all cases
\(\mu_{DU} \) mortality rate due to duodenal ulcer
\(\mu_{GU} \) mortality rate due to gastric ulcer
\(\mu_{GC} \) mortality rate due to gastric cancer