Salmonella infections acquired in other countries are frequently diagnosed in travelers recently returned to the United States. Although transmission of these infections to other humans may be rare in the United States, human-to-bovine transmission may occur regularly: thousands of cases of bovine Taenia saginata cysticercosis occurred immediately before and during the dissemination of MR-DT104. As humans are the only definitive host of the T. saginata tapeworm, these cases confirm the large-scale occurrence of human-to-animal transmission of enteropathogenic agents in the United States. Since transmission of S. Typhimurium from herd to herd is common in the United States, increased emphasis on Salmonella infection control may be an effective method for reducing dissemination of organisms such as MR-DT104.

With or without imposition of stringent controls on antibiotic use in the United States and Europe, the future genetic emergence of new epidemic clones of S. Typhimurium somewhere in the world is highly likely, and controlling the dissemination of epidemic clones is essential to avoid increasing problems with multidrug resistance. Certainly we do not disagree with the concept of reducing antimicrobial use, particularly such frivolous use as in calf milk replacers. However, we urge public health officials to consider that infection control is as central to control of agents such as MR-DT104 as it is for epidemic MRSA.

Margaret A. Davis, Dale D. Hancock, Thomas E. Besser, Daniel H. Rice, John M. Gay
Washington State University, Pullman, Washington, USA

References

Malaria and Global Warming in Perspective?

To the Editor: The two reports from the International Panel on Climate Change (IPCC) (1,2) cited in the letter by Pim Martens (3) are widely regarded as “the standard scientific reference for all concerned with climate change and its consequences,” yet the contents of these reports are often misleading. The quoted passage does not acknowledge the devastation caused by malaria in temperate regions. The reassurance that “existing public health resources” would “make reemergent malaria unlikely” ignores the nonclimatic factors that led to its disappearance and continued absence. Moreover, although malaria/climate models are not meant to predict future worlds, the IPCC chapter (1) on human health—one-third of which is devoted to vector-borne disease—makes extensive use of such models to warn of substantial “actual climate-related increases in malaria incidence” and “highly likely” exten-
Letters

sions of its distribution. The chapter does include statements that the “predictions” of such models should be viewed cautiously “until they have been validated against historical data sets,” and “malaria is most likely to extend its spread...in tropical countries.” The past presence of malaria in “southern Europe” is also mentioned, but such qualifiers are applied to predictions of 10- to 100-fold increases in epidemic potential in temperate climates. These predictions are frequently cited as evidence of a major threat to humanity (4,5).

The IPCC reports state “...anopheline mosquito species that transmit malaria do not usually survive where the mean winter temperature drops below 16°-18°C.” Similarly, two oft-quoted publications (6,7) define the vector’s limit of survival as the 15°C winter isotherm, i.e., in the northern Sahara. However, in the past the limit was the 15°C summer isotherm. In fact, much of Europe and all of the United States are within the 20°C or 25°C summer isotherms, and malaria was once prevalent in parts of southern Canada and up to 64°N in Russia and Siberia. The same publications state that Aedes aegypti, the principal urban vector of dengue and yellow fever, cannot survive mean temperatures below 10°C, but with global warming “...dengue could extend into the southern United States.” This statement has been repeatedly quoted (5), although Ae. aegypti is common where winter temperatures of -15°C are not unusual and epidemics of dengue and yellow fever have occurred as far north as Boston and Dublin. Repeated claims that global warming may have already led to increases in these diseases in the tropics are equally indefensible (8,9).

Paul Reiter
Centers for Disease Control and Prevention, San Juan, Puerto Rico, USA

References