R. helvetica (5), R. slovaca (6), and R. felis (7). The serologic findings indicated antibodies at a higher level to R. aeschlimannii than to other tested species. R. aeschlimannii is phylogenetically distant from R. conorii but is closely related to R. rhipicephali and R. montanensis, which have never been described as human pathogens. This patient appeared to have a typical case of R. conorii infection, with seasonal and geographic characteristics favoring this diagnosis (3). This case was clinically and epidemiologically mistaken for R. conorii infection, suggesting that R. aeschlimannii may be another cause of Mediterranean spotted fever in Morocco.

The systematic identification of rickettsial species in human infections continues to increase the number of recognized human pathogens (3). This finding has demonstrated once again that more than one species or serotype of tick-transmitted rickettsia may be prevalent in the same area, as observed, for example, with R. slovaca, “R. mongolotimonae,” and R. conorii in southern France (3); R. africca and R. conorii in sub-Saharan Africa (8); and R. conorii and Israeli spotted fever rickettsia in Sicily and Portugal (9). Rickettsia species first identified in ticks should be considered as potential human pathogens, as all recently described tick-transmitted rickettsiae pathogenic for humans were initially found in ticks and were considered nonpathogenic for several years (3).

Didier Raoult,* Pierre-Edouard Fournier,* Philippe Abboud,† and François Caron†

*Unité des Rickettésies, Université de la Méditerranée, Marseille, France; and †Service de Maladies Infectieuses, Centre Hospitalier Universitaire de Rouen, Rouen, France

References

Cost-Effective Screening for Trichomoniasis

To the Editor: I read with interest a recent article in your journal, “Trichomonas vaginalis, HIV, and African Americans” (1), and I commend the authors’ suggestion to implement screening and reporting of trichomoniasis for high-risk populations.

In the article, a cost-effective screening approach is mentioned, which includes culturing only for Trichomonas vaginalis, especially in high-prevalence populations. The finding shows that vaginal swabs may be stored briefly while a wet-mount preparation is made and examined. If the wet mount is negative, this swab can then be processed for culture. If the wet mount is positive for T. vaginalis, the stored swab can then be further culture of the specimen is needed, thereby reducing unnecessary costs. Given that the prevalence of this infection often exceeds 20% in high-risk populations, this approach can reduce costs substantially without compromising the accuracy of the tests. Any method that reduces the cost of diagnosis will advance further

Jane R. Schwebke

University of Alabama at Birmingham, Birmingham, Alabama, USA

References

Reply to Dr. Schwebke

To the Editor: We welcome Dr. Schwebke’s thoughtful comments about decreasing the cost of screening for Trichomonas vaginalis. Dr. Schwebke and her colleagues have demonstrated that storing a vaginal swab for 15–20 minutes in a glass tube at room temperature does not affect the viability of T. vaginalis or reduce the sensitivity of subsequent culture. This finding shows that vaginal swabs may be stored briefly while a wet-mount preparation is made and examined. If the wet mount is negative for T. vaginalis, the stored swab can then be processed for culture. If the wet mount is positive for T. vaginalis, no further culture of the specimen is needed, thereby reducing unnecessary costs. Given that the prevalence of this infection often exceeds 20% in high-risk populations, this approach can reduce costs substantially without compromising the accuracy of the tests. Any method that reduces the cost of diagnosis will advance further