West Nile Virus

West Nile Virus in Overwintering Culex Mosquitoes, New York City, 2000

*Centers for Disease Control and Prevention, Fort Collins, Colorado, USA; †New York State Department of Health, Albany, New York, USA; ‡New York City Department of Health, New York, New York, USA; and §New York City Department of Environmental Protection, New York, New York, USA

After the 1999 West Nile (WN) encephalitis outbreak in New York, 2,300 overwintering adult mosquitoes were tested for WN virus by cell culture and reverse transcriptase-polymerase chain reaction. WN viral RNA and live virus were found in pools of Culex mosquitoes. Persistence in overwintering Cx. pipiens may be important in the maintenance of WN virus in the northeastern United States.

The 1999 outbreak of human encephalitis in New York City (1) due to infection with West Nile (WN) virus (2) represented the first documented introduction of this virus into the Western Hemisphere. After the outbreak, the Centers for Disease Control and Prevention (CDC) and the U.S. Department of Agriculture recommended that surveillance efforts be enhanced in areas from Massachusetts to Texas along the Atlantic and Gulf coasts (3,4). Of primary concern was the lack of information about the ability of WN virus to persist over the winter in the northeastern United States and reinitiate enzootic or epidemic transmission in spring 2000. Evidence of persistent WN virus transmission in Romania for at least 2 years following the 1996 epidemic (5) increased concern that WN virus would persist and become established in the United States. Since the New York outbreak occurred in an area where mosquito biting activity ceases during winter months, survival of virus-infected female mosquitoes was considered the most likely mechanism for the virus to survive through the winter. Vertical transmission of WN virus by mosquitoes (i.e., passage of virus from infected female to her offspring) has been demonstrated in the laboratory (6) and apparently occurs by entry of virus into mosquito eggs during oviposition (7). Vertical transmission of WN virus has been documented only once in a population of mosquitoes outside the laboratory (8). We describe collection of overwintering mosquitoes during January and February 2000 in New York City and detection of WN viral RNA and live WN virus in the specimens.

The Study

Numerous sites characteristic of harborage for overwintering adult Culex mosquitoes in New York City were visited during January 11-13, February 15-16, and February 25, 2000. These sites were concentrated in northern Queens and southern Bronx, where WN virus activity was detected in mosquitos during 1999 (9). We suspected that the vast sanitary and storm sewer systems in New York City would harbor large populations of overwintering adult mosquitoes. We sampled pipe chases, pump buildings, and dewatering facilities at the Tallman Island sewage treatment facility in Queens and the Hunts Point sewage treatment facility in the Bronx. In addition, we searched for mosquitoes in 15 manholes leading to sanitary and combined sewers, 31 storm sewer catch basins, and 4 large-diameter (1.2 to 2.5 m) storm water outflow pipes in Queens and the Bronx. Other sites included unheated structures associated with utility equipment rooms under the south end of the Whitestone Bridge; pump service buildings and pipe chases associated with municipal swimming pools in Astoria Park, Crotone Park, and Van Cortlandt Park; abandoned buildings at Flushing Airport; the basement of a historical house in Van Cortlandt Park; and historical structures associated with “The Battery” at Fort Totten in Queens.

Adult mosquitoes were located with a flashlight and collected from walls and ceilings of the resting sites by a large, battery-powered backpack aspirator or small hand-held mechanical aspirator. The specimens were held for 24 to 72 h at 21 to 22°C with access to 5% sucrose solution. Dead specimens were removed from the holding cages, frozen as soon as possible after death, and placed in labeled tubes at -70°C. Surviving specimens were frozen, placed in labeled tubes, held at -70°C, and, along with dead specimens, were shipped to the laboratory of CDC’s Division of Vector-Borne Infectious Diseases in Fort Collins, CO. The mosquitoes were identified to species if possible, but the condition of certain morphologically similar Culex mosquitoes often prevented identification to species level. As a result, many specimens were only identified to genus or species group (e.g., the Culex species category may include the morphologically similar species Cx. pipiens and Cx. restuans). Specimens were grouped into pools of up to 50 mosquitoes by species, date, and location of collection.

A total of 2,383 adult mosquitoes were collected, 2,380 of which were in the genus Culex; the pools also included one...
West Nile Virus

adult Cx. territans and one Cx. erraticus (Table). The other specimens were Anopheles punctipennis or unidentified Anopheles species. Structures associated with the sanitary and storm sewer systems produced very few specimens. This discovery was unexpected because hibernating Cx. pipiens in peridomestic habitats use storm sewers, basements, unheated outbuildings, and similar protected sites (10). Approximately 88% of the Culex mosquitoes came from structures built into hillsides and the battery structures constructed of heavy granite block or concrete at Fort Totten.

The 2,383 mosquitoes were separated into 91 pools for testing, and every pool was screened for viable virus by a Vero cell plaque assay (11). They were also tested for WN viral RNA by WN virus-specific reverse transcriptase-polymerase chain reaction (RT-PCR) and a TaqMan RT-PCR assay (12). No evidence of live virus was observed in any of the pools in the initial Vero cell plaque assay, nor was WN viral RNA detected with the traditional RT-PCR assay. Three of the pools containing mosquitoes morphologically identified as Culex species tested positive by the TaqMan RT-PCR assay, indicating the presence of WN virus RNA. The TaqMan RT-PCR WN virus detection procedure has been shown to be more sensitive than traditional PCR and at least as sensitive as the traditional RT-PCR assay. Three of the pools inoculated into Vero cell culture. None of the other pools inoculated into Vero cell culture. None of the other attempts to isolate virus from these pools were successful. The difficulty in isolating live virus from the RNA-positive pools, despite extensive efforts, may be due to virus death during the collection and shipping process or to a naturally low virus titer in vertically infected, hibernating mosquitoes.

The identity of mosquitoes in two of the WN viral RNA-positive pools was subsequently determined by a species-diagnostic PCR assay that can differentiate between Cx. pipiens, Cx. restuans, and Cx. salinarius in the pool (15). Results indicated that the two pools contained only Cx. pipiens. Insufficient material was available from the third pool RNA-positive pool for species identification by PCR.

Conclusions

Detection of WN viral RNA in three pools and isolation of live WN virus from one pool of overwintering Cx. pipiens mosquitoes in New York City indicated that WN virus persisted in vector mosquitoes at least through midwinter, suggesting that the virus would persist until spring and emerge with mosquitoes to reestablish an enzootic transmission cycle in the area. Transovarial transmission of WN virus and preservation of the virus in hibernating mosquitoes are not thought to play an important role in the maintenance of the virus in nature (16,17). However, our observations indicate that approximately 0.04% of the overwintering Culex mosquitoes collected at Fort Totten carried viable WN virus, and 0.1% contained WN viral RNA. This finding suggests that WN virus infected, hibernating Cx. pipiens were relatively common where virus activity was intense the previous season and likely play an important role in persistence of the virus in an area. This infection rate is similar to rates observed for another flavivirus, St. Louis encephalitis virus, in overwintering Cx. pipiens collected in Maryland, where 0.2% were infected (1 isolate from 312 tested), and Pennsylvania, where 0.2% were infected (1 isolate from 406 tested) (18).

What is unclear is the mechanism that produced these infected overwintering mosquitoes. Transovarial transmission of the virus from an infected female to her offspring, which then enter diapause (hibernation physiology and behavior) as adults and survive the winter without taking a

Table. Adult mosquitoes collected in overwintering sites, Queens and the Bronx, January and February 2000

<table>
<thead>
<tr>
<th>Borough</th>
<th>Site</th>
<th>Species</th>
<th>No. mosquitoes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queens</td>
<td>Tallman Island Sewage Plant</td>
<td>Culex pipiens</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cx. restuans</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cx. species</td>
<td>74</td>
</tr>
<tr>
<td>Fort Totten</td>
<td></td>
<td>Cx. pippens*</td>
<td>1,034</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cx. restuans</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cx. erraticus</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cx. territans</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cx. species*</td>
<td>1,045</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anopheles punctipennis</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An. species</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Other sites combined</td>
<td>Cx. pipiens</td>
<td>24</td>
</tr>
<tr>
<td>The Bronx</td>
<td>Hunts Point Sewage Plant</td>
<td>Cx. restuans</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cx. species</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Other sites combined</td>
<td>Cx. pippens</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cx. species</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>2,383</td>
</tr>
</tbody>
</table>

*West Nile (WN) viral RNA detected in two pools of specimens initially morphologically identified as Culex species and subsequently identified as Cx. pippens by species-specific polymerase chain reaction (PCR). Live WN virus was isolated from one of these pools.

WN viral RNA detected in one pool of specimens morphologically identified as Cx. species. Insufficient material was available to permit species identification by PCR.

Vol. 7, No. 4, July–August 2001 743 Emerging Infectious Diseases
West Nile Virus

blood meal, is supported by evidence from the field and laboratory (6,8). Alternatively, Cx. pipiens infected by feeding on a viremic vertebrate host may have survived the winter. Though blood-fed adult Cx. pipiens survive winter conditions (19), they are not considered an efficient mechanism for virus persistence (10). Regardless of the underlying mechanism, WN virus persistence in Cx. pipiens clearly contributes to the maintenance of WN virus through the winter season. Future research should address the mechanisms of WN virus maintenance and potential involvement of other mosquito species that may be important vectors in other regions of North America.

Acknowledgments

We thank Frank Vazquez and other staff of the New York City Department of Environmental Protection, the New York City Mayor’s Office of Emergency Management, and the New York City Fire Department for access to collection sites and Joanne Oliver, Robert Means, Neeta Pardanani, and Sara Bumberger for assistance in collecting specimens.

Dr. Nasci is research entomologist at the Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado. His research interests include the ecology and control of mosquito-transmitted zoonoses.

References