Letters

repeated infestations of ticks on mice, even
without obvious reduced feeding success, result
in reduced transmission of spirochetes between
mice and ticks (19).

Sarah Randolph
University of Oxford, Oxford, United Kingdom
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Response to Dr. Randolph and Drs. Gern
and Humair

To the Editor: We define reservoir competence
of a host for a vector-borne pathogen in terms of
three component questions: How susceptible is
the putative reservoir host when the pathogen
is delivered by the bite of an infected vector
tick? How effectively does the pathogen prolifer-
ate and develop in this host? And how infective
is the resulting infected host to vector ticks and
for how long (1,2)? Drs. Gern and Humair insert
the parenthesis (implied xenodiagnosis) into a
citation of our text, thereby, equating reservoir
competence with a simple xenodiagnostic test
that partially addresses only the third compo-
nent of this definition. At best, such a test
records degree of infectivity to vector ticks at
some arbitrary and often unknown point in
time, a consideration that persuades us to limit
our citations referring to reservoir competence.
Conclusions derived from xenodiagnosis per-
formed on field-derived animals differ from
those that are obtained by an experimental
study. With regard to acknowledging relevant
research, we did cite the study on pheasants (3)
in which these birds were infected in the
laboratory by tick-borne spirochetes and subse-
quently infected only about a quarter of vector
ticks. The cited study on blackbirds (4), on the
other hand, used ticks solely to diagnose
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infection in field-derived birds that had been
infected in nature. Although a few of these
animals proved to be infectious to xenodiagnos-
tic ticks when tested 1-3 days after capture, this
study failed to quantify susceptibility or to
determine intensity and duration of infectious-
ness to vector ticks. Our rigorously standard-
ized study (1) is the first to establish experi-
mentally that birds are highly competent as
reservoir hosts for Lyme disease spirochetes.
Drs. Gern and Humair disagree with our
statement that “larval ticks seem not to feed on
[pheasants], either in the laboratory or in
nature.” However, a field study on pheasants
states that “no fully engorged larvae ... were
recovered from thirty adult male pheasants
shot in a Dorset woodland” (5). The previously
cited experimental study on these birds simi-
larly demonstrated that larval infestations
generally fail, and stated that “In fact, most of
the introduced larvae died while attempting to
feed on the pheasants” (3). Inflammatory
responses directed against feeding larvae were
advanced as a possible explanation for the
observed failure to feed to repletion. The larval
stage of the American vector similarly seems to
feed poorly on chickens (6). Passerine birds,
however, seem to serve effectively as hosts for
the larval stages of this complex of ticks, and
we find that larvae attach readily to American
robins (1). Numerous larval Ixodes ricinus ticks
feed on European blackbirds in nature, and
larval ticks attach readily and repeatedly to
such birds in the laboratory (7,8). Therefore, the
limited attractiveness of gallinaceous birds to
larval Ixodes ticks may render them less impor-
tant than certain passerine birds as natural
reservoir hosts for Lyme disease spirochetes.
The transmission cycle of the agent of Lyme
disease tends to be more complex in Europe
than in North America. The host range of the
European vector tick, I. ricinus, is broader than
that of its American cousin (I. dammini, fre-
guently cited as I. scapularis), and the Euro-
pean pathogen in humans is more diverse,
comprising several genospecies. Our study
aimed to define the competence of the American
robin, Turdus migratorius, as a reservoir host
for rodent-infecting Borrelia burgdorferi sensu
stricto—not B. burgdorferi sensu lato as stated
in Drs. Gern and Humair's letter—and used
American Ixodes ticks as vectors. The mode of
perpetuation of the agents of human Lyme
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disease in Europe is peripheral to the subject of
our article.

Dr. Randolph and Drs. Gern and Humair
express commitment to the concept that differ-
ent European spirochetal genospecies perpetu-
ate simultaneously in distinct kinds of verte-
brate reservoir hosts. Their concept requires
that a larval 1. ricinus tick that acquires a
rodent-specific genospecies from a rodent host
must, in its nymphal stage, again feed on a
rodent. If this nymphal tick were to feed on a
bird, the rodent-specific spirochete would not
perpetuate because this nonpermissive host
would function zooprophylactically. A suggested
avian-specific spirochete would perpetuate
reciprocally. According to the MacDonald
concept of vectorial capacity (9), such a relation-
ship would be unlikely if pathogens requiring
different reservoir host populations were to be
transmitted simultaneously by the same vector
population. The studies cited in support of this
concept rest on correlative evidence derived
from field data. No confirmatory experimental
proof demonstrates an especially intense
association of B. afzelii with rodents and
B. garinii or B. valaisiana with birds. Indeed,
European larval ticks acquire B. afzelii as well
as B. garinii infection from field-derived passe-
rine birds (10). Various other observations also
contradict the suggested close association
between genospecies and particular kinds of
hosts (11-13). One of the studies (14) cited as
evidence for genospecies specificity was pub-
lished even before the genospecies were differ-
entiated; the other “consistent independent
findings” derive from the laboratories of Drs.
Randolph and Gern. Our findings that birds
serve as competent hosts for an apparently
mammal-perpetuated spirochetal genospecies
would seem to contradict the concept of sepa-
rate genospecies perpetuation. No rigorous
evidence is yet in hand to support the theory
that the same population of vector ticks per-
petuates different European spirochetal
genospecies differentially in particular kinds of
reservoir hosts.

Dr. Randolph suggests that our experi-
ments may have been confounded because
Lyme disease spirochetes may have been
inherited persistently within the laboratory
colony of ticks used in our studies. Although an
early observation points toward the possibility
of such a mode of transovarial transmission
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(15), subsequent experimental evidence sug-
gests that vertical transmission rarely, if ever,
occurs (16). Inherited infection in nature would
be exceedingly infrequent because spirochetes
infect less than 1% of naturally questing larvae,
both in North America and in Europe (17, 18),
and some of these larvae may have acquired
infection by feeding partially on an infected
host. We routinely seek evidence of spirochetal
infection in each cohort of larval ticks used in
our experiments but have never found spiro-
chetes in a nonfed, laboratory-reared larva. Our
reported frequency of experimental transmis-
sion of Lyme disease spirochetes from reservoir
mice to vector ticks corresponds to that re-
ported elsewhere (19-21).

Dr. Randolph’s statistical analysis of our
data confirms that the feeding success of
nymphal ticks on robins exposed repeatedly to
ticks varies nonsignificantly, supporting our
conclusion that nymphal ticks readily feed
repeatedly on tick-exposed robins. Although
repeated nymphal infestations may protect
inbred laboratory mice from tick-borne spiro-
chetes (22), natural reservoir hosts, such as
white-footed mice and American robins, remain
susceptible to such spirochetes, regardless of
prior exposure to ticks (1, 23).
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