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Remote sensing (RS) and geographic infor-
mation systems (GIS) are map-based tools that
can be used to study the distribution, dynamics,
and environmental correlates of diseases (1,2).
RS is gathering digital images of the earth’s
surface from airborne or satellite platforms and
transforming them into maps. GIS is a data
management system that organizes and displays
digital map data from RS or other sources and
facilitates the analysis of relationships between
mapped features. Statistical relationships often
exist between mapped features and diseases in
natural host or human populations (1). Examples
include malaria in southern Mexico and in
Asia (3,4), Rift Valley fever in Kenya (5), Lyme
disease in Illinois (6), African trypanosomiasis
(7), and schistosomiasis in both humans (8) and
livestock in the southeastern United States (9).
RS and GIS may also permit assessment of
human risk from pathogens such as Sin Nombre
virus (SNV; family Bunyaviridae), the agent
primarily associated with hantavirus pulmonary
syndrome (HPS) in North America (10,11). RS

and GIS are most useful if disease dynamics and
distributions are clearly related to mapped
environmental variables. For example, if a
disease is associated with certain vegetation
types or physical characteristics (elevation,
average precipitation), RS and GIS could identify
regions where risk is relatively high.

We examined whether RS and GIS data were
useful indicators of the spatial pattern of SNV
infections in populations of the primary rodent
host, the deer mouse (Peromyscus maniculatus)
(12-15). Our approach involved determining the
infection status of rodents at 144 field sites,
collecting RS and GIS data for each site, testing
for statistical relationships between these data
and infection, using the statistical relationships
to retroactively classify infection status of
rodents at these sites, and using the classifica-
tions to estimate prediction accuracy. Predictions
derived from RS and GIS data could identify the
ecologic settings where human exposure to SNV
is most likely to occur.

SNV and its Host
Since the first recognized outbreak of HPS in

the southwestern United States in 1993,
approximately 240 cases have occurred, with a
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death rate of approximately 40% (J. Mills, pers.
comm.) (16). Information about SNV host-virus-
environment relationships is limited (16,17). No
simple relationships have been found between
host density and antibody seroprevalence (16-18),
but more complex nonlinear relationships appear
to exist (17). SNV infections also appear to be less
frequent in relatively high- or low-elevation
habitats (16,17).

Study Design

Types of Data
RS data are commonly used to generate

maps of vegetation types. Vegetation types can
be useful indicators of environmental charac-
teristics, including moisture, soil type, and
elevation. However, transforming RS images
into vegetation maps can be subjective and
imprecise (19,20); therefore, we supplemented
our vegetation maps with other RS/GIS data,
including elevation, slope, vegetation density,
and hydrology.

We sampled rodents over four field seasons
(June to October  during 1995 to 1998). However,
in 1997, population densities of deer mice in our
study area averaged approximately 25% of 1995-
96 and 1998 levels (unpub. data, Boone et al.).
Most of the 47 sites sampled in 1997 had three or
fewer deer mice, and 14 sites had none. Simple t-
tests (SAS ver. 6.10) showed that the mean
number of animals per site was statistically
equivalent in 1995, 1996, and 1998 (11.1, 10.3,
and 8.9 animals per site, respectively; p >0.10 for
all comparisons), but differed significantly in
1997 from all other years (2.4 animals per site;
p <0.0001 for all comparisons). In 1997, antibody-
positive animals were significantly less likely
to be positive by reverse transcription-
polymerase chain reaction (RT-PCR) for viral
RNA in the blood than in any other year,
suggesting unusual infection patterns (25%
were PCR positive in 1997 and >50% to 70% in
other years; chi-square test, p <0.002 for all
comparisons of 1997 to other years; p >0.20 for all
comparisons of years excluding 1997). On the
basis of these tests, we pooled data from 1995,
1996, and 1998 and excluded 1997 data from all
analyses because host density and infection
dynamics appeared atypical and likely to obscure
the baseline spatial infection patterns we sought
to identify (21).

Infection Status of Sites
Presence of SNV infections is commonly

inferred by determining antibody seroprevalence
in a host population (14,16-18,21-23). However,
antibody prevalence at the same site may vary
considerably (<5% to >60%) over relatively brief
periods of <1 year (17,18,22,23), probably because
of rapid turnover of rodent populations through
death, reproduction, dispersal, and migration.
We focused on the presence or absence of SNV
infections inferred from antibody data, a more
stable measure than antibody prevalence.
However, determining infection status is
complicated by several factors: animals may
remain antibody-positive well after the trans-
missible phase of an infection (17); noninfectious
but antibody-positive deer mice may migrate to
a site where no active SNV infection is present;
and detectable antibody response requires at
least 1 to 2 weeks to develop in newly infected
animals (17).

Because of these uncertainties, we used two
criteria to demonstrate the effect of classification
on analytical outcome. “Status 1” classified sites
with one or more antibody-positive animals as
positive (active infection present). This criterion
may have falsely assigned positive status to some
sites where no active, transmissible infections
were present. “Status 2” required two or more
antibody-positive deer mice or an overall
antibody seroprevalence of at least 10% for a site
to be classified positive. This criterion may have
falsely assigned negative (active infection
absent) status to some sites that had a single
infectious animal.

Site Selection
Our study area was the Walker River Basin,

a 10,200-km2 region in western Nevada and east-
central California northeast of Yosemite Na-
tional Park (Figure 1). At least nine cases of HPS
have occurred in the area since 1993. Major
vegetation types in the river basin along an
increasing elevational gradient (1,200 m to
3,760 m) are salt desert scrub, sagebrush-grass
scrub, piñon-juniper woodland, coniferous forest,
montane shrubland, and alpine tundra, with
riparian habitat and meadows at a wide range of
elevations (24).

We compiled a GIS database for the study
area, including a second-generation map of
vegetation types (Figure 1) (25). The vegetation
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Figure 1. Location of Walker River Basin (17) and its eight major vegetation types, as well as developed areas.
Piñon-juniper woodland and montane shrubland tend to be highly interspersed and were combined for visual
clarity. Because meadows occurred in very small patches, they could not be represented on this map. Map
generated at Utah State University as part of the GAP conservation mapping project.
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map, which was generated from Landsat
Thematic Mapper images and digital elevation
data, had a 100-hectare mapping unit. We
aggregated the 36 vegetation subtypes on the
GAP map into the eight general vegetation types
described above. To estimate vegetation density,
we used the normalized difference vegetation
index (NDVI), a transformation of near infrared
(TM band 4) and red wavelengths (TM band 3)
correlated with the amount and productivity, or
rate of plant growth, of vegetation (5,26,27). The
standard deviation of NDVI within a local area
was calculated to estimate the uniformity of
vegetation density at each field site. Elevation
and slope (i.e., steepness) data were derived from
the 2-arcsecond digital elevation model of the
U.S. Geological Survey. Because riparian zones
could influence rodent population densities and
facilitate rodent dispersal across arid regions, we
calculated proximity to streams and bodies of
water on the U.S. Geological Survey’s 1:100,000-
scale digital line graph datasets.

In 1995, we sampled rodents at 42 sites
before the GAP map became available. These
sites were selected as representative of the five
most common vegetation types in the Walker
River Basin. In 1996 and 1998, full GIS datasets
and the GAP map were used to distribute 102
new field sampling sites systematically across
the widest possible range of environmental
conditions. We categorized each GIS variable
according to its relevance to each of the eight
vegetation types. For example, ‘distance to
streams’ was a meaningful distinction within salt
desert but not within riparian habitat; elevation
varied substantially within sagebrush scrub but
not within alpine tundra. For each vegetation
type, the relevant variables were divided into
high and low ranges. The resulting binary classes
for each variable were then intersected in GIS to
produce distinct environmental “combinations,”
or strata, for each vegetation type (Figure 2).
Randomly located sample sites were selected
within each stratum so that they were within 0.5
km of a passable road and at least 1 km from any
other sample site (Figures 1,3). The number of
replicates within each stratum (including 1995
sites, which were included retroactively) was
proportional to its spatial extent, with a minimum
sample size of two. This GIS-based stratification
is a more objective and randomized variation of
the gradsect sampling method (28, 29).

All samples were collected from early June to
early October to minimize seasonal effects on
host density and antibody prevalence (17).
Seasonal influences were minimized by sampling
the replicate sites within each environmental
stratum at different times throughout the field
season.

Field and Laboratory Procedures
Deer mice were live-trapped at all field sites

according to a fixed protocol (17). Each site had 48
live-traps in place for 3 days. A blood sample was
collected from each deer mouse by retroorbital
puncture with a heparinized capillary tube or
Pasteur pipette. Blood samples were placed on
dry ice and returned to the laboratory for
enzyme-linked immunosorbent assay testing for
immunoglobulin G antibody to SNV, which
indicates current or past infections (14). Relative
population density was estimated by counting
the number of animals captured during a
trapping session.

Analytical Methods
Of the 144 sites sampled in 1995, 1996, and

1998, 25 were excluded from analysis because no
deer mice were captured. Status 1 classified 38 of
the remaining 119 sites as negative and 81 as
positive. Status 2 classified 70 sites as negative
and 49 as positive (i.e., 32 sites had differing
infection status under the two criteria). We
tested (by chi-square, SAS ver. 6.10, PROC
FREQ) for differences among the proportion of
positive sites for each vegetation type. Then, with
a canonical linear discriminant function analysis
[DFA] [SAS ver. 6.10, PROC DISCRIM], we
examined relationships between infection status
and the alternate set of RS and GIS variables
with slope, elevation, density and uniformity of
vegetation, and distance from streams as
indicators of SNV infection status (3,17). Prior
probabilities were adjusted to reflect actual
proportions of positive and negative sites.

The relationships derived from these two
analyses were then used to classify sites
retroactively according to their expected infec-
tion status. Because error rates were not
distributed evenly among sites classified as
positive and negative, we present these results
separately. Classification accuracy is a general
estimate of the prediction accuracy of each
method if it were applied to new sites in a similar
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Figure 2. Environmental strata within the mapped extent of the sagebrush-grass scrub vegetation type. Each
color represents a unique combination of high or low vegetation density index, standard deviation of vegetation
density index, slope, elevation, and distance from stream. White areas represent the other seven vegetation types
(strata not shown).
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Figure 3. Seroprevalence of IgG antibody to Sin Nombre virus at sample sites in the Walker River Basin.
(According to Status 1, sites with 0% prevalence were negative and all other sites were positive.)
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Table 1. Classification and prediction accuracies for Sin Nombre virus infection status, by vegetation type method and
canonical discriminant function analysis

Site in Walker River Basin % classified negative % classified positive % overall accuracy
Vegetation type Status 1 50 ± 12a 88 ±   8 76 ± 10
Vegetation type Status 2 36 ±   9 92 ±   6 59 ± 12
DFAb Status 1 84 ±   9 69 ± 11 74 ± 10
DFA Status 2 84 ±   9 80 ± 10 82 ±   9
aThe error terms following each estimate are 95% confidence intervals derived from the binomial distribution.
bDFA = discriminant function analysis.

Table 2. Sin Nombre virus infection status of sites in the Walker River Basin: canonical discriminant function analyses
for Status 1 and Status 2

Canonical Canonical loadingsb

correlationa (p-value) Elevation NDVIc NDVI Stdd Slope Streamse

Status 1 0.41 (0.0003) 0.77 0.52 0.69 0.06 0.04
Status 2 0.53 (0.0001) 0.79 0.46 0.68 0.09 0.05
aThe canonical correlation and its significance level define the overall association between infection status and the indicator
variables.
bCanonical loadings for each indicator variable indicate their relative importance in producing a significant overall canonical
correlation.
cNDVI = vegetation density.
dNDVI Std. = uniformity of vegetation density.
eStreams = distance to nearest mapped stream or body of water.

landscape. For each prediction accuracy esti-
mate, we calculated 95% confidence limits
derived from the binomial distribution. Standard
deviation for the binomial distribution is

where p = accuracy estimate and n = number of
samples. A normal approximation of confidence
limits was obtained by multiplying the standard
deviation of each estimate by the t-table value
associated with 95% confidence and the
appropriate number of samples. These confi-
dence intervals also allowed us to determine
whether classification accuracy differed signifi-
cantly between methods.

Results

Vegetation Types
The proportion of positive sites in salt desert

scrub (34% of 29 sites by Status 1, 14% by Status
2) was significantly lower than in any other
vegetation type (p = 0.05 criteria for significance).
No significant differences were found among any
of the other seven vegetation types, where
positive sites were more common by both Status 1
(50% to 100%) and Status 2 (50% to 83%)
(Figure 3). By assigning the predominant

infection status to all sites within a given
vegetation type, overall classification accuracies
of 76% (Status 1) and 59% (Status 2) could be
achieved (Table 1). The Status 1 criterion
resulted in better classification accuracy (for
negative sites and for all sites combined) than
Status 2. For both Status 1 and Status 2, positive
classification was more accurate (> 88%) than
negative classification ( 50%).

DFAs for both Status 1 and Status 2 produced
significant canonical correlations showing that
negative sites were associated with low eleva-
tions and sparse vegetation (Table 2). These
qualities most often occur in salt desert scrub
(24). In contrast, positive sites were higher and
generally had more dense but less uniform
vegetation. Slope and distance from streams
were relatively unimportant factors. For both
Status 1 and Status 2, negative classification was
more accurate than positive classification
(Table 1). Positive classification was more
accurate in Status 2 than in Status 1.

Discussion
RS and GIS data were useful indicators of the

SNV infection status of deer mice in our study
area. Sites with typical salt desert scrub
characteristics were less likely to have infected
mice than other sites. If the 25 sites where no
deer mice were captured (primarily salt desert
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scrub sites) had been incorporated into our
analyses as negative sites, this relationship
would have been more pronounced. The
relationship may be explained by the level of
connectivity (i.e., biological interchange) among
host populations. Salt desert scrub or similar arid
habitats in the western United States are
frequently dominated by heteromyid rodents
(kangaroo rats, pocket mice) rather than by deer
mice and other potential hosts for SNV. Although
deer mice were found in salt desert scrub in the
Walker River Basin and were sometimes locally
abundant, their overall population density was
somewhat lower than in other vegetation types,
and they were more likely to be locally absent (17).
We suspect that SNV infections are less likely in
deer mouse populations that inhabit such regions
because of their relative isolation from neighbor-
ing populations (30,31). Such fragmentation of
host populations may reduce the rate of disease
propagation across space and the frequency of
infection recurrences within local sites. This
hypothesis is supported by the clustering of
negative sites in landscapes dominated by salt
desert scrub (Figure 3), despite the fact that some
of these sites had relatively dense deer mouse
populations.

Spatial Versus Temporal Disease Patterns
Because the RS and GIS maps summarize

relatively fixed spatial properties of the
environment, we focused on investigating the
corresponding spatial patterns of SNV infections.
SNV infections also exhibit temporal dynamics
(13,16-18,22,23) superimposed on the baseline
spatial pattern. However, a robust temporal
study would require many years of replicated,
longitudinal field data, as well as real-time RS
data describing temporally variable environ-
mental characteristics (such as climatic
variables) for the corresponding period. We did
not incorporate weather or climate data into
GIS because weather monitoring stations are
widely scattered throughout most of the study
area, preventing meaningful extrapolations to
most of the field sites.

Sampling Design
Because characterizing large-scale spatial

disease patterns requires a large sample size, we
maximized the number of sites sampled rather
than visiting fewer sites on multiple occasions.
This cross-sectional approach captured substan-

tial ecologic diversity and provided statistical
replicates of sites with similar characteristics.
The disadvantage of the approach was a degree of
uncertainty in determining the actual infection
status at each site. However, when generaliza-
tion of results is an important goal, a large,
replicated, and diverse dataset that has a modest
degree of measurement error is statistically
preferable to a smaller, more precisely measured
but poorly replicated dataset (32).

Comparison of Methods (Table 1)
The vegetation type approach was based on

possible relationships between infection status
and a preexisting vegetation classification that
might or might not be relevant to deer mice and
SNV infections. DFA, in contrast, generated a
linear function that best distinguished the
properties of positive and negative sites. Our
results suggest that DFA yields a better balance
between classification accuracies for positive and
negative status (especially for Status 2).

The vegetation type method could not classify
negative status as effectively as the DFA, and
balance between error rates for positive and
negative classifications was poor. This could be a
result of using predefined vegetation types
(rather than making environmental distinctions
from actual infection patterns) or inaccuracies in
identifying and mapping vegetation types. Site
visits suggested that the DFA identified sites
with pronounced salt desert features more
effectively than the vegetation map. The
substantial environmental variability within the
mapped extent of salt desert scrub was easily
captured by the set of RS and GIS variables but
was analytically “invisible” to our aggregated
GAP map. Some variability might have been
captured by the GAP map’s 36 original vegetation
subclasses, but using all these in our analysis
would have presented serious statistical problems.

Other analytical approaches are possible that
were not presented here. For example, decision
tree analysis (33,34) offers advantages if nonlinear
relationships exist; hierarchical information on
the effects of each predictor variable is desired; or
ease of interpretation is important (29).

Classification and Prediction Accuracy
Classification accuracy varied significantly

between the Status 1 and Status 2 criteria
(Table 1), with Status 2 giving better classifica-
tion balance for DFA and Status 1 producing
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better results for the vegetation type analysis.
Unfortunately, the biological significance of
these analytical differences is difficult to
determine. However, the infection status of 73%
of the sites was classified similarly by the two
criteria. The remaining 32 sites of ambiguous
infection status might represent regions where
infection status changes with relatively high
frequency. If so, this produces an intrinsic
limitation in the capabilities of the methods we
present. The choice of technique might be based
on the relative risks and costs of false-negative
versus false-positive predictions.

Both methods may have occasionally been
unable to detect positive sites because of failure
to capture positive deer mice. The likelihood of
this error would be proportional to the number of
resident animals not captured at a site. Our
longitudinal data (17; unpub. data, Boone et al.)
suggest that the 3-day sampling sessions
captured most of the animals present at a site.
During four 7-day trapping sessions, 86% ± 9% of
animals were captured during the first 3 days of
trapping. Additionally, examination of 123 3-day
sessions within the context of their extended
longitudinal infection timelines (17; unpub.
data, Boone et al.) suggested that infection
status was classified with 85% (Status 1) and
81% (Status 2) accuracy.

A cross-sectional, replicated, and randomized
sampling approach should capture most sites
while they exhibit their most typical infection
status. However, a ‘background’ rate of classifica-
tion errors is to be expected regardless of
analytical method, given the temporally dynamic
nature of SNV infections (17,18,22,23). For
instance, even where infection status is
predominantly positive, some sites may be
sampled during atypical periods when infection
is temporarily absent; the reverse could also
occur. Additionally, a subset of sites might
frequently change their infection status and not
exhibit primary infection status. Thus it might be
difficult to improve upon the highest overall
classification success we achieved (with DFA and
Status 2 criterion), unless temporal infection
dynamics are incorporated into the predictive
model. Another option would be to omit sites from
analysis if they fail to meet unambiguous criteria
for positive or negative status; however, this
might result in the loss of biological insight.

Future Directions
We explored the ability of RS and GIS data to

predict the baseline spatial patterns of SNV
infections across an ecologically variable land-
scape. Our findings should be at least somewhat
relevant to a number of other regions in the arid
western United States, especially if infection
dynamics are ultimately driven by host connec-
tivity patterns. To expand these findings, we
developed methods to filter environmental data
to remove statistical noise and a computer
simulation model to explore infection dynamics
on a variety of virtual landscapes. Further work
will focus on the role of landscape structure in
producing spatial patterns of disease (35). For
instance, deer mice in small patches of salt desert
scrub within a matrix of more desirable habitat
types might be more likely to be infected than
mice living in large contiguous regions of salt
desert scrub. Finally, it would be useful to test
other types of RS and GIS data as possible
indicators of SNV infections.

Further work is needed to identify possible
climatic correlates of periodic outbreaks and the
degree to which useful indicators of these
outbreaks can be derived from RS and GIS data
sources. In contrast to predictions in large-scale
outbreaks, specific a priori predictions of
temporal SNV infection dynamics in local sites
may remain difficult. Once infections are
initiated at a site (presumably by random
dispersal events), changes in antibody and virus
prevalence cannot be easily explained by changes
in host density or environmental factors (17,18).
However, it should be possible to estimate the
frequency (if not the specific timing) of new
infections as a function of a site’s local
environment. Additionally, extended longitudi-
nal studies could identify typical infection
trajectories of sites based on their environmental
characteristics or demographic profiles of their
host populations. When combined, these ap-
proaches should advance our ability to quantify
and predict disease dynamics and human risk.
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