Perspective

Host Range and Pathogenicity in Influenza Pandemic
G. Neumann and Y. Kawaoka
Certain viral factors determine the host range restriction and pathogenicity of influenza A viruses.

Synopsis

Dengue Prevention and Vector Control in Singapore
E.E. Ooi et al.
A vector control program must be based on epidemiologic and entomologic data.

Research

Severe Staphylococcal Community-acquired Pneumonia
J.C. Hageman et al.
Staphylococcal community-acquired pneumonia has been reported from 9 states.

Temple Monkeys and Implications of Commensalism
L. Jones-Engel et al.
Humans in contact with macaques risk exposure to enzootic primateborne viruses.

Drug-resistant Escherichia coli, Peru and Bolivia
A. Bartoloni et al.
Healthy children in urban areas have a high prevalence of fecal carriage of drug-resistant E. coli.

Human Streptococcus suis Infection Outbreak, China
H. Yu et al.
S. suis outbreak was associated with exposure to sick or dead pigs.

Adenovirus Co-infections
G.J. Vora et al.
Adenoviral infections associated with respiratory illness in military trainees involve multiple co-infecting species and serotypes.

Norwalk Virus–specific Binding to Oyster Tissues
F.S. Le Guyader et al.
Specific binding of virus to oysters can selectively concentrate a human pathogen.

Haemophilus influenzae Type b Reemergence
N.G. Johnson et al.
Combination vaccines may suppress Hib antibody concentration and avidity.

Genetic Divergence of Toxoplasma gondii Strains
A. Khan et al.
Brazilian strains of T. gondii differ from lineages in North America and Europe; these differences may underlie severe ocular disease.

Social Behavior and Meningococcal Carriage in British Teenagers
J. MacLennan et al.
Social behavior can explain the higher frequency of meningococcal carriage among teenagers.

Coccidioidomycosis and Community-acquired Pneumonia
L. Valdivia et al.
Coccidioidomycosis is a common cause of community-acquired pneumonia in the southwestern United States.

Human Rotavirus Serotype G9, São Paulo, Brazil
R.C.C. Carmona et al.
Diverse rotavirus strains are present, and frequency of G9 is high.
Human Parechovirus Infections in Canada969
Y. Abed and G. Boivin
These infections are associated with a variety of clinical syndromes, in part related to specific serotype.

Historical Review
2,500-year Evolution of the Term Epidemic976
P.M.V. Martin and E. Martin-Granel
The meaning has been evolving since Hippocrates first used this word 25 centuries ago.

Dispatches
981 Metallo-β-lactamase in Acinetobacter baumannii
A. Tsakris et al.
984 Acanthamoeba Encephalitis, India
C.G. Shirwadkar et al.
987 Bordetella pertussis, Finland and France
V. Caro et al.
990 Guillain-Barré Syndrome, Greater Paris Area
V. Sivadon-Tardy et al.
994 Francisella tularensis in Rodents, China
F. Zhang et al.
997 Preventing Zoonotic Influenza Virus Infection
A. Ramirez et al.
1001 HIV-1 Drug Resistance, Cameroon
C. Laurent et al.
1005 Cowpox Virus Transmission from Rats to Monkeys
B.E.E. Martina et al.
1008 Pasture Types and Echinococcus multilocularis
Q. Wang et al.
1011 Class I Integrons in Escherichia coli and Klebsiella
A.N. Rao et al.
1015 Hantaviruses in Serbia and Montenegro
A. Papa et al.
1019 Raccoons and Skunks as Sentinels for Enzootic Tularemia
Z.L. Berrada et al.

1022 West Nile Virus Infection in Humans and Horses, Cuba
M. Pupo et al.
1025 Mixed Cryptosporidium Infections and HIV
V. Cama et al.

Commentary
1029 Pets in Voluntary Household Quarantine
J.S. Weese and S.A. Kruth

Another Dimension
1031 Weeds
R.O. Valdiserri

Letters
1033 Simple Respiratory Mask
1034 Linguatuliasis in Germany
1036 Clostridium difficile in Hospital Visitation Dog
1037 Streptobacillus moniliformis Endocarditis
1038 West Nile Virus in Horses, Guatemala
1039 Borrelia burgdorferi in Ixodes scapularis Ticks, Chicago
1041 H5N1 Influenza A Virus and Infected Human Plasma

Book Review
1044 Infectious Diseases: A Clinical Approach, 2nd Edition

News & Notes
1045 "Il Faut Cultiver Notre Jardin"

EID Conference Summaries Online
Summaries of emerging infectious disease conferences are published online only. For more information on conference summary requirements, please refer to author guidelines at http://www.cdc.gov/ncidod/eid/instruct.htm. Submit conference summaries at http://www.eid.manuscriptcentral.com
Host Range Restriction and Pathogenicity in the Context of Influenza Pandemic

Gabriele Neumann* and Yoshihiro Kawaoka*†‡

Influenza A viruses cause pandemics at random intervals. Pandemics are caused by viruses that contain a hemagglutinin (HA) surface glycoprotein to which human populations are immunologically naive. Such an HA can be introduced into the human population through reassortment between human and avian virus strains or through the direct transfer of an avian influenza virus to humans. The factors that determine the interspecies transmission and pathogenicity of influenza viruses are still poorly understood; however, the HA protein plays an important role in overcoming the interspecies barrier and in virulence in avian influenza viruses. Recently, the RNA polymerase (PB2) protein has also been recognized as a critical factor in host range restriction, while the nonstructural (NS1) protein affects the initial host immune responses. We summarize current knowledge of viral factors that determine host range restriction and pathogenicity of influenza A viruses.

Of the 3 types of influenza viruses (A, B, and C), only influenza A viruses are established in animals other than humans. Influenza pandemics are caused by viruses that have a hemagglutinin (HA) to which most humans have no immune memory. The strains of the 1957 Asian and 1968 Hong Kong pandemics had HAs derived from an avian virus. Although little information exists about avian influenza viruses at the time of the Spanish influenza pandemic, the HA of the virus responsible for that outbreak is also thought to be of avian origin. Since avian influenza viruses do not replicate efficiently in humans and nonhuman primates, they must overcome host range restriction for the avian virus HA to be introduced into human populations. The molecular basis for host range restriction is not well understood; however, HA plays a key role in the restriction of interspecies transmission.

The Spanish influenza was among the most devastating infectious diseases in history. At least 20 million people died worldwide. Antimicrobial agents were not available in 1918; however, existing evidence suggests that this high death toll was due to the extreme virulence of the virus. Although all 8 RNA segments of the Spanish influenza virus have been sequenced, these sequences offer no explanation for the high virulence. The Spanish influenza exemplifies how the magnitude of a pandemic can be determined by the pathogenicity of the virus.

In this review, we focus on 2 properties of influenza A viruses as they relate to pandemics, host range restriction and pathogenicity. Viral factors that affect these properties are examined.

Viral Proteins Responsible for Host Range Restriction

Viral Glycoproteins

The HA protein mediates virus binding to sialic acid (SA)–containing host cell surface molecules and promotes the release of viral ribonucleoprotein complexes through membrane fusion. By contrast, the sialidase activity of the neuraminidase (NA) protein removes SA to liberate newly synthesized viruses from infected cells. Thus, efficient virus replication requires the balanced actions of HA receptor-binding specificity and NA sialidase activity.

HA Receptor Specificity

Influenza virus infectivity is influenced by 2 entities: SA species (N-acetyleneuraminic acid [NeuAc] and N-glycolyneuramic acid [NeuGc]) and the type of linkage to galactose (sialyloligosaccharides terminated by SA linked to galactose by an α2,6 linkage [Act2,6Gal] or an α2,3 linkage [Act2,3Gal]) on the host cell surface. Human influenza viruses preferentially recognize sialyloligosaccharides containing SAα2,6Gal (1,2), matched by mainly

*University of Wisconsin-Madison, Madison, USA; †University of Tokyo, Tokyo, Japan; and ‡Japan Science and Technology Agency, Saitama, Japan
NeuAcα2,6Gal linkages on the epithelial cells of the human trachea (3). By contrast, avian viruses preferentially recognize SAα2,3Gal sialic acids (1, 2), in accordance with the predominance of sialyloligosaccharides with SAα2,3Gal linkages on the epithelial cells of duck intestine. The epithelial cells of pig trachea contain both types of SAs and both types of linkages (4), which likely explains the high susceptibility of these animals to both human and avian influenza viruses (5). Pigs may therefore serve as a “mixing vessel” for reassortment between these 2 viruses and the source of pandemic strains, although no evidence exists that the 1957 or 1968 pandemic viruses originated in pigs.

Despite these differences in receptor specificity, avian viruses can infect humans and have caused lethal infections (6–8). This fact may be explained by the recent finding that in differentiated cultures of human tracheobronchial epithelium, α2,3-linked SAs were found on ciliated cells, whereas α2,6-linked SAs were present on nonciliated cells (9). The prevalence of cells that possess α2,6 and/or α2,3-linked SAs in the lower respiratory tract remains unknown; however, ciliated cells support avian virus infection. Despite the presence of α2,6-linked SA-bearing cells in differentiated human tracheobronchial epithelium, viruses with avian-type receptor specificity can infect humans, since the index 1997 H5N1 virus isolated from a human preferentially recognized an avian receptor (10). Nevertheless, for efficient human-to-human transmission, HA derived from an avian virus must preferentially recognize the human receptor. This notion is supported by the finding that the earliest isolates in the 1918 (11,12), 1957, and 1968 pandemics preferentially recognize NeuAcα2,6Gal-containing sialyloligosaccharides (13), even though their HAs were derived from avian viruses. Conversion of receptor specificity from SAα2,3Gal to SAα2,6Gal may therefore be critical for generating pandemic influenza viruses.

Sequence comparison, receptor specificity assays, and crystallographic analysis have identified amino acid residues that determine receptor specificity: Gln-226 (found in avian viruses) determines specificity for SAα2,3Gal, whereas Leu-226 correlates with SAα2,6Gal specificity in human H2 and H3, but not H1, viruses (2,13). In all human viruses (with the few exceptions of early isolates from the Asian influenza outbreak [13]), Leu-226 is associated with Ser-228, while Gln-226 is associated with Gly-228 in avian viruses. For H1 viruses, Asp-190 (found in human and swine virus isolates) or Glu-190 (found in avian virus isolates) determines preferential binding to α2,6 or α2,3 linkages, respectively (11–14).

Land-based poultry are thought to play a critical role in the emergence of pandemic influenza viruses. Compared to H5N1 viruses isolated from aquatic birds, those isolated from chickens have significantly lower affinity for NeuAcα2,3Gal (10), similar to human virus isolates; however, H5N1 chicken isolates have not acquired preferential specificity for NeuAcα2,6Gal. H5N1 chicken isolates with reduced avian receptor specificity share 2 characteristic features of human viruses, namely, an additional glycosylation site in the globular head region of HA and a deletion in the NA stalk (see below). Similarly, the receptor specificity of H9N2 viruses isolated from land-based poultry, but not of those isolated from aquatic birds, is similar to that of human isolates (15). Hence, land-based poultry may serve as an intermediate host that facilitates the conversion of avian to human-type receptors. Avian viruses in land-based poultry may, therefore, pose a greater threat to humans than previously thought.

NA Properties

Since efficient release of virus from infected cells requires the removal of SA by NA, the receptor-binding and receptor-destroying properties of HA and NA, respectively, must be balanced. When an avian virus with an N2 NA was introduced into the human population, its SAα2,6 cleavage activity increased (16,17), which suggests it had adapted to the SAα2,6 receptor specificity of human HAs. The NA stalk, which separates the head region with the enzymatic center from the transmembrane and cytoplasmic domains, varies in sequence and length, depending on the virus (18). Typically, shortened stalks result in less efficient virus release since the active site in the head region cannot efficiently access its substrate (19,20). However, naturally occurring avian viruses with shortened stalks are virulent in poultry, and the 1997 H5N1 viruses isolated from patients in Hong Kong (which are believed to have been transmitted to humans from poultry) are characterized by a deletion in the NA stalk (10). Moreover, most recent highly pathogenic H5N1 viruses isolated from terrestrial poultry possess short NA stalks (21).

In avian species, the intestinal tract is the primary site of replication, whereas in humans, influenza virus replication is typically restricted to the respiratory tract. The NA activity of avian H1N1 viruses is more resistant to the low pH environment in the upper digestive tract than is its human or swine-derived counterpart (22). In line with this finding, highly pathogenic H5N1 viruses can replicate in the human intestine, causing gastrointestinal symptoms (23), and are shed in large amounts in stool.

Internal Proteins

Classical coinfection experiments, or reverse genetics experiments that tested multiple gene combinations of 2 parental viruses, suggest that the genes encoding the “internal proteins”—namely, RNA polymerase (PB2, PB1, PA), nucleoprotein (NP), matrix protein (M1, M2), and
nonstructural protein (NS1, NS2/NEP)—also contribute to host range. The contribution of individual proteins to host range restriction, however, likely varies, depending on the test system and the virus strains under investigation.

PB2
PB2 is a component of the viral polymerase complex and, as such, is essential for viral replication. The 1997 H5N1 human virus isolates in Hong Kong have been divided into 2 groups on the basis of their pathogenicity in mice; this classification also generally corresponds to disease severity in humans (24,25). Reverse genetics studies have shown that Lys at position 627 of PB2 (found in all human isolates) determines high pathogenicity in mice, while Glu at this position (found in all avian isolates) determines low pathogenicity (26). However, the nature of the amino acid at position 627 of PB2 does not affect the cell tropism of the virus but rather its replicative ability in mice and probably in humans.

Several other findings underline the importance of residue 627 of PB2: 1) an H7N7 virus isolated from a patient with fatal pneumonia in the Netherlands in 2003 contained Lys at this position, in contrast to viruses isolated from nonfatal cases and from chickens (27); 2) some of the H5N1 viruses isolated from patients in Vietnam are characterized by Lys-627 in PB2 (28); 3) a single reassortant virus bearing an avian virus PB2 gene against a human virus background replicated efficiently in avian but not human cells, a feature that could be traced to the nature of the amino acid at position 627 of PB2 (29); and 4) ribonucleoprotein complexes reconstituted from human or avian polymerase and NP proteins identified residue 627 of PB2 as the major determinant of replication efficiency in mammalian cells (30). Collectively, these findings suggest that a Glu-to-Lys mutation at position 627 of the PB2 protein allows avian viruses to efficiently grow in humans and implicates Lys at this position as an important host range determinant.

Other Components of the Replication Complex
In addition to PB2, the remaining 2 polymerase proteins (PB1 and PA) and the nucleoprotein NP may also contribute to host range. In a minireplicon system, replication in mammalian cells was more efficient with avian than with human virus PB1 proteins (30), which suggests that avian PB1 may have greater activity that could provide a replicative advantage in mammalian systems. This scenario is especially appealing in light of the finding that both the 1957 and 1968 pandemic viruses possessed avian PB1 genes, in addition to avian HA, NA, or both genes (31,32). In one study, however, an avian PB1 gene severely restricted replication of a human virus in mammalian cells and squirrel monkeys (33). These findings seem to contradict a role of avian PB1 in replication in mammalian cells. PA and NP proteins have also been implicated in host range restriction; for example, an avian virus NP segment against a background of a human virus resulted in attenuation in squirrel monkeys (33). However, because of the limited data available, whether these findings indicate a contribution of these gene products to host range restriction or simply reflect incompatibility among the viral gene segments is unclear.

M Segment
Segment 7 of influenza A viruses encodes the M1 matrix and the M2 ion channel proteins. In coinfection experiments that selected for reassortants containing a human virus M gene and an avian virus HA gene, the M segment of an early human virus (A/PR/8/34, H1N1) cooperated efficiently with avian virus HAs, whereas M segments derived from more recent isolates have gradually lost this ability (34). This finding may suggest that currently circulating human viruses are less likely to reassort with avian viruses than their predecessors. If this is the case, the risk for a global pandemic caused by reassortants possessing avian HA, NA, or both segments against a human virus background would be reduced.

Molecular Basis of Pathogenicity
HA Cleavability
The HA protein is synthesized as a precursor protein that is cleaved into 2 subunits (HA1 and HA2) by host cell proteases. HA cleavage is a prerequisite for fusion of the viral and endosomal membranes and, therefore, for viral infectivity (35). Low pathogenic avian influenza viruses possess a single Arg residue at the cleavage site, recognized by extracellular, trypsinlike proteases. These proteases are thought to be secreted only by cells of the respiratory and intestinal tract and consequently limit infections to these organs. By contrast, highly pathogenic avian viruses possess multiple basic amino acids at the cleavage that are recognized by ubiquitous, intracellular, subtilisin-like proteases that thus trigger systemic infection. In addition, HA cleavability is affected by the absence or presence of a carbohydrate side chain near the cleavage site that may interfere with the accessibility of host proteases to the cleavage site (36). The acquisition of a highly cleavable HA converted an avirulent strain to virulence in Pennsylvania in 1983 (H5N2), Mexico in 1994 (H5N2), Italy in 1997 (H7N1), Chile in 2002 (H7N3), and Canada in 2004 (H7N3) (Table). HA cleavability is, therefore, considered the major determinant of tissue tropism of avian influenza viruses (47). This correlation seems to extend to humans, since all avian viruses that have killed humans possess a highly cleavable HA (6,7,27), and an H5N1
mutant virus whose HA cleavage site had been changed to an avirulent type was attenuated in mice (26).

Role of NS1 in Antagonizing Cellular Immune Responses

Pathogenesis depends partly on the ability of a virus to evade or suppress the host immune response. The NS1 protein, encoded by segment 8, plays a central role in this process by countering the cellular interferon (IFN) response in a 2-pronged approach: 1) by binding to double-stranded RNA, thereby suppressing the activation of double-stranded RNA-activated protein kinase, a known stimulator of type I IFN, and 2) by preventing the activation of transcription factors such as ATF-2/c-Jun, NF-κB, and IRF-3/5/7, all of which stimulate IFN production (42,43). The NS gene of the 1918 Spanish flu blocked the expression of IFN-regulated genes in human cells more efficiently than did the NS gene of the A/PR/8/34 (H1N1) virus (44), which suggests that the NS genes of highly pathogenic viruses may be more proficient in countering the host immune response than those of less pathogenic viruses.

Viruses containing the NS gene of the 1997 H5N1 virus are potent inducers of proinflammatory cytokine genes, particularly tumor necrosis factor-α (TNF-α) and IFN-β in human primary monocyte-derived macrophages (45). Similarly, 2003 human H5N1 isolates induce high levels of proinflammatory cytokines in primary human macrophages (46). These in vitro findings are substantiated by reports of unusually high serum concentrations of chemokines in patients infected with H5N1 influenza viruses. High levels of macrophage-derived chemokines and cytokines were also induced by a recombinant virus containing a gene segment of the 1918 Spanish flu; in this case, however, the HA segment stimulated the increased levels of chemokines and cytokines (14,47). This upregulation of cytokine function at later phases of infection may account for the unusual clinical signs and symptoms and the degree of disease severity associated with human infections of highly pathogenic influenza viruses.

Highly pathogenic H5N1 viruses not only trigger the overproduction of proinflammatory cytokines but also are resistant to the antiviral effects of IFN and TNF-α. Pretreatment of porcine lung epithelial cells with IFN-α, IFN-γ, or TNF-α has no effect on the replication of a recombinant human H1N1 virus possessing the NS gene of the 1997 H5N1 virus but abolishes replication of the parental human H1N1 virus possessing the NS gene of the 1997 H5N1 virus but abolishes replication of the parental human H1N1 virus (48,49). Resistance to the antiviral effects of IFN and TNF-α is associated with glutamic acid at position 92 of the NS1 protein, as demonstrated by reverse genetics studies. These in vitro data extend to in vivo findings, since pigs infected with a virus containing Glu-92 in NS1 experience higher virus titers and body temperatures than those infected with a control virus (48,49). Collectively, these findings indicate that NS1 induces a cytokine imbalance that likely contributes to the extreme pathogenicity of avian influenza viruses in humans.

Conclusions

One might speculate that the next pandemic may be caused by highly pathogenic H5N1 viruses that acquire the ability to be efficiently transmitted among humans, or by H9N2 viruses, which are as prevalent as H5N1 viruses in Asia and in some cases already recognize human receptors. Further investigation of the molecular basis of host range restriction is therefore important. In addition, a better understanding of the mechanisms and consequences of
chemokine/cytokine imbalance caused by highly pathogenic avian viruses is essential, as is a greater appreciation for the contributions of other viral properties, such as replicative ability, to pathogenesis.

Dr Neumann is a research associate professor at the University of Wisconsin-Madison, Madison, Wisconsin. Her research interests are the pathogenicity of influenza and Ebola viruses and the development of reverse genetics techniques for negative-strand RNA viruses.

Dr Kawaoka is a professor at the University of Wisconsin-Madison and at the University of Tokyo, Tokyo, Japan. His research focuses on the molecular biology and pathogenesis of influenza and Ebola viruses.

References

8. Fouchier RA, Schneeberger PM, Rozendaal FW, Broekman JM, Kemink SA, Munster V, et al. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A. 2004;101:356–61.
27. Fouchier RA, Schneeberger PM, Rozendaal FW, Broekman JM, Kemink SA, Munster V, et al. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A. 2004;101:1356–61.

Address for correspondence: Yoshihiro Kawaoka, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53706, USA; email: kawaokay@svm.vetmed.wisc.edu
After a 15-year period of low incidence, dengue has reemerged in Singapore in the past decade. We identify potential causes of this resurgence. A combination of lowered herd immunity, virus transmission outside the home, an increase in the age of infection, and the adoption of a case-reactive approach to vector control contribute to the increased dengue incidence. Singapore’s experience with dengue indicates that prevention efforts may not be sustainable. For renewed success, Singapore needs to return to a vector control program that is based on carefully collected entomologic and epidemiologic data. Singapore’s taking on a leadership role in strengthening disease surveillance and control in Southeast Asia may also be useful in reducing virus importation.

Dengue fever (DF) and dengue hemorrhagic fever (DHF) are reemerging diseases that are endemic in the tropical world. Disease is caused by 4 closely related dengue viruses that belong to the genus Flavivirus and are transmitted principally by the Aedes aegypti mosquito. Other mosquito species, such as A. albopictus and A. polynesiensis, can transmit epidemic dengue but do so less efficiently (1). The virus has 4 antigenically similar but immunologically distinct serotypes. Infection confers lifelong immunity to the infecting serotype but not to the remaining 3; therefore, a person can be infected with dengue virus up to 4 times during his or her lifetime. Furthermore, epidemiologic observations suggest that previous infection increases risk for DHF and dengue shock syndrome (DSS) in subsequent infections (2). These conditions are characterized by plasma leakage as a result of alteration in microvascular permeability (3). While DF may cause substantial morbidity, the death ratio of DHF and DSS can be as high as 30% if the disease is not properly managed (4). As yet, no specific treatment for DF or DHF is available, although efforts to develop an anti-dengue drug are in progress.

While vaccines for other flaviviruses such as yellow fever and Japanese encephalitis have been developed, dengue vaccine development is complicated by the need to incorporate all 4 virus serotypes into a single preparation. An approved vaccine is not likely to be available for 5 to 7 years; the only way to prevent dengue transmission, therefore, is to reduce the population of its principal vector, A. aegypti.

Dengue has been successfully prevented through vector control in 3 instances. The first of these was the highly successful, vertically structured paramilitary hemispheric eradication campaign directed by the Pan American Sanitary Board from 1946 to 1970 (5). The second was also a rigorous, top-down, military-like vector control operation in Cuba that was based on intensive insecticidal treatment followed by reduction of available larval habitats (source reduction) in 1981 (6). Neither of these programs, however, was sustainable. The third successful program was in Singapore.

Vector Control in Singapore

DHF appeared in Singapore in the 1960s and quickly became a major cause of childhood death. Public health response to dengue began in 1966, when the Vector Control Unit was set up within the Quarantine and Epidemiology Branch, initially in the Ministry of Health but transferred to the Ministry of the Environment in 1972, when DHF was made a notifiable disease (7); DF was made notifiable in 1977. From 1966 to 1968, following a series of entomologic surveys (8–12) and a pilot project to control the Aedes vectors in an area with high incidence of DHF (13), a vector control system based on entomologic surveillance and larval source reduction (i.e., reducing the availability of Aedes larval habitats) was developed; the system was implemented in 1968 (7). The thrust of this program was that mosquito breeding precedes disease

*DSO National Laboratories, Singapore; †Ministry of Health, Singapore; and ‡University of Hawaii at Manoa, Honolulu, Hawaii, USA
transmission and controlling the vector population before disease is detected would reduce transmission. In a pilot project, this approach reduced the A. aegypti population in a 3-month period from 16% to 2%, as measured by the premises index, which is the percentage of inspected premises found to have containers with A. aegypti larvae or pupae (13). To maintain this low vector population density, however, the pilot study concluded that public involvement was necessary because the vector repopulates the area soon after vector control operations move to another site (13). The vector control program thus has 2 elements in addition to source reduction: public education and law enforcement. The Destruction of Disease Bearing Insects Act of 1968 was enacted to discourage persons from intentionally or unintentionally propagating mosquitoes.

The implementation of this vector control program was completed in 1973. The premises index since then has been ≤2%; achieving an index of zero has been difficult since natural breeding habitats are created as quickly as they are eliminated (14). With the reduced A. aegypti population, Singapore experienced a 15-year period of low dengue incidence. However, since the 1990s, the incidence of dengue has surged despite the low premises index (Figure 1).

Singapore’s experience with dengue bodes ill for the sustainability of preventive efforts. Vector control may have worsened the dengue situation in Singapore because overt dengue attack rates in the 1990s and early 2000s were severalfold higher than those in the 1960s. We have identified several factors that may have contributed to this resurgence: lowered herd immunity, increasing virus transmission outside the home, more clinically overt infection as a consequence of adult infection, and a shift in the surveillance emphasis of the vector control program. We discuss each of these factors and suggest possible solutions.

Lowered Herd Immunity

Several explanations have been put forth to account for the resurgence of dengue in Singapore despite the vector control program (Figure 1). Reduced dengue transmission in the 1970s and 1980s resulted in a concomitant reduction in herd immunity to dengue virus (15). Low levels of population immunity provide an ideal condition for dengue transmission despite low Aedes mosquito density (16). This hypothesis is supported by observations made from a series of serologic surveys conducted in 1982–1984, 1990–1991, and 1993, in which a declining trend of seroprevalence among children was observed (17).

Low herd immunity in the Singapore population could also be deduced by comparing seroprevalence ratios with those of other dengue-endemic countries. The seropositive ratios of 6.7% in primary school children and 42% in adults (18) are in contrast to ratios reported in other dengue-endemic countries such as Thailand, where primary school children in Ratchaburi Province had a seropositive rate of 71% (19).

Transmission Outside the Home

Lowered herd immunity is, however, insufficient to account for the resurgence of dengue in Singapore. Dengue is predominantly a childhood disease in most parts of Southeast Asia, and more women than men are infected as adults. This disease pattern fits the behavior of A. aegypti. This species of mosquito is highly domesticated, lives and breeds indoors, has a limited flight range, and feeds almost exclusively on humans. Consequently, persons who spend more time at home during the daytime, i.e., mothers and children, are more likely to be infected than those who leave the home for work. In Singapore, however, the incidence of DF/DHF is lower in children than in adults (14). This finding could be due to a high proportion of subclinical infection in children or a lack of infection in the domestic environment.

To investigate this observation, a serologic survey of 1,068 children ≤15 years of age was conducted during an 18-month period in 1996 and 1997 (17). All children who were born at or who visited outpatient clinics of the National University Hospital, which serves the entire country, for routine check ups and vaccinations were included in this study, with parental consent. This population would have grown up during dengue resurgence. The results of this survey showed that preschool children, 10 months to 5 years of age, had a seroprevalence ratio of 0.77%, children 6–10 years of age and 11–15 years of age have prevalence ratios of 6.7% and 6.5%, respectively (17).
School-age children were therefore 9× more likely to have antibodies to dengue than were preschool children (17). Preschool children spend most of their time either at home or at a nursery or kindergarten. Most of these facilities are run out of residences or shophouses in government-owned, high-rise accommodations. Formal half-day schooling starts at the age of 6 years, often with after-school extracurricular activities. The significant difference in seropositivity between preschool and school-age children suggests that the risk of acquiring dengue in Singapore is greater when a person spends more time away from home (17).

This hypothesis is supported by the lower premises index in residences than nonresidences in 1997. Residential properties in 1997 had low premises indexes; 2.1% in landed premises and 0.6% in apartments compared to indexes in schools (27.0%), construction sites (8.3%), factories (7.8%), and vacant properties (14.6%) (20). In contrast, the premises index in 1966 was highest in residences: slum housing (27.2%), shophouses (16.4%), and apartments (5.0%) (9). Furthermore, women, who are more likely than men to care for children at home, have a lower incidence of dengue, as indicated by the male-to-female disease ratio of 1.6:1 (21). Collectively, these findings suggest that substantial virus transmission occurs away from the home.

Dengue in Adults

As a consequence of lowered herd immunity and transmission outside the home, cases in adults predominate in Singapore. This fact is reflected in the steady decline in the proportion of patients <15 years of age, while the proportion of patients ≥25 years of age has increased over the years (Figure 2). This predominance of cases in adults may also contribute to the resurgence in dengue incidence. While most dengue infections, particularly primary infections in young children, are mild or silent (22,23), infections in adults are more likely to be clinically overt. In a recent dengue fever outbreak at a construction site in Singapore, patients had serologic and virologic evidence of primary dengue infection with serotype 2 virus (24). A serologic survey was conducted in the affected construction site; 274 of 360 workers volunteered for the study. With anti-dengue immunoglobulin M used as a marker, the survey identified 27 workers with recent infection. The illness was sufficiently debilitating for 24 (88.9%) of them to seek medical attention (24). Results support the commonly held perception that dengue infection in adults is more likely to be clinically overt than in children, contributing to the increase in the overall incidence of dengue.

A second consequence of the increase in patient age may be in the outcome of dengue infection. With the increase in patient age, most dengue cases in Singapore manifest as DF instead of DHF (Figure 1), even though a substantial proportion of adults have neutralizing antibodies to >2 serotypes of the dengue virus (25). The observed epidemiologic trend in Singapore therefore suggests that adults, while still susceptible, are at lower risk for DHF than are children. In the 1981 dengue outbreak in Cuba, hospitalization and death rates for severe and very severe dengue, postulated to be equivalent to DHF and DSS, were highest in those <15 years of age and those >60 years of age (26). Hospitalization and death rates were lower for those whose ages fell between these age groups, despite the same secondary infection with dengue serotype 2 virus (26). Results from Cuba support the hypothesis that adults are at lower risk for DHF and DSS than are children.

These age-dependent differences in the outcome of dengue infection may be due to differences in vascular permeability; children have a greater propensity for vascular leakage, under normal physiologic conditions, than do adults (27). This higher baseline of microvascular permeability in children could result in less ability to accommodate extraneous factors, such as dengue infection, that increase vascular permeability (27).

While the risk for DHF in adults is low compared to that in children, it is not absent. Besides host factors and secondary infection, certain strains of dengue viruses have been associated with severe disease (28,29). Although more work is needed to elucidate the role that age and other host and viral factors play in the pathogenesis of DHF, the current low DHF incidence cannot be taken as invulnerability to DHF outbreaks.
Shift in Surveillance Emphasis

Without a vaccine or antiviral drug, an effective vector control program is the only means to reduce dengue transmission. While most components of the vector control program remain similar to those of the 1970s, differences exist. Over time, the program evolved and its strategy changed. In particular, emphasis is now placed on early detection of cases and identifying whether they cluster in time and space, which is taken to indicate active virus transmission in the area. Detecting such clusters triggers emergency vector control operations, as was observed during a recent review of dengue in Singapore (30).

This shift of emphasis away from vector surveillance toward case detection cannot be linked with certainty to specific factors or events. Previous reviews of the dengue control program in Singapore in 1993 (31), 1994 (32), and 1997 (33) made the same observation. The shift probably took place in the late 1980s or early 1990s since Chan’s report on the program in 1985 continued to emphasize vector surveillance (7). The shift in emphasis coincides with the latter stages of the 15-year period of low dengue incidence. With vector control, dengue transmission may have become sporadic and isolated, making perifocal mosquito control in response to reported cases more widely practiced as an efficient means of using public resources. Entomologic surveillance-based vector control still exists but only in limited, dengue-sensitive areas (31–33).

Responding to dengue cases and clusters, however, has limited effectiveness in preventing virus transmission, since such an approach ignores virus transmission from persons with subclinical infection or mild undifferentiated fever to uninfected mosquitoes. Furthermore, only ~30% of cases can be mapped to a cluster. Most reported dengue cases occur outside known clusters. No evidence shows that emergency control measures, particularly the use of chemical insecticides, are effective after cases have already been detected (31).

Solutions

Observations made on epidemiologic features of dengue in Singapore indicate that further studies on the exact sites of dengue transmission need to be conducted. While the serologic study in children and the increasing proportion of adult infections, particularly among men, suggest that transmission may occur outside the home, further epidemiologic and virologic studies are needed. An ongoing case-control study, combining virus isolation, serotype identification, and genetic characterization of the virus by genome sequence analysis, may prove useful. Shedding more light on virus transmission dynamics would guide use of public health resources.

In addition to epidemiologic studies, more detailed entomologic research is needed. Larval source reduction and control are the most effective methods to deal with the Aedes vector. With lowered herd immunity and the possibility of virus transmission in nondomestic places, the vector control program in Singapore must return to an approach that emphasizes vector surveillance instead of early case detection. A repeat of some of the entomologic studies that were performed from 1966 to 1968 (8–12) may be fruitful. Results from such studies could help in revising the current vector control strategy and devising effective systems for surveillance of A. aegypti. Research on vector bionomics and evaluation of the cost-effectiveness of various control strategies may also be rewarding. Alternative approaches that complement larval source reduction should also be considered. We suggest 2 such approaches.

Ovitraps

Public involvement in Singapore is crucial to the sustainability of a vector control program (7,13). Public education is therefore essential for Singapore’s vector control effort. National campaigns, such as the month-long “Keep Singapore Clean and Mosquito Free” campaign in 1969, have been conducted, and schoolchildren have been educated to carry out source reduction in their homes. However, 2 community-based surveys in 1992 and 1995 showed that while the population’s awareness of the need for dengue control is high, many respondents did not believe that mosquitoes were in their homes and did not carry out necessary preventive measures (34). The survey population also reported that they checked their homes for mosquito breeding after having been fined under the Destruction of Disease-Bearing Insects Act, which has been superseded by the 1998 Control of Vectors and Pesticide Act. The problem with threatening the public with legal repercussions is that in the absence of checks by vector control officers, the public is not motivated to prevent mosquito breeding. What may be necessary would be a method of engaging the public through tools that provide regular positive feedback to the users. The recent positive experience in Vietnam is a case in point (35). Members of the public were closely engaged in the vector control effort by cleaning public areas and using copepods in water storage tanks. While the water supply system in Singapore is vastly different from that in Vietnam, the principle of engaging the public with an effective larvicidal tool could be adopted.

A larvicidal ovitrap was introduced by Lok et al. (36) that consists of a black, water-filled cylindrical container with a flotation device made up of a wire mesh and 2 wooden paddles. Eggs laid by mosquitoes on the wooden paddle hatch, and larvae develop in the water under the wire mesh. Resultant adult mosquitoes are trapped under the wire mesh and drown (Figure 3).
The use of such an ovitrap has, in 2 previous instances, significantly reduced the A. aegypti population (37,38). The drawback in both these instances was that a large number of vector control officers were required to inspect and maintain the ovitraps. We suggest that such a trap could be used and maintained by members of the public instead of limiting its use to public employees. While training in the use and maintenance of ovitraps may be needed, seeing trapped mosquitoes may provide both positive feedback and a regular reminder of the need to be vigilant in efforts to curb the growth of the mosquito population.

An alternative to this ovitrap is a gravid female mosquito trap recently developed by Liew and Giger (patent pending). This device makes use of nondrying glue to trap gravid female mosquitoes that are attracted to water in the cylindrical device. In cage studies, this device maintained its effectiveness for up to 9 months (C. Liew, pers. comm.). Coupled with public education, using ovitraps or gravid female traps may sustain vector control more effectively than law enforcement.

Strengthening Regional Vector Control

A bolder, but possibly more rewarding, approach would be for Singapore to take the lead in strengthening disease surveillance and vector control in the Southeast Asian region, where dengue remains hyperendemic. The constant importation of dengue virus by travelers to Singapore may contribute to the observed dengue resurgence (39,40). Each year, 8 million visitors arrive in Singapore, not including residents who travel abroad or the thousands who commute across the causeway from the southern peninsula of Malaysia. The Singapore Changi Airport alone handles >20 million passengers per year, a rate that might better illustrate the amount of human traffic through Singapore. In the past 5 years, 5%-10% of dengue cases in Singapore have been imported. Most of these cases are from Indonesia, Thailand, and Malaysia. Collectively, these data suggest that symptomatic and asymptomatic persons can easily enter Singapore and infect vector mosquitoes. This problem will continue to expand, since travel and trade in the region are likely to increase. Expanding resources and effort toward achieving vector control in Southeast Asian countries may reduce importation of dengue and overall dengue incidence in Singapore.

Indeed, the mechanism to facilitate regional cooperation for disease surveillance and control is already being established. The Regional Emerging Disease Intervention Centre officially opened in Singapore on May 24, 2004. A joint United States–Singapore collaboration, its mission involves extending the perimeter of defense for emerging infectious diseases, widening the international network for research, and translating research findings into improved public health. While its immediate focus is on avian influenza and the threat of a pandemic, dengue could become a key item on its agenda, and a regional, surveillance-based vector control effort could be initiated.

Conclusions

In the absence of a safe and effective tetravalent vaccine for dengue viruses, vector control is the only method to prevent viral disease. The main lesson learned from Singapore’s experience is that for a vector control program to be effective, it must be based on carefully collected and analyzed epidemiologic and entomologic surveillance data, with particular emphasis on ecologic factors that determine where, how, and when to initiate vector control, which Chan termed “vector epidemiology” (7). Reacting to cases, despite early and rapid diagnosis, is unlikely to reduce the incidence of dengue. An effective vector control
program will require an increase in expenditures, new strategies to lower and limit the *A. aegypti* population, and limiting importation of dengue virus into Singapore.

The Singapore experience also underscores the fact that dengue control must be a regional effort. Barring eradication of the mosquito vector, countries that control dengue transmission are doomed to failure if neighboring countries do nothing to prevent continued epidemic transmission. Thus, the combination of decreasing herd immunity and increasing imported dengue infection make preventing dengue transmission difficult, even with *A. aegypti* indexes as low as 2%, as exists in Singapore.

A final justification for regional *A. aegypti* control in Southeast Asia is the potential for epidemic urban yellow fever in the American tropics, risk for which is at its highest level in 60 years. With modern transportation, urban yellow fever could move quickly from the American tropics to the Asia-Pacific region, where ≈2 billion people are at risk. While a safe, effective vaccine for yellow fever is available, it is not manufactured in large enough quantities to prevent or control epidemics in Asia. Thus, regional *A. aegypti* control would be an effective preventive measure for epidemic dengue and yellow fever in Asia.

Dr Ooi is Program Director for Biological Defense at the Defense Medical and Environmental Research Institute, a division of the DSO National Laboratories, Singapore. His research interests are in the epidemiology and laboratory diagnosis of emerging and reemerging infectious diseases.

References

7. Chan KL. Singapore’s dengue haemorrhagic fever control program: a case study on the successful control of *Aedes aegypti* and *Aedes albopictus* using mainly environmental measures as a part of integrated vector control. Tokyo: Southeast Asian Medical Information Center; 1985.
etymology

dengue

[den'gê]

An acute, self-limited disease characterized by fever, headache, myalgia, and rash caused by any of 4 related but distinct viruses of the genus Flavivirus and spread by Aedes mosquitoes. Dengue (a Spanish homonym for the Swahili ki denga pepo, which describes a sudden, cramplike seizure caused by an evil spirit) is believed to have been first recorded in a Chinese medical encyclopedia from the Chin Dynasty (265–420 AD). The Chinese called dengue “water poison” and knew that it was somehow associated with flying insects.

Severe Community-acquired Pneumonia Due to Staphylococcus aureus, 2003–04 Influenza Season

Jeffrey C. Hageman,* Timothy M. Uyeki,* John S. Francis,† Daniel B. Jernigan,* J. Gary Wheeler,‡ Carolyn B. Bridges,* Stephen J. Barenkamp,§ Dawn M. Sievert,¶ Arjun Srinivasan,* Meg C. Doherty,† Linda K. McDougal,* George E. Killgore,* Uri A. Lopatin,® Rebecca Coffman,** J. Kathryn MacDonald,†† Sigrid K. McAllister,* Gregory E. Fosheim,* Jean B. Patel,* and L. Clifford McDonald*

During the 2003–04 influenza season, 17 cases of *Staphylococcus aureus* community-acquired pneumonia (CAP) were reported from 9 states; 15 (88%) were associated with methicillin-resistant *S. aureus* (MRSA). The median age of patients was 21 years; 5 (29%) had underlying diseases, and 4 (24%) had risk factors for MRSA. Twelve (71%) had laboratory evidence of influenza virus infection. All but 1 patient, who died on arrival, were hospitalized. Death occurred in 5 (4 with MRSA). *S. aureus* isolates were available from 13 (76%) patients (11 MRSA). Toxin genes were detected in all isolates; 11 (85%) had only genes for Panton-Valentine leukocidin. All isolates had community-associated pulsed-field gel electrophoresis patterns; all MRSA isolates had the staphylococcal cassette chromosome mec type IVa. In communities with a high prevalence of MRSA, empiric therapy of severe CAP during periods of high influenza activity should include consideration for MRSA.

Staphylococcus aureus is an infrequent cause of community-acquired pneumonia (CAP), accounting for ≈3% of cases in which a bacterial cause is identified, but it is a recognized cause of influenza-associated CAP (1–4). Methicillin-resistant *S. aureus* (MRSA) commonly causes nosocomial pneumonia, but relatively few cases of MRSA CAP have been reported (5,6).

Recent reports have shown that MRSA is an emerging cause of skin and soft tissue disease among otherwise healthy persons who have little or no contact with healthcare settings (7,8). These community-associated strains of MRSA differ from healthcare-associated strains by having a characteristic methicillin-resistant gene cassette (staphylococcal cassette chromosome mec [SCCmec] type IV) that elicits certain toxins, notably Panton-Valentine leukocidin (PVL), resistance generally limited to the β-lactams and macrolides, and specific molecular typing patterns (8–10).

During the 2003–04 influenza season, the Centers for Disease Control and Prevention (CDC) received reports of severe complications after influenza virus infection, including pneumonia caused by *S. aureus* and MRSA, among previously healthy children and adults. We report the demographic and clinical features of 17 patients with *S. aureus* and MRSA CAP associated with influenza or influenzalike illness (ILI) and describe the microbiologic characteristics of the *S. aureus* isolates.

Methods

Case Definition and Case Finding

A case of *S. aureus* CAP associated with ILI (S. aureus CAP-ILI) was defined as pneumonia occurring during the 2003–04 influenza season in a person with either laboratory-confirmed influenza virus infection, clinician-detected ILI (e.g., fever plus sore throat or cough), or both during the 2003–04 influenza season from whom a speci-
men (i.e., blood, sputum, or pleural fluid) collected <48 hours after hospitalization yielded *S. aureus*. Cases were identified by following up on reports of influenza-associated staphylococcal complications on 2 influenza assessment surveys conducted in December 2003 by the Infectious Diseases Society of America Emerging Infections Network, which consists of 859 infectious disease consultants (11). These surveys collected information on the 2003–04 influenza outbreak, including influenza-related complications, such as secondary bacterial infections, among pediatric and adult populations. Reports were also received through state and local health departments. Detailed clinical information on 4 cases was presented previously (12). We contacted clinicians and collected information by using a standardized data collection form on patient demographics, past medical history, signs and symptoms at the time the patient sought medical care, hospitalization, laboratory data including influenza testing, and risk factors for acquisition of MRSA (i.e., hospitalization, dialysis, surgery, or residence in a long-term care facility in the previous year; ever having an MRSA infection; and presence of percutaneous device or catheter at time of positive *S. aureus* culture). In addition, data on empiric (i.e., before *S. aureus* culture results were known) and targeted (i.e., after *S. aureus* culture results known) antimicrobial therapy and clinical outcomes were collected. Discordant empiric or targeted therapy was defined as a drug regimen that did not include an antimicrobial agent to which *S. aureus* was susceptible.

Laboratory Procedures

S. aureus isolates from patients were collected and sent to CDC for characterization. All available isolates were tested for susceptibility to chloramphenicol, clindamycin, erythromycin, gentamicin, levofloxacin, linezolid, oxacillin, penicillin, rifampin, tetracycline, trimethoprim-sulfamethoxazole, and vancomycin by using broth microdilution, as recommended by the Clinical Laboratory Standards Institute (13). Inducible clindamycin resistance was determined for isolates with the erythromycin-resistant/clindamycin-susceptible phenotype by using the double-disk diffusion test (D-zone test) (13). All isolates were tested for genes encoding selected toxins (staphylococcal enterotoxin [SE] A–E, H; PVL; and toxic shock syndrome toxin 1) by multiplex real-time polymerase chain reaction (PCR) using primers prepared at CDC. All MRSA isolates underwent typing of their SCCmeC gene cassette with PCR (14). Genotyping of all isolates was performed by pulsed-field gel electrophoresis (PFGE) with *Smal*-digested DNA, and gels were analyzed as previously described (9).

Results

Case Characteristics

From November 10, 2003, to January 4, 2004, 17 cases of *S. aureus* CAP-ILI were reported from 9 states (Alabama, Arkansas, Illinois, Maryland, Michigan, Missouri, Oklahoma, Texas, and Washington); 15 (88%) were due to MRSA. The median age of the 17 case-patients was 21 years; 5 (29%) patients had underlying diseases, and 4 (24%) had risk factors for MRSA (Table 1).

Table 1. Demographic and clinical characteristics of cases of *Staphylococcus aureus* community-acquired pneumonia associated with influenzalike illness, influenza season 2003–04

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No. (%)</th>
<th>N = 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, y (range)</td>
<td>21 (3 mo–62 y)</td>
<td>8 (47)</td>
</tr>
<tr>
<td>Sex, male</td>
<td>10 (59)</td>
<td>7 (41)</td>
</tr>
<tr>
<td>Underlying disease†</td>
<td>5 (29)</td>
<td>4 (24)</td>
</tr>
<tr>
<td>Documented influenza vaccination</td>
<td>1 (6)</td>
<td></td>
</tr>
<tr>
<td>Laboratory-confirmed</td>
<td>12 (71)§</td>
<td></td>
</tr>
<tr>
<td>Rapid antigen test</td>
<td>10 (59)</td>
<td></td>
</tr>
<tr>
<td>Paired serology</td>
<td>2 (12)</td>
<td></td>
</tr>
<tr>
<td>Fluorescent antibody staining</td>
<td>2 (12)</td>
<td></td>
</tr>
<tr>
<td>Cough</td>
<td>14 (82)</td>
<td></td>
</tr>
<tr>
<td>Myalgias</td>
<td>9 (53)</td>
<td></td>
</tr>
<tr>
<td>Sore throat</td>
<td>6 (35)</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>6 (35)</td>
<td></td>
</tr>
<tr>
<td>Shortness of breath</td>
<td>5 (29)</td>
<td></td>
</tr>
<tr>
<td>Rigors</td>
<td>4 (24)</td>
<td></td>
</tr>
<tr>
<td>Temperature >38°C</td>
<td>12/13 (92)</td>
<td></td>
</tr>
<tr>
<td>Hypotension (systolic blood pressure <90 mm Hg)</td>
<td>12/13 (93)</td>
<td></td>
</tr>
<tr>
<td>Normal or elevated leukocyte count†</td>
<td>12/16 (75)</td>
<td></td>
</tr>
<tr>
<td>Median leukocyte count (range)</td>
<td>16,500 mm³ (6,000–295,000)</td>
<td></td>
</tr>
<tr>
<td>Leukopenia (<3,500/mm³)</td>
<td>4/16 (25)</td>
<td></td>
</tr>
<tr>
<td>Thrombocytopenia (<150,000/mm³)</td>
<td>6/16 (38)</td>
<td></td>
</tr>
</tbody>
</table>

*MRSA, methicillin-resistant *S. aureus*.
†One each of diabetes, multiple sclerosis, prune belly syndrome, cystic fibrosis, eczema.
‡Hospitalization, dialysis, surgery, or residence in a long-term care facility in the previous year; ever having an MRSA infection; and presence of percutaneous device or catheter at time of culture.
§One patient had influenza infection confirmed by all methods.
‖One patient died on arrival at the hospital.
#Not mutually exclusive.
Although 5 (29%) patients were in the primary target groups (i.e., underlying illness \(n = 2 \), age 50–64 years \(n = 3 \)) recommended for annual influenza vaccination under current guidelines, only 1 (20%) had documented influenza vaccination during 2003–04. All case-patients had clinician-determined ILI. Twelve (71%) of the 17 patients had laboratory-confirmed influenza virus infection; 10 of these were confirmed by rapid antigen testing. \(S. \) \textit{aureus} was recovered from multiple sources including sputum (14 [82%]), blood (8 [47%]), and pleural fluid (4 [24%]).

Respiratory symptoms began a median of 4 days (range 1–17 days) before \(S. \) \textit{aureus} specimen collection. All patients had >1 of the following at the time they sought medical care: cough, myalgias, sore throat, headache, or shortness of breath. Most had fever, hypotension, and normal or elevated leukocyte counts. Four (25%) had leukopenia, and 6 (38%) had thrombocytopenia. Radiologic information was available for review for 16 patients, and all had documentation of an infiltrate. Information on empiric antimicrobial therapy was available for 15 patients; most received a third-generation cephalosporin (9 [60%]), respiratory fluoroquinolone (i.e., levofloxacin, gatifloxacin, or moxifloxacin) (7 [47%]), or vancomycin (10 [67%]); most patients (13 [87%]) received multiple antimicrobial agents. Discordant empiric antimicrobial therapy was documented in 3 (20%) patients, all of whom received a third-generation cephalosporin with or without a macrolide. Information on targeted antimicrobial therapy was provided for 13 patients (2 died before targeted treatment could be initiated) and consisted of vancomycin (10 [77%]), linezolid (2 [15%]), clindamycin (5 [38%]), and fluoroquinolones (4 [31%]); many patients (9 [69%]) received multiple antimicrobial drugs.

One patient was pronounced dead on arrival at the emergency department. Most patients were admitted to the intensive care unit and required intubation, and placement of chest tubes (Table 2). The median number of hospital days for patients was 13 (range 1–108 days). Five patients (4 with MRSA) died; their median age was 28 years (range 2 months–52 years), and only 1 had underlying illness (diabetes). Most died within 1 week of symptom onset.

Laboratory Findings

\(S. \) \textit{aureus} isolates were available from 13 (76%) patients (11 MRSA, 2 methicillin-susceptible \(S. \) \textit{aureus}) from 9 states. Toxin genes were detected in all isolates; 11 (85%) had only the PVL genes, whereas 2 (15%) had genes for SEA, SEB, and SEH (Figure) All MRSA isolates had the \(SCCmec \) type IVa resistance gene cassette. Antimicrobial drug–susceptibility testing results for the MRSA isolates showed that all were resistant to oxacillin and erythromycin but susceptible to linezolid, rifampin, trimethoprim-sulfamethoxazole, and vancomycin; 10 (91%) and 6 (55%) isolates, respectively, were susceptible to clindamycin and levofloxacin. The 1 MRSA isolate that was not susceptible to clindamycin demonstrated inducible resistance by the D-zone test. In 4 cases, isolates were not available for testing at CDC. Antimicrobial drug susceptibility test results performed at the treating facility indicated that these 4 isolates were MRSA and nonsusceptible to macrolides (n = 4), clindamycin (n = 1), and levofloxacin (n = 1).

Analysis of PFGE results showed that 11 (85%) were community-associated pulsed-field types USA300, and 2 (15%) were USA400, according to CDC criteria (Figure). Of the 10 MRSA isolates that were classified as pulsed-field type USA300, 8 (80%) from 6 different states had indistinguishable banding patterns and were further classified as USA300 subtype 0114. These MRSA isolates differed from pulsed-field types associated with healthcare-related strains (USA100 and 200) (9).

Discussion

We report the emergence of \(S. \) \textit{aureus} and MRSA as a cause of CAP-ILI resulting in severe illness and death in otherwise healthy persons in the United States during the 2003–04 influenza season. Most infections were caused by MRSA strains that contained PVL genes and were uniformly resistant to macrolides; half were nonsusceptible to fluoroquinolones. However, the isolates were susceptible to other antimicrobial agents, including vancomycin and linezolid. Although some phenotypic differences were noted, most cases of pneumonia appeared to be attributable to a single strain of MRSA found in diverse geographic areas. This strain, USA300 subtype 0114, is a predominant strain responsible for community outbreaks of MRSA skin disease in the United States (8,9,15).

Postinfluenza staphylococcal pneumonia has been reported in healthy adults during influenza pandemics and epidemics for the last century; it has been reported in the literature less frequently during the past 30 years (1–3). The recognition of MRSA as a cause of CAP-ILI has

<table>
<thead>
<tr>
<th>Outcome</th>
<th>No. (%)</th>
<th>N = 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospitalization</td>
<td>16 (94)*</td>
<td></td>
</tr>
<tr>
<td>Admitted to ICU†</td>
<td>13 (81)</td>
<td></td>
</tr>
<tr>
<td>Required intubation</td>
<td>8 (62)</td>
<td></td>
</tr>
<tr>
<td>Chest tube placement</td>
<td>6 (46)</td>
<td></td>
</tr>
<tr>
<td>Median length of stay (range)</td>
<td>13 days (1–108)</td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>5 (29)</td>
<td></td>
</tr>
<tr>
<td>Median age, y</td>
<td>28 (2–53)</td>
<td></td>
</tr>
<tr>
<td>Symptom onset to death, median days (range)</td>
<td>7 (3–73)</td>
<td></td>
</tr>
<tr>
<td>Underlying disease</td>
<td>1/5 (20)‡</td>
<td></td>
</tr>
</tbody>
</table>

*One patient died on arrival at the hospital. †ICU, Intensive care unit. ‡Diabetes.
occurred concomitant with reports of MRSA as an increasingly common cause of skin and soft tissue infection in the community. Molecular typing of isolates in our series demonstrates that the CAP-ILI isolates are indistinguishable from MRSA associated with numerous outbreaks of skin and soft tissue infections (8). Given this association, MRSA might become a more common cause of \textit{S. aureus} CAP following or coincident to influenza infection in regions where the MRSA strain is prevalent as a cause of skin and soft tissue infection. Antecedent \textit{S. aureus} skin infection or colonization may be associated with postinfluenza \textit{S. aureus} CAP, as was reported during the 1957 influenza pandemic (16). Although we did not systematically collect information on antecedent skin infections in our study, skin infections occurring among families of case-patients were noted. Given the apparent wide national distribution of MRSA as a cause of skin disease, physicians should be aware that MRSA can cause not only skin and soft tissue infections but also CAP.

Although most of the reported patients had laboratory confirmation of influenza virus as a cause of preceding illness, those diagnoses based solely on clinical symptoms may have been caused by other viral respiratory pathogens. However, growing evidence of mechanisms by which influenza may interact specifically with \textit{S. aureus} to increase the risk for influenza–\textit{S. aureus} co-infections suggests that these \textit{S. aureus} CAP infections were likely associated with influenza (17). These include an influenza-induced increase in \textit{S. aureus}–specific adhesion throughout the respiratory tract and \textit{S. aureus}–specific proteases, which may increase influenza viral replication (18–20). This latter mechanism actually points to a synergistic relationship in which \textit{S. aureus} increases influenza disease severity while influenza increases \textit{S. aureus} infection and severity. Strains of influenza A virus also decrease phagocytic killing of \textit{S. aureus}, leading to increased host susceptibility to bacterial superinfection (21). No other respiratory virus appears to share with influenza such a prominent role in predisposing to and increasing the severity of \textit{S. aureus} pneumonia.

Risk factors for postinfluenza \textit{S. aureus} CAP are undefined, but annual influenza vaccination is not recommended for half of the patients reported in our series under current guidelines (22). However, influenza vaccination is a major preventive strategy for influenza-associated pneumonia in older adults and in children 6–23 months of age (22,23). Moreover, studies have demonstrated that influenza vaccination can decrease the incidence of upper respiratory infections and lessen the need for antimicrobial drug use in healthy adults (24,25). Although these studies do not focus on specific bacterial complications, many studies have shown that influenza vaccination reduces overall pneumonia risk; thus one can reasonably assume that influenza vaccination would prevent secondary bacterial infections, including MRSA, in immunocompetent adults (24,26). Because information on antiviral treatment was not collected and most patients in this series sought medical care >2 days after illness onset, we could not assess the effects of early antiviral treatment. Although 1 study reported that early antiviral treatment of influenza with oseltamivir can decrease the incidence of lower respiratory tract complications, further studies are needed to determine whether early antiviral treatment of influenza can help reduce the risk for \textit{S. aureus} pneumonia associated with influenza (22,27).

The incidence of MRSA CAP is unknown. In 2004, to monitor the incidence of MRSA, CDC initiated active population-based surveillance for invasive MRSA disease in 9 locations in the United States through the Emerging Infections Programs, Active Bacterial Core surveillance.

Figure. Dendrogram of \textit{Staphylococcus aureus} isolates determined by using \textit{SmaI}–digested DNA recovered from patients with community-acquired pneumonia associated with influenzalike illness, influenza season, 2003-04. NA, not applicable (methicillin-susceptible); SE, staphylococcal enterotoxin A, B, C, H; REF, reference strain; PVL, Panton-Valentine leukocidin; TSST, toxin shock syndrome toxin; CHL, chloramphenicol; CLI, clindamycin; ERY, erythromycin; GM, gentamicin; LEV, levofloxacin; OX, oxacillin; PEN, penicillin; TET, tetracycline. *Inducible clindamycin resistance.
These data will help characterize the further emergence of MRSA as a cause of CAP, guide public health interventions to prevent these infections, and provide information to guide empiric therapy recommendations. Currently recommended empiric therapy of CAP in immunocompetent adults with bacterial superinfection following influenza consists of β-lactam or respiratory fluoroquinolone and may not adequately provide activity against community strains of MRSA (28). Whenever possible, physicians should obtain specimens (e.g., sputum or blood cultures) for diagnostic and antimicrobial drug–susceptibility testing to target therapy (28,29). Most patients in our series had severe disease and received broad-spectrum antimicrobial drugs, including coverage for resistant gram-positive bacteria. Whether initial inadequate empiric therapy plays a role in patient outcomes is therefore unknown.

Our cases suggest that empiric therapy of severe CAP during periods of high influenza activity should include coverage for MRSA, including among those without recognized risk factors for MRSA. In this regard, our concerns echo those of Martin et al. in 1959. Following these researchers’ experience with the emergence of penicillin-resistant staphylococci during the 1957–58 Asian influenza pandemic, they commented “…during epidemics of influenza in localities in which staphylococci are known to be prevalent, all patients with signs of severe, potentially fatal influenza should—until proven otherwise—be diagnosed and treated promptly as cases of staphylococcal pneumonia caused by relatively antibiotic-resistant staphylococci” (I).

Acknowledgments

We thank Benjamin Estrada, Lisa Carollo, Jean Kirk, Melissa Tucker, Bette J. Jensen, David Lonsway, and Susan Webb for assisting in data collection and acquisition of isolates.

Mr Hageman is an epidemiologist in the Division of Healthcare Quality Promotion, National Center for Infectious Diseases, CDC. His research focuses on both community- and healthcare-associated antimicrobial drug–resistant staphylococci.

References

Address for correspondence: Jeffrey C. Hageman, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Mailstop A35, Atlanta, GA 30333, USA; email: JHageman@cdc.gov
The threat of zoonotic transmission of infectious agents at monkey temples highlights the necessity of investigating the prevalence of enzootic infectious agents in these primate populations. Biological samples were collected from 39 rhesus macaques at the Swoyambhu Temple and tested by enzyme-linked immunosorbent assay, Western blot, polymerase chain reaction, or combination of these tests for evidence of infection with rhesus cytomegalovirus (RhCMV), Cercopithecine herpesvirus 1 (CHV-1), simian virus 40 (SV40), simian retrovirus (SRV), simian T-cell lymphotropic virus (STLV), simian immunodeficiency virus (SIV), and simian foamy virus (SFV). Antibody seroprevalence was 94.9% to RhCMV (37/39), 89.7% to SV40 (35/39), 64.1% to CHV-1 (25/39), and 97.4% to SFV (38/39). Humans who come into contact with macaques at Swoyambhu risk exposure to enzootic primate-borne viruses. We discuss implications for public health and primate management strategies that would reduce contact between humans and primates.

Most pathogens that affect humans are thought to have originated in animals and subsequently evolved to successfully parasitize human populations (1). Proximity and physical contact between animals and humans provide the opportunity for infectious agents to pass between the groups. Whether a particular infectious agent can successfully make the cross-species jump depends in part on the new host environment (1). By virtue of their genetic, physiologic, and behavioral similarity to humans, nonhuman primates (hereafter referred to as primates) are particularly likely sources of emerging infectious agents with the capacity to infect humans, and primate-to-human cross-species transmission of infectious agents has become a focus of scientific inquiry. Because human-primate contact is common in Asia, this continent is a rich area in which to pursue this research. We examine the prevalence of selected enzootic primate-borne viruses in a population of rhesus macaques (Macaca mulatta) that lives in close proximity to humans.

Monkey Temple Context for Cross-species Transmission

Monkey temples can be found throughout South and Southeast Asia, where primates play a role in Hindu and Buddhist culture (2). Macaque species, because they can thrive in human-altered environments, are the primates most often associated with temples. Extensive, unregulated, and often close contact between humans and primates occurs at these sites (3). Persons who live or work in or around monkey temples are among those who frequently come into contact with temple monkeys (4). Other persons may come into contact with temple macaques when they visit for purposes of worship, recreation, or tourism. Worldwide, monkey temples may account for more human-primate contact than any other context (5).

Swoyambhu Temple is 1 of 2 temple sites in the densely populated Kathmandu valley with a large population of free-ranging rhesus monkeys (6) (Figure 1). As 1 of the region’s oldest and most important Buddhist holy places, Swoyambhu has been designated a world heritage site and continues to play a vibrant role in Kathmandu’s cultural life. In addition to the Tibetan monks, Brahmin priests, and

*University of Washington, Seattle, Washington, USA; †Swedish Providence Family Medicine Residency, Seattle, Washington, USA; ‡University of New Mexico Medical School, Albuquerque, New Mexico, USA; §Tribhuvan University, Kathmandu, Nepal; ¶Nepal Biodiversity Research Society, Kathmandu, Nepal; #Department of National Park and Wildlife Conservation, Kathmandu, Nepal; **Johns Hopkins University, Baltimore, Maryland, USA; ††University of California, Davis, California, USA; and ‡‡Southwest Foundation for Biomedical Research, San Antonio, Texas, USA
Newar nuns who live on the site, a brisk flow of local worshipers and visitors from around the world passes through Swoyambhu. Persons who live and work in and around Swoyambhu share common water sources with the macaques and report that the macaques frequently invade their homes and gardens in search of food. The macaques at Swoyambhu have become a tourist attraction in their own right, and many visitors interact with the monkeys, often by feeding or teasing them (Figure 2). A growing literature documents human-macaque interactions at monkey temples in Asia (2–5). Macaques climb on the heads and shoulders of visitors, which may bring macaque body fluids into contact with visitors’ eyes and nasal and oral mucosa, potential portals of entry for infectious agents. Visitors may also be bitten or scratched by macaques during aggressive encounters, resulting in transcutaneous exposure to infectious agents present in macaque body fluids.

Enzootic Simian Viruses

Cercopithecine herpesvirus 1

Cercopithecine herpesvirus 1 (CHV-1), also known as herpes B virus, is a member of the taxonomic subfamily *Alphaherpesviridae*. Serologic evidence of infection with CHV-1 has been documented in several species of macaques (7). Seroprevalence of anti-herpesvirus antibodies is 10%–80% among wild populations and can reach 100% among captive populations, though the percentage of infected monkeys who shed virus at a given time is only 1%–2% (8).

While CHV-1 infection in primates is almost always benign, CHV-1 infection in humans causes severe meningencephalitis with a death rate approaching 70% (9). Several routes of primate-to-human transmission have been implicated, most involving direct exposure to tissue or fluid from an infected macaque. One case of human-to-human transmission of CHV-1 has been documented (10). No cases of CHV-1 infection have been documented in persons exposed to free-ranging macaques, in spite of a long history of human-macaque commensalism in Asia.

SV40

Simian virus 40 (SV40) is a polyomavirus enzootic among some species of Asian macaques, including rhesus macaques of northern India and Nepal. SV40 is present in the genitourinary tract of infected macaques and is thought to be transmitted through ingestion of urine containing the virus (11). SV40 first became an object of public health interest in the 1960s when millions of doses of polio vaccine, produced in tissue cultures of monkey kidney cells, were contaminated with SV40. Shah (12) examined the seroprevalence of antibodies to polyomavirus among workers at 2 monkey export firms in India who had abundant, long-term contact with rhesus macaques; he found a seroprevalence of 27% among these workers and noted that SV40 seroprevalence increased with duration of work in the export firms. Recent technological advances have improved the specificity of immunoassays that detect antibodies to SV40 (13). Using these new methods, Engels and colleagues reported evidence of human SV40 infection among zoo employees who worked with primates (14).

Rhesus Cytomegalovirus

Rhesus cytomegalovirus (RhCMV), *Cercopithecine herpesvirus* 8, is a β-herpesvirus enzootic among *M. mulatta*, infecting up to 100% of rhesus macaques >1 year of age in breeding populations of captive animals (15).
immunologically intact animals, RhCMV infections are asymptomatic. RhCMV can cause illness and death in rhesus macaques co-infected with immunosuppressive retroviruses (simian type D retrovirus and simian immunodeficiency virus) (16) or in experimentally infected rhesus macaque fetuses (17). Infection is lifelong, with continued viral shedding from mucosal surfaces (18). Though growth of RhCMV in human cells has been demonstrated in vitro, human infection with RhCMV has yet to be reported (19).

Enzootic Simian Retroviruses

Macaques harbor several enzootic retroviruses, including simian foamy virus (SFV), simian type D retrovirus (SRV), and simian T-cell lymphotropic virus (STLV). SRV and SFV are present in saliva and other body fluids of infected macaques, which suggests that bites, scratches, and mucosal splashes with macaque body fluids can transmit infection (20,21). Previous studies examining laboratory and zoo workers as well as bushmeat hunters in Africa and monkey temple workers in Indonesia have shown that humans can be infected with SFV and SRV (5,22–24).

STLV is closely related to human T-cell lymphotropic virus (HTLV-1). Asymptomatic infection with STLV-1 is common among primate hosts. STLV is hypothesized to be the progenitor of HTLV through multiple cross-species transmissions (25).

Simian immunodeficiency virus (SIV) is widely distributed among African primates and has been shown to infect humans who come into contact with them (26). Though SIV has not, to date, been detected among Asian primates, several species of Asian macaques have been experimentally infected with the virus (27). And though international trade in primates is regulated by the Convention on International Trade in Endangered Species, illicit import and export of primates continues, potentially exposing Asian primates to infectious agents, such as SIV, that are enzootic among African primate species.

Materials and Methods

Macaque Population

The rhesus macaques at Swoyambhu number ≈400, distributed among 5 to 7 groups with overlapping home ranges (6). Physical contact among macaque groups is common. Natural forage is extremely limited at Swoyambhu (Figure 3). Almost all of the macaques’ daily food comes from handouts given by persons who frequent the temple site.

Field Methods

During a 4-day period in May 2003, a total of 39 macaques from 3 different groups (12 from group 1, 11 from group 2, and 16 from group 3) were trapped, sampled, and released. Samples were obtained as part of a comprehensive health screening effort conducted at the request of the Federation of Swoyambhu Management and Conservation Committee. Macaques were trapped in a portable cage measuring 2.5 × 2.5 × 1.5 m and sedated with 3 mg/kg intramuscular tiletamine HCl/zolazepam HCl. To avoid stressing young animals, infants were not anesthetized or sampled as part of this protocol. All anesthetized macaques were given a complete physical examination, and using universal precautions and sterile technique, we collected 10 mL blood by venipuncture of the femoral vein; 8 mL blood was centrifuged to extract serum. The remaining blood was aliquotted into Vacutainer vials containing EDTA. Unique study identification numbers were assigned to all specimens collected from each animal. Serum and whole blood were frozen in the field, then stored at −70°C. Animals were tattooed on their inner right thigh for identification and future follow-up. Each macaque’s weight and dental formula were collected and recorded for age assessment. Age was estimated on the basis of observed dental eruption sequence. After sample collection, animals were placed in a cage and allowed to recover fully from anesthesia before being released as a group back into their home range. This data collection protocol was reviewed and approved by the University of Washington Institutional Animal Care and Use Committee (#3143-03).

Laboratory and Data Analysis Methods

After necessary national and international permits were obtained, the samples were shipped to the United States, where they were analyzed at several institutions. Enzyme immunoassays for anticapsid antibodies to SV40 were performed as described previously (13). Serologic status to RhCMV was determined by enzyme-linked immunosorbent assay (ELISA) with an infected cell extract to detect
RhCMV-specific immunoglobulin G (IgG) (28). ELISAs were used to detect antibodies to SRV, STLV, SIV, and CHV-1 as previously described (29,30). Because of endogenous seroreactivity to retroviral proteins in macaques, immunoblot assays for STLV and SRV serotypes 1, 2, 4, and 5 and were performed on all samples to confirm antibody status. Reactions were deemed positive if core and envelope bands were present, indeterminate if only core or only envelope were present, and negative if bands did not appear or were lighter than those for negative control plasma. Real-time polymerase chain reaction (PCR) for SRV was performed as previously described (30). To produce large volumes of SRV-1, 2, 4, and 5 antigens for enzyme immunoassay, infected cell supernatants were collected, concentrated, and purified on sucrose gradients as previously described (29). Nested PCR to detect STLV in these samples was performed as previously described (30). Western blot immunoassays for SFV were performed as previously described, with a few modifications (5,31).

Demographic and serologic data were entered into a spreadsheet, and univariate analysis was performed with the JUMP-IN 4 statistical software package (SAS Institute, Inc., Cary, NC, USA). Statistical associations between macaque viral seropositivity, sex, age class, and group number were determined by \(\chi^2 \) test.

Results

Table 1 presents the demographic distribution of the macaques sampled. The animals sampled may not reflect the demographic breakdown of the Swoyambhu population as a whole because animals were trapped opportunistically, and infants were excluded from the study. Approximately 9.75% of Swoyambhu’s estimated macaque population was sampled. Table 2 presents seroprevalence data for the 39 macaques sampled. Seven samples reacted to SRV on ELISA; 4 of these 7 were indeterminate on immunoblot, and 3 were negative. Repeated attempts to amplify SRV from all samples, including those indeterminate by immunoblot, by using PCR primers in 2 different regions of the genome were not successful. STLV testing showed 9 samples to be reactive on ELISA, but none were confirmed positive by immunoblot. Nested PCR did not detect STLV DNA in peripheral blood mononuclear cells. Additional tests for SRV and STLV by PCR were performed to rule out latent virus in genomic DNA, since some apparent false reactivity was seen on ELISA and Western blot. None of the 39 serum samples was reactive on SIV ELISA.

The results of the serologic and PCR assays were analyzed by using \(\chi^2 \) to test associations by sex, group number, and age category. The results from these tests show no significant association between seropositivity for antibodies to RhCMV, SV40, or SFV and age, sex, or group number of the macaque. However, a significant (\(\chi^2 \) p<0.0001) age-related effect was seen for CHV-1. Seroprevalence of antibodies to CHV-1 increased from 23.1% (3/13) among juveniles to 100% (19/19) among adult macaques.

Discussion

Relatively little is known about enzootic primate viruses in free-ranging populations of macaques. CHV-1 antibody prevalence has been measured among temple monkeys in Bali (4), rhesus monkeys (M. mulatta) from India (32), and free-ranging rhesus monkeys transplanted to the Caribbean Island of Cayo Santiago (11). The CHV-1 seroprevalence among these populations is similar to that of the Swoyambhu macaques, with a similar positive association between age and seroprevalence. SFV prevalence in the Bali macaques was also similar to that measured in the Swoyambhu macaques (5). The high seroprevalence of RhCMV in the Swoyambhu macaque population mirrors that measured in other studies that assessed seroprevalence in both captive and free-ranging populations of macaques and other primates (15,33).

Evidence of STLV-1 infection was not found among the Swoyambhu macaques with either serologic or PCR detection methods. In comparison, a survey measuring STLV-1 prevalence among wild-caught M. fascicularis in Indonesia by serologic methods and PCR suggested an STLV prevalence between 3.3% and 10% (34), and a sample of wild-caught M. fascicularis from 9 localities in Thailand were all antibody-negative for STLV-1 (35).

No conclusive serologic or PCR evidence of SRV infection was found among the Swoyambhu macaques. SRV infection is commonly seen among laboratory primates, but far less so among other free-ranging primate populations examined to date (L. Jones-Engel, unpub. data). Increased population densities characteristic of captive settings may facilitate viral transmission, providing a possible explanation for this observation.

The absence of SIV in the Swoyambhu macaque population is unsurprising, given that SIV has yet to be detected in natural populations of Asian primates. This finding, however, does not eliminate the possibility that the situation could change in the future. While SIV is typically found only among African primates, this virus could be introduced into Asian primate populations through the global market trade in animals, in which pet primates can

| Table 1. Demographic distribution of rhesus macaques sampled at Swoyambhu |
|---------------------------|---|---|---|
| Age class | n | Males | Females |
| Juvenile | 13 | 6 | 7 |
| Subadult | 7 | 1 | 6 |
| Adult | 19 | 10 | 9 |
| Total | 39 | 17 | 22 |
be purchased (36). Abandoned pet primates are commonly seen in monkey forests in Asia, and future surveys of Asian primates should continue to test for SIV.

Public Health Implications

A growing literature suggests that cross-species transmission of infectious agents occurs between humans and several primate species in a variety of contexts and in diverse areas (4,5,22–24,37,38). Indeed, wherever humans and primates come into contact, the potential for cross-species transmission exists. Whether cross-species transmission occurs depends on several factors, including the prevalence of infectious agents in primate reservoirs, the context of interspecies contact, and the frequency with which contact occurs (39). To date, cross-species transmission has been most thoroughly studied in primate laboratories and zoos because of the ready availability of biological samples from both primates and exposed humans (14,22,23,40). Research on humans exposed to primates in these contexts has documented an SFV seroconversion rate of 1% to 5.3%, an SV40 seroconversion rate of 3% to 10%, and an SRV rate of 0.9%. Human CHV-1 infection is rare and has only been documented among persons directly or indirectly exposed to laboratory primates (9).

The dynamics of human-macaque contact at Asian monkey temples differ substantially from those in laboratories and zoos because of the ready availability of biological samples from both primates and exposed humans (14,22,23,40). Research on humans exposed to primates in these contexts has documented an SFV seroconversion rate of 1% to 5.3%, an SV40 seroconversion rate of 3% to 10%, and an SRV rate of 0.9%. Human CHV-1 infection is rare and has only been documented among persons directly or indirectly exposed to laboratory primates (9).

The dynamics of human-macaque contact at Asian monkey temples differ substantially from those in laboratories and zoos because of the ready availability of biological samples from both primates and exposed humans (14,22,23,40). Research on humans exposed to primates in these contexts has documented an SFV seroconversion rate of 1% to 5.3%, an SV40 seroconversion rate of 3% to 10%, and an SRV rate of 0.9%. Human CHV-1 infection is rare and has only been documented among persons directly or indirectly exposed to laboratory primates (9).

The management of human-macaque contact at Asian monkey temples differ substantially from those in laboratories and zoos, which may make cross-species transmission more likely at monkey temples. Because primate laboratories have been promoting specific pathogen-free colonies, the risk for primate-to-human transmission of enzootic agents in these settings is likely to diminish over time. Additionally, primate laboratories require the routine use of eye protection, gloves, and protective garments. Injury protocols call for thorough irrigation of wounds and close follow-up of exposed persons. In contrast, research examining wound care practices among exposed workers at the Sangeh monkey forest in Bali (4) found no use of protective eyewear, gloves, or protective clothing. Bleeding wounds from macaque scratches and bites were often not cleansed, and only 6 of 51 persons bitten or scratched by a macaque sought medical care (4). As a result, exposure to bites, scratches, and mucosal splashes at monkey temples may carry a higher risk for primate-to-human viral transmission than does exposure in primate laboratories and zoos.

From a global infection control standpoint, learning about primate-to-human transmission at monkey temples like Swayambhu is particularly relevant. Because the number of humans who come into contact with primates at monkey temples around the world is probably several million per year (3), monkey temples are an important interface between primates and humans. Additionally, many of the visitors to Swayambhu are foreign tourists, which makes Swayambhu a potential point source for the global dispersal of infectious agents, as world travelers can return to their homes carrying novel infectious agents transmitted from macaques. Monkey temples of South and Southeast Asia are also near large human population centers. The combination creates the potential for rapid global dispersal of primateborne infectious agents to human populations around the world.

In spite of centuries of human-primate commensalism in Asia, human disease has yet to be causally linked to enzootic primateborne viruses. However, disease may go undetected because of low incidence, inadequate surveillance, and lack of awareness. Latency between infection and disease manifestation could mask the association between primate exposure and disease. Though long-term commensalism may lead to increased immunity to primateborne pathogens among exposed human populations, non-Asian visitors might be vulnerable, and increased travel to Asia would expose more nonimmune persons to primateborne pathogens. Finally, as HIV continues to spread in Asia, increasing numbers of immunosuppressed persons will likely be exposed to primateborne infectious agents. Immunocompromised hosts could provide pathogens a “permissive” environment in which to evolve into more pathogenic forms.

Management Strategies

In taking steps to reduce the risk for cross-species transmission between humans and primates, we should first...
understand how transmission occurs, i.e., the situations, conditions, and behavior that lead to contact and transmission. Because feeding macaques is thought to account for most interactions between humans and macaques, adopting protocols to restrict feeding to persons specifically trained for that purpose could reduce the number of visitors who come into direct contact with macaque body fluids. Educating visitors as well as persons who live near monkey temples to avoid behavior that leads to bites and scratches could reduce risk. Finally, availability and awareness of proper protocol for effective wound irrigation has the potential to reduce transmission of infection. No data on the efficacy of postexposure prophylaxis with antiviral agents are available, but pharmacologic therapy is another tool that could reduce the likelihood of cross-species viral transmission. In addition, monitoring human populations for infection with primate viruses at the human-primate interface is a prudent strategy to facilitate the early detection of primateborne zoonoses.

This information must be put into context. The recent culling of macaques at a wildlife park in England and at monkey temples in Hong Kong and Taiwan in response to the perceived threat of zoonotic transmission of CHV-1 is an example of an exaggerated response to an inadequately understood risk. Improving awareness of zoonotic transmission and effective management strategies among the public as well as among persons who manage primate parks and temples will be instrumental in allowing humans and primates to continue to coexist.

Acknowledgments

We thank Mahendra R. Budhajracharya and the members of the Federation of Swoyambhu Management and Conservation Committee, the Swoyambhu Temple staff, Radha K. Gharti, Dipesh R. Shakyia, and Hanna and Leah Engel for their outstanding logistic support and expert assistance with the health assessment of the rhesus macaques at Swoyambhu Temple; Robin Watanabe and LaRene Kuller and the WaNPRC Diagnostic Laboratory for their excellent work; the Department of National Parks and Wildlife Conservation in Nepal for their assistance with permit acquisition; and N. Lerche for providing SRV-4 and 5 antigens.

This study was supported in part by a Defense Advanced Research Projects Agency contract N66001-02-C-8702 and grants from the National Institutes of Health RR00166 and RR013986-06.

Dr Jones-Engel is a research scientist at the University of Washington’s National Primate Research Center. Her research focuses on bidirectional pathogen transmission between humans and primates in Asia and its implications for public health and primate conservation.

References

Address for correspondence: Lisa Jones-Engel, University of Washington–National Primate Research Center, HSB I-039 Box 357330, Seattle, WA 98195, USA; email: jonesengel@batt.rprc.washington.edu

Use of trade names is for identification only and does not imply endorsement by the Public Health Service or by the U.S. Department of Health and Human Services.

The Public Health Image Library (PHIL)

The Public Health Image Library (PHIL), Centers for Disease Control and Prevention, contains thousands of public health-related images, including high-resolution (print quality) photographs, illustrations, and videos.

PHIL collections illustrate current events and articles, supply visual content for health promotion brochures, document the effects of disease, and enhance instructional media.

PHIL Images, accessible to PC and Macintosh users, are in the public domain and available without charge.

Visit PHIL at http://phil.cdc.gov/phil.

906 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 12, No. 6, June 2006
Multidrug-resistant Commensal Escherichia coli in Children, Peru and Bolivia

Alessandro Bartoloni,* Lucia Pallecchi,† Marta Benedetti,* Connie Fernandez,‡ Yolanda Vallejos,§ Elisa Guzman,¶ Ana Liz Villagran,§ Antonia Mantella,* Chiara Lucchetti,† Filippo Bartalesi,* Marianne Strohmeyer,* Angela Bechini,* Herlan Gamboa,§ Hugo Rodriguez,‡ Torkel Falkenberg,# Göran Kronvall,# Eduardo Gotuzzo,** Franco Paradisi,* and Gian Maria Rossolini†

Using a rapid screening method, we investigated the prevalence in fecal carriage of antimicrobial drug–resistant Escherichia coli in 3,174 healthy children from 4 urban settings in Peru and Bolivia. High resistance rates were observed for ampicillin (95%), trimethoprim-sulfamethoxazole (94%), tetracycline (93%), streptomycin (82%), and chloramphenicol (70%). Lower resistance rates were observed for nalidixic acid (35%), kanamycin (28%), gentamicin (21%), and ciprofloxacin (18%); resistance to ceftriaxone and amikacin was uncommon (<0.5%). In a random sample of 1,080 resistant E. coli isolates, 90% exhibited a multidrug-resistance (MDR) phenotype. The 2 most common MDR phenotypes (ampicillin/tetracycline/trimethoprim-sulfamethoxazole and ampicillin/tetracycline/trimethoprim-sulfamethoxazole/chloramphenicol) could be transferred en bloc in conjugation experiments. The most common acquired resistance genes were \(\text{bla}_{\text{TEM}} \), \(\text{tet(A)} \), \(\text{tet(B)} \), \(\text{drfA8} \), \(\text{sul1} \), \(\text{sul2} \), and \(\text{catI} \). These findings underscore the magnitude of the problem of antimicrobial drug resistance in low-resource settings and the urgent need for surveillance and control of this phenomenon.

The spread of microbial drug resistance is a global public health challenge, which impairs the efficacy of antimicrobial agents and results in substantial increased illness and death rates and healthcare-associated costs (1–3). In low-resource countries, the extent and the impact of the phenomenon tend to be even larger than in industrialized countries. In fact, high resistance rates have often been reported in surveillance studies dealing with clinical isolates (1,4,5) and in prevalence studies of commensal bacteria taken as indicators to estimate spread of acquired resistance (6–15). Moreover, in low-resource countries the impact of antimicrobial drug resistance on illness and death rates tends to be greater because of the high prevalence of bacterial infections and the major role of antimicrobial agents in combating infectious diseases (1,3,4,16,17). The high antimicrobial drug resistance rates observed in low-resource countries are likely due to a combination of several factors, among which irrational antimicrobial drug usage and conditions of poor sanitation are thought to play a major role, even if the relative importance of additional factors remains unclear (1,4,8,9).

ANTRES (Towards Controlling Antimicrobial Use and Resistance in Low-Income Countries: An intervention Study in Latin America) is a research project that aims to investigate this phenomenon on a large scale. The project is carried out in 2 Latin American countries, Bolivia and Peru, where 4 urban areas have been selected for studying antimicrobial drug use and bacterial resistance in healthy children by a prospective approach. An information-education-communication strategy will be developed based on the collected information and involving local health services. The impact on antimicrobial drug use and bacterial resistance trends will be evaluated (http://www.unifi.it/infdis/antres/default.htm).

We report the results of the baseline study, carried out at the beginning of the project, to assess the antimicrobial drug resistance rates in the studied areas. Very high
resistance rates to several antimicrobial agents were observed in commensal bacteria from the population of each area. Strains showing multidrug-resistance (MDR) phenotypes were widely disseminated.

Materials and Methods

Study Design and Population

The study population was represented by healthy children 6–72 months of age from 4 urban areas, 2 in Bolivia (Camiri, Santa Cruz Department; Villa Montes, Tarija Department) and 2 in Peru (Yurimaguas, Loreto Department; Moyobamba, San Martin Department). The urban areas were communities of ≈25,000 to 30,000 inhabitants who had comparable demographic and socioeconomic characteristics. Eight hundred children from each area were enrolled in the study to cover at least 25% of all households with children in the target age cohort. Only children who had not had diarrhea (as defined by the World Health Organization [18]) during the previous 24 hours were eligible for inclusion in the study. In each household, the youngest recruitable child in the target age cohort was selected. The studied households were selected with a modified cluster sampling: detailed maps outlining the distribution of households were obtained from each study area, and each city was divided into 80 small clusters. In each cluster a number of households selected at random were visited until 10 children were reached. A rectal swab was obtained from each child enrolled in the study, after informed consent was obtained from parents or other legal guardians. Before the sample was obtained, adult members of the household were interviewed to collect information on the family’s socioeconomic and cultural setting, the household antimicrobial drug use, and the health status of the selected child. In each country, full ethical clearance was obtained from the qualified authorities who had revised and approved the study design.

The overall acceptance rate was >95% in all studied areas. Rectal swabs were obtained from a total of 3,174 children (Figure 1): 794 from Camiri and 790 from Villa Montes, Bolivia; 797 from Yurimaguas, and 793 from Moyobamba, Peru. The study participants were 6–72 months of age (mean 34.7 ± 18.2 months; median age 33.5 months). The female: male ratio was 0.95. No significant differences in age or sex were observed among children enrolled from the different areas. The study was carried out for 4 months (August–November 2002). In each area, the sampling period was not longer than 7 weeks.

Screening for Resistant *Escherichia coli* in Commensal Microbiota

Rectal swabs, stored in Amies transport medium (Oxoid, Milan, Italy), were transferred in a cold box to the laboratory of the corresponding district hospital within 3 hours of collection. The 4 laboratories participate in national quality control programs. A training phase and a pilot study preceded the survey. Three European investigators (AB, MB, LP) participated in the sample analysis in the 4 laboratories. This approach was chosen to limit variability in the microbiologic procedures during the field studies.

Screening for antimicrobial-resistant *E. coli* in the fecal microbiota was carried out by a direct plating method, as described previously (7,19). This method is preferred because it correlates well with methods based on testing of randomly collected colonies from primary stool culture, but it is more sensitive (11,19).

Briefly, each swab was spread on a McConkey agar no. 3 plate (Oxoid) to yield uniform growth, and antimicrobial drug–containing disks were directly placed onto the seeded plate. Antimicrobial agents tested included ampicillin, ceftriaxone, tetracycline, trimethoprim-sulfamethoxazole,
chloramphenicol, streptomycin, kanamycin, gentamicin, amikacin, nalidixic acid, and ciprofloxacin (Oxoid). After incubation at 37°C for 12 to 14 hours, plates were inspected for growth, and inhibition zone diameters were measured. The presence of a growth inhibition zone larger than the established breakpoint diameter was considered to indicate susceptibility to that agent. The presence of a growth inhibition zone smaller than the breakpoint diameter, the absence of any inhibition zone, or the presence of isolated colonies growing inside an inhibition zone of any size was considered indicative of resistance. In the latter case, however, resistance was considered not to be represented in the dominant flora. Breakpoints were as previously described for ampicillin, tetracycline, trimethoprim-sulfamethoxazole, chloramphenicol, amikacin, nalidixic acid, and ciprofloxacin (19), and 14 mm, 12 mm, 12 mm, and 14 mm for kanamycin, streptomycin, gentamicin, and ceftriaxone, respectively (A. Bartoloni, unpub. data). Only bacterial growth exhibiting a shape typical of E. coli was considered valid for the analysis. Specially prepared forms were used to record microbiologic results, including growth features and susceptibility patterns. Confluent bacterial growth was obtained from 3,130 (99%) of the 3,174 collected rectal swabs (Figure 1). In a few cases insufficient growth (11 swabs) or noncoliform growth (33 swabs) was observed. From each plate and for each drug, the putatively resistant coliform growth (i.e., a pool of the colonies grown inside the zone of inhibition or a loopful of the microbial lawn grown in proximity of the disk) were collected (n = 18,042) (Figure 1). Of these, a random sample (10%–25% for each drug, depending on the prevalence of the resistance phenotype) were subjected to confirmatory analysis for resistant E. coli (Figure 1) by using the API20E identification system (bioMérieux, Marcy l’Étoile, France) and the standard agar disk diffusion method (20,21). Confirmation was obtained in ≥96% of the tested samples, without significant differences among the 4 laboratories.

Analysis of Resistance Patterns of Commensal E. coli

Susceptibility to several antimicrobial agents representative of various classes (ampicillin, tetracycline, trimethoprim-sulfamethoxazole, chloramphenicol, kanamycin, gentamicin, nalidixic acid, ciprofloxacin) was tested in 1,405 (8%) E. coli isolates randomly selected from the 18,042 collected samples. Each isolate was spread onto Mueller-Hinton (MH) agar plates containing each antimicrobial agent at a concentration 20% higher than the breakpoints for resistance of each antimicrobial agent, as per National Committee of Laboratory Standards guidelines (20,21). The inoculum size was $=2 \times 10^8$ CFU per spot. A plate of antimicrobial drug-free medium was always included as a growth control. E. coli ATCC 25922, and E. coli strains from our collection resistant to the various antimicrobial agents used in the assay were always included for quality control purposes. Results were recorded after incubation at 37°C for 18 hours. A resistance phenotype was assigned when growth was observed on the medium containing an antimicrobial agent. An MDR phenotype was intended as resistance to ≥2 classes of antimicrobial agents. Isolates from the same study participant that exhibited the same resistance phenotype (the random sampling procedure did not initially consider the study participant source) were considered replicated isolates and were counted only once for data analysis. According to this criterion, data analysis was conducted with 1,080 isolates (Figure 1).

Data entry and analysis were calculated with the EpiInfo software package (version 2002, Centers for Disease Control and Prevention, Atlanta, GA, USA). Statistical differences in the prevalence of antimicrobial drug resistances were determined by the χ² test.

Molecular Analysis of Resistance Genes and Conjugation Assay

Acquired resistance genes and conjugative transfer of resistance traits were investigated in 78 isolates randomly selected from those representative of the 2 most common MDR phenotypes (Figure 1). Resistance genes blaTEM, catI, dfrA8, sul1, and sul2 and the int1 integrase gene were detected by colony blot hybridization (22) with specific probes generated by polymerase chain reaction (PCR), as described previously (23–25). Tetracycline resistance genes tet(A), tet(B), tet(C), and tet(D) were detected by PCR, as described previously (26). Conjugative transfer of resistance genes was assayed in MH broth using E. coli 153 (auxotrophic for proline and methionine and resistant to rifampin and nalidixic acid) as a recipient and an initial donor/recipient ratio of 0.1. Mating tubes were incubated at 30°C for 14 h. Transconjugants were selected on MH agar containing rifampin (400 µg/mL) and nalidixic acid (32 µg/mL) plus one of the following antimicrobial agents: ampicillin (200 µg/mL), tetracycline (5 µg/mL), chloramphenicol (30 µg/mL), or trimethoprim-sulfamethoxazole (40/200 µg/mL). Under the above conditions, the detection sensitivity of the mating assay was $\geq 1 \times 10^8$ transconjugants/recipients.

Results

Antimicrobial Drug–Resistance Rates

Overall, high resistance rates were observed for ampicillin (95%), trimethoprim-sulfamethoxazole (94%), tetracycline (93%), streptomycin (82%), and chloramphenicol (70%). Lower resistance rates were observed for nalidixic acid (35%), kanamycin (28%), gentamicin (21%), and
ciprofloxacin (18%). Resistance to ceftriaxone and amikacin was uncommon (<0.5%) (Table 1). For first-line oral antimicrobial agents such as ampicillin, tetracycline, and trimethoprim-sulfamethoxazole, resistant strains were present as the dominant flora in >80% of carriers (Table 1).

Resistance rates for ampicillin, trimethoprim-sulfamethoxazole, kanamycin, and streptomycin were significantly higher in Bolivia than in Peru (p<0.001), whereas ciprofloxacin resistance rates were significantly higher in Peru than in Bolivia (p=0.001) (Table 1). Differences in the resistance rates were also observed within each country. In Bolivia, higher overall resistance rates were found in Camiri than in Villa Montes (p<0.001) for chloramphenicol, streptomycin, gentamicin, nalidixic acid, and ciprofloxacin (Table 1). In Peru, higher overall resistance rates were found in Moyobamba than in Yurimaguas. The most significant differences (p<0.001) were noted for streptomycin, nalidixic acid, and ciprofloxacin (Table 1).

Significantly higher (p<0.05) resistant rates were observed in boys, with some agents, and in some settings (ampicillin in both Peruvian cities, trimethoprim-sulfamethoxazole in Moyobamba, and chloramphenicol, kanamycin, and gentamicin in Camiri). Analysis by age showed that, with all agents (ceftriaxone and amikacin were not considered in this analysis because of the low numbers of resistant isolates), resistance rates were notably higher in the youngest age group, and an overall decreasing trend by age was observed (Figure 2). With some agents (kanamycin, gentamicin, and the quinolones), the decreasing trend was essentially limited to the younger age groups; with other agents (ampicillin, tetracycline, trimethoprim-sulfamethoxazole, and chloramphenicol); this phenomenon was more evident in the older age groups.

Combinations of Antimicrobial Drug–resistance Traits in Healthy Children

Of the 3,174 children evaluated in the study, only 84 (2.7%) carried an _E. coli _fecal population susceptible to all the antimicrobial agents tested, while 46 (1.5%), 73 (2.3%), 187 (5.9%), 537 (17%), 808 (26%), 624 (20%), and 816 (26%) had an _E. coli _population resistant to 1, 2, 3, 4, 5, 6, or >6 antimicrobial agents. No significant differences in this distribution were observed between the 2 countries. Of the 156 different combinations of resistance observed, 2 were most prevalent: 1) the pattern with 4 resistances, (ampicillin, tetracycline, trimethoprim-sulfamethoxazole, and streptomycin) in 361 (11.5%) children and 2) the pattern with 5 resistances, (ampicillin, tetracycline, trimethoprim-sulfamethoxazole, streptomycin, and chloramphenicol) in 567 (18%) children.

Patterns of Resistance Phenotypes of _E. coli_ Isolates

Frequency and patterns of resistance phenotypes were determined on a random sample of 1,080 nonreplicate resistant _E. coli_ isolates with 8 antimicrobial agents representative of 6 different classes (ampicillin for _β_-lactams, tetracycline for tetracyclines, chloramphenicol for phenicols, trimethoprim-sulfamethoxazole for folate inhibitors, kanamycin and gentamicin for aminoglycosides, and nalidixic acid and ciprofloxacin for quinolones). Only a few isolates were resistant to a single drug (9%) (Figure 3). Isolates showing resistance to 3 different drugs were the most prevalent (30%), followed by those showing resistance to 4 (22%) and 2 (20%) drugs, respectively. Seven isolates (<1%) showed resistance to all tested drugs (Figure 3). An MDR phenotype was common (90% of isolates). Resistance patterns were quite variable. Of 97 different patterns observed, some were highly prevalent. The

Table 1. Prevalence, expressed as percentage, of healthy children carrying antimicrobial drug–resistant _Escherichia coli_ as part of their commensal flora and of children in whom resistant _E. coli_ constituted the predominant flora†

<table>
<thead>
<tr>
<th>Drug</th>
<th>Camiri</th>
<th>Villa Montes</th>
<th>p value</th>
<th>Yurimaguas</th>
<th>Moyobamba</th>
<th>p value</th>
<th>Bolivia, subtotal</th>
<th>Peru, subtotal</th>
<th>Total</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>98 (95)</td>
<td>96 (87)</td>
<td><0.05</td>
<td>92 (76)</td>
<td>86 (66)</td>
<td><0.05</td>
<td>97 (91)</td>
<td>92 (80)</td>
<td>95 (85)</td>
<td><0.001</td>
</tr>
<tr>
<td>SXT‡</td>
<td>98 (94)</td>
<td>95 (86)</td>
<td><0.05</td>
<td>93 (72)</td>
<td>86 (66)</td>
<td><0.05</td>
<td>96 (90)</td>
<td>91 (77)</td>
<td>94 (84)</td>
<td><0.001</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>96 (91)</td>
<td>92 (82)</td>
<td><0.05</td>
<td>89 (71)</td>
<td>72 (62)</td>
<td><0.05</td>
<td>94 (86)</td>
<td>91 (76)</td>
<td>93 (81)</td>
<td><0.05</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>96 (89)</td>
<td>88 (79)</td>
<td><0.01</td>
<td>71 (50)</td>
<td>66 (66)</td>
<td><0.001</td>
<td>92 (84)</td>
<td>79 (58)</td>
<td>82 (68)</td>
<td><0.001</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>74 (58)</td>
<td>65 (40)</td>
<td><0.01</td>
<td>69 (42)</td>
<td>72 (48)</td>
<td>NS</td>
<td>70 (49)</td>
<td>71 (45)</td>
<td>70 (47)</td>
<td>NS</td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td>44 (25)</td>
<td>29 (13)</td>
<td><0.01</td>
<td>27 (8)</td>
<td>18 (18)</td>
<td><0.001</td>
<td>36 (19)</td>
<td>38 (13)</td>
<td>35 (16)</td>
<td>NS</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>37 (20)</td>
<td>31 (12)</td>
<td><0.05</td>
<td>22 (8)</td>
<td>23 (9)</td>
<td>NS</td>
<td>34 (16)</td>
<td>22 (9)</td>
<td>28 (12)</td>
<td><0.001</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>28 (16)</td>
<td>18 (10)</td>
<td><0.01</td>
<td>19 (9)</td>
<td>21 (10)</td>
<td>NS</td>
<td>23 (13)</td>
<td>20 (10)</td>
<td>21 (11)</td>
<td><0.05</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>21 (10)</td>
<td>10 (4)</td>
<td><0.01</td>
<td>16 (5)</td>
<td>25 (9)</td>
<td><0.001</td>
<td>16 (7)</td>
<td>21 (7)</td>
<td>18 (7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Amikacin</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>NA</td>
<td>0 (4)</td>
<td>0.4 (0.3)</td>
<td>NA</td>
<td>0 (0.1)</td>
<td>1 (0.3)</td>
<td>0.4 (0.2)</td>
<td>NA</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>0.1 (0)</td>
<td>0.1 (0)</td>
<td>NA</td>
<td>0.3 (0)</td>
<td>0.1 (0.1)</td>
<td>NA</td>
<td>0.1 (0.1)</td>
<td>0.1 (0.1)</td>
<td>0.1 (0.1)</td>
<td>NA</td>
</tr>
</tbody>
</table>

*Inside parentheses: proportion of carriers in whom resistant _E. coli_ constituted the predominant flora. NS, not significant; NA, not applicable.
†Number of children from whom samples were obtained: Camiri = 794; Villa Montes = 790; Yurimaguas = 797; Moyobamba = 793; Bolivia = 1,584; Peru = 1,590; and total = 3,174.
‡SXT, trimethoprim-sulfamethoxazole.
pattern that included ampicillin, tetracycline, and trimethoprim-sulfamethoxazole was the most prevalent, followed by that including ampicillin, tetracycline, trimethoprim-sulfamethoxazole, and chloramphenicol, as well as that including ampicillin and trimethoprim-sulfamethoxazole alone (22%, 15%, and 10% of the tested isolates, respectively) (Figure 3).

Acquired Resistance Genes and Transferability of Resistance Traits

The prevalence of several acquired resistance genes (blaTEM for ampicillin resistance; tet(A)–(D) for tetracycline resistance; dfrA8 for trimethoprim resistance; sul1 and sul2 for sulfonamide resistance; catI for chloramphenicol resistance) and class 1 integrons was investigated in 78 isolates randomly selected from representatives of the 2 most prevalent MDR phenotypes (ampicillin/tetracycline/trimethoprim-sulfamethoxazole, n = 45; ampicillin/tetracycline/trimethoprim-sulfamethoxazole/chloramphenicol, n = 33). In most cases the resistance phenotype could be accounted for by a combination of the above resistance genes, and some of them appeared to be highly prevalent (Table 2). The presence of the intI1 integrase gene (associated with class 1 integrons) was detected in 35% of MDR isolates.

These 78 isolates were also tested for transferability of resistance traits in conjugation experiments. Overall, the transfer of at least 1 resistant trait was observed in 37 cases (47%). Transfer rates for each resistance trait were as follows: ampicillin 46%, tetracycline 40%, trimethoprim-sulfamethoxazole 41%, and chloramphenicol 27%. Co-transfer of all the resistance traits was observed in 26 of the 37 cases that gave positive results in the conjugation experiments. Molecular analysis of the transconjugants showed that, in all the cases, the resistance phenotype could be accounted for by the acquisition of resistance genes detected in the respective donors. Conjugative transfer of class 1 integrons was observed in 10 (37%) of the 27 intI1–positive isolates.

Discussion

Similar to pathogenic bacteria, commensals are exposed to the selective pressure of antimicrobial agents, and commensal *Escherichia coli* have often been used as an indicator of the dissemination of acquired resistance genes (7,8,11–13,15,27). To our knowledge, this study is the first to address the status of antimicrobial drug resistance in commensal *E. coli* in a large population of preschool-age children from urban settings of low-resource countries. Results showed a high prevalence (70%–95%) of healthy carriers of *E. coli* resistant to a number of older antimicrobial agents (ampicillin, tetracycline, trimethoprim-sulfamethoxazole, chloramphenicol, and streptomycin). For these drugs, the small differences observed among localities, although sometimes statistically significant, are probably of limited clinical and epidemiologic relevance and presumably attributable to the large number of antimicrobial drug–resistant *E. coli* carriers. A relatively high prevalence (18%–35%) of carriers of *E. coli* resistant to other agents (kanamycin, gentamicin, nalidixic acid, and ciprofloxacin) was also observed, while the carriage of *E. coli* resistant to expanded-spectrum cephalosporins and amikacin was uncommon (<0.5%). Ranking patterns of resistance rates were similar overall in each of the 4 studied areas, which suggests a common scenario in urban
areas of these 2 Latin American countries. This view is further supported by data recently published for adults from Lima (Peru), where similar resistance rates were reported (12).

Our findings were in substantial agreement with previous reports of high resistance rates in commensals of study participants from low-resource settings (7,8,11–13,15,28). Comparative analysis with previous data available for 1 studied setting (Camiri, Bolivia) surveyed 10 years earlier (7) indicated a significant increase in the resistance rates to gentamicin and nalidixic acid and the de novo appearance of resistance to ciprofloxacin.

One aspect that was not previously reported among preschool children was the age-related differences in resistance rates; rates were significantly higher in the younger age groups. This phenomenon could reflect a larger use of antimicrobial drugs in younger children. However, this explanation cannot be the case for quinolones, which are not prescribed in this age group. Another influencing factor could be dietary changes related to weaning. In fact, a diet high in milk that contains abundant lactoferrin, which chelates dietary iron, has been hypothesized to favor the presence of strains expressing iron-uptake systems (such as aerobactin or enterobactin), which are often encoded by plasmids that also carry resistance genes (29). However, further investigation will be necessary to clarify the mechanism responsible for this phenomenon.

Multiple resistance traits in the commensal E. coli microbiota were apparently the rule, as they were detected in most study participants. The simultaneous presence of multiple strains expressing different resistance phenotypes and single strains expressing MDR phenotypes could contribute to this phenomenon. Although the relative contribution of the 2 mechanisms was not specifically investigated, the high prevalence of strains expressing MDR phenotypes probably provides a major contribution. Some MDR patterns (e.g., ampicillin/tetracycline/trimethoprim-sulfa-

methoxazole, ampicillin/tetracycline/trimethoprim-sulfa-

methoxazole/chloramphenicol) were common and could be accounted for by a number of known acquired resistance genes. Resistance traits could be transferred by conjugation, often en bloc, suggesting a linkage of the corresponding resistance genes in self-transferable or mobilizable plasmids.

In conclusion, this study underscores the magnitude of the problem of antimicrobial drug resistance in low-resource settings and the urgent need for surveillance and control of this phenomenon. Inexpensive, sensitive, and simple methods to monitor antimicrobial drug resistance in commensal bacteria could be valuable tools for large-scale surveillance studies and to improve the efficacy of resistance control interventions. The direct plating method used in this study, which had previously shown high sensitivity and specificity in detecting resistant E. coli (19), was confirmed to be a valid tool to conduct such a large-scale survey.

Acknowledgments

We thank other members of the ANTRES Study Group for their support in this study: Ruth Arias, Vieri Boddi, Paolo Bonanni, Mirtha Camacho, Blanca Huapaya, Charlotte Kristiansson, Oscar Lanza Van den Berghe, Mattias Larsson, Luis Pacheco, Angela Pieri, Victor Suarez, Esteban Salazar, and Christian Trigoso. We are also grateful to the local health authorities for cooperation in carrying out the study, the laboratory staff for technical assistance, the field team members for valuable support in collecting samples, and all participating children and their parents for their willingness to take part to the survey.

The study was carried out within the research activities of the ANTRES project, supported by the European Commission, INCO-DEV programme, contract no. ICA4-CT-2001-10014.

Dr Bartoloni is associate professor of infectious diseases at the University of Florence, Italy. His research interests include antimicrobial drug resistance and tropical medicine.

References

Address for correspondence: Alessandro Bartoloni, Critica Medico Chirurgica, Dipartimento Area Clinica Malattie Infettive, Università di Firenze, Ospedale di Careggi, Viale Morgagni 85, I-50134, Florence, Italy; email: bartoloni@unifi.it

All material published in Emerging Infectious Diseases is in the public domain and may be used and reprinted without special permission; proper citation, however, is required.
From mid-July to the end of August 2005, a total of 215 cases of human Streptococcus suis infections, 66 of which were laboratory confirmed, were reported in Sichuan, China. All infections occurred in backyard farmers who were directly exposed to infection during the slaughtering process of pigs that had died of unknown causes or been killed for food because they were ill. Sixty-one (28%) of the farmers had streptococcal toxic shock syndrome; 38 (62%) of them died. The other illnesses reported were sepsis (24%) and meningitis (48%) or both. All isolates tested positive for genes for tuf, species-specific 16S rRNA, cps2J, mrp, ef, and sly. A single strain of S. suis caused the outbreak, as shown by the identification of a single ribotype. The high death ratio was of concern; prohibiting backyard slaughtering ended the outbreak.

Sporadic cases of S. suis infection may occur in humans, the most common clinical manifestations included purulent meningitis, septicemia, arthritis, and endocarditis; some infections lead to sequelae such as deafness and ataxia (5–7). To date, ≈200 human cases have been reported in areas of intensive pig rearing (the Netherlands, Denmark) or areas where large quantities of pork are eaten (Hong Kong, Thailand, Vietnam) (8). Most reported cases of human S. suis infections were associated with contact with pigs or pork products (5). Human S. suis infections do not normally cause major outbreaks.

On July 11, 2005, a local hospital in Ziyang Prefecture of Sichuan Province reported a suspected case of hemorrhagic fever with renal syndrome. The patient was a 46-year-old male farmer with acute onset of high fever, lethargy, vomiting, and generalized purpura. The day before illness onset, the farmer slaughtered a pig that had died of an unknown cause. The farmer rapidly lapsed into coma. On further investigation, we identified 4 other patients with similar circumstances in the same hospital and more patients from other hospitals in the area. S. suis was isolated from blood cultures in some of these cases. We began an investigation of this outbreak to describe its epidemiologic, clinical, and microbiologic characteristics (9).
Human *Streptococcus suis* Outbreak, China

Methods

Epidemiologic Investigation

We reviewed medical records in all health care facilities in Ziyang Prefecture for patients admitted since June 10, 2005 (2 weeks before the onset of the first known case), with a diagnosis of septic shock or meningitis. On July 19, enhanced surveillance was introduced to include healthcare facilities in Ziyang and the 5 surrounding prefectures. We ordered all healthcare facilities to immediately report all new patients with clinical sepsis, meningitis, arthritis, or endocarditis and fever >37.3°C, who had epidemiologic risk factors (contact with sick pigs or any part, such as meat, skin, organs, or tissue, of pigs that had died of undetermined causes). Beginning on July 21, we made public announcements to encourage reporting. Public health workers interviewed patients, or surrogates for deceased patients, by using a questionnaire to collect demographic, clinical, and exposure information. Specimens (blood, cerebrospinal fluid [CSF], or postmortem tissue) were collected for laboratory investigation. We reviewed medical records to obtain supplementary clinical information. We placed all close contacts of case-patients, including family members and attending healthcare workers, under medical surveillance. We extended these surveillance procedures to all of Sichuan Province on July 25.

A probable case of *S. suis* infection was a compatible clinical illness (sepsis, meningitis, arthritis, or endocarditis), without laboratory evidence of infection by another organism, with history of contact with sick or dead domestic livestock (pigs, goats, or sheep) or another case-patient within 7 days before onset of symptoms. A confirmed case was defined as a compatible clinical illness regardless of exposure and the verification of *S. suis* isolated from a normally sterile site. We stopped the enhanced surveillance on August 18, two weeks after onset of the last case.

To assess the extent of underreporting, notification statistics on meningococcal meningitis were reviewed. Meningococcal meningitis is a statutorily notifiable disease in China. Because laboratory diagnosis was not routinely performed for all meningitis patients, the figures on suspected meningococcal cases could reflect nonmeningo-
coccal meningitis caused by other bacteria, including *S. suis*. In this investigation, statistics in the 12 affected prefectures of Sichuan Province from January 2003 to August 2005 were reviewed.

Laboratory Investigation

Specimens of blood, CSF, or postmortem tissue from human patients and blood or postmortem tissue from affected pigs were injected onto sheep blood agar and infusion broth (REF 237500, Oxoid, Basingstoke, UK) in 0.5% CO₂ at 37°C. *S. suis* strains were identified by examining growth colony shape, followed by biochemical reactions with Vitek2 compact and API 20 strep (bioMérieux, Inc., Beijing, China) according to the manufacturer’s instructions.

Polymerase chain reaction (PCR) was used to characterize selected genes of *S. suis* serotype 2. PCR products were purified by using the QIAquick PCR purification kit (Qiagen, Valencia, CA, USA), according to the manufacturer’s protocol, and sequenced with an ABI Prism 3700 DNA instrument (Applied BioSystems, Foster City, CA, USA). The following genes were sequenced, in accordance with methods published elsewhere: 1) genus-specific gene segments, *tuf* sequence, and 2) the species-specific gene coding for 16S rRNA of *S. suis*, the gene coding for the capsule of *S. suis* serotypes 2 (*cps2J*) and 1/2, the muramidase-released protein gene (*mrp*), sulfysin (*sly*), and the extracellular factor gene (*ef*) (10–12). Sequence data were analyzed by using a basic local alignment search tool (BLAST) search performed against sequences published by the National Center for Biotechnology Information (Bethesda, MD, USA).

Automated PvuII and PstI ribotyping was performed by using the RiboPrinter microbial characterization system (DuPont China, Shenzhen, China), with bacterial isolates grown overnight on brain-heart infusion blood agar. Template preparation, restriction enzyme digestion, gel electrophoresis, and Southern hybridization with an *Escherichia coli* rRNA operon probe were carried out with the RiboPrinter system. Images were developed with a charge-coupled-device camera and analyzed by using the RiboPrinter’s customized software.

Statistical Analysis

Percentage, proportion, and case-fatality ratios were calculated. The χ² and rank sum tests were used to compare the case-fatality ratios and the median duration from exposure to onset between 2 groups, respectively, by using Stata version 8 (StataCorp LP, College Station, TX, USA). All probabilities were 2-tailed, and p<0.05 indicated significance.

Results

The first case-patient was a 52-year-old male farmer from Yanjiang District of Ziyang Prefecture. On June 24, 2005, three days after he slaughtered and dressed a goat that had died of an unknown cause, fever (38.2°C), chills, abdominal pain, vomiting, generalized aching, and generalized purpura developed. Ten hours later, he died on the way to the hospital. The second case-patient was his neighbor who had similar symptoms on June 26 and died shortly after hospital admission. He had helped slaughter the goat with the first case-patient. Blood, tissue, and other specimens for culture were not available from these patients.
The Outbreak

Other cases of S. suis infection occurred in early July. The number of cases gradually increased, peaked during the second half of July, and dwindled rapidly thereafter (Figure 1). The decline coincided with new measures that prohibited domestic slaughter of sick pigs or pigs that died of any illness. These measures were implemented through provincial legislation and enforced with prosecution. The last case-patient had onset of illness on August 4. By August 18, two weeks after the date of onset of the last case, we had identified 215 cases (66 laboratory confirmed, 149 probable); 39 persons died in Sichuan Province. This finding compares to an expected number of suspected meningococcal disease cases of 10 per month reported through routine surveillance during the summer months (June to August) from 2003 to 2005 (Figure 2).

Cases of S. suis infection predominantly involved adult male farmers with recent exposure to sick pigs or carcasses of pigs that had died of unknown illnesses (Table 1). The most common methods of exposures were slaughtering a sick pig or preparing a pig carcass for meat, hides, and other pig products. Forty-eight percent of case-patients had wounds on their hands at the time of slaughter or carcass preparation. Illnesses that fit the case definition did not develop in close contacts of case-patients who did not participate in the slaughter, carcass preparation, or carcass disposal. None of the 417 healthcare workers who cared for case-patients became infected, and no similar clinical illness developed.

The residences of S. suis case-patients were widely distributed in 203 villages of 12 prefectures in Sichuan Province. In 194 villages, only 1 case was identified (Figure 3). In Ziyang, Yibin, and Chengdu, 2 case-patients in 1 village each were identified. The Ziyang cluster was composed of the first 2 case-patients in the outbreak. The Yibin cluster consisted of 1 farmer who slaughtered a sick pig and became ill with streptococcal toxic shock syndrome (STSS); another person who processed meat from the same pig became ill with meningitis and recovered. In Chengdu, 2 persons slaughtered a pig that had died of an unexplained illness; S. suis infection developed in both persons and they recovered. In 6 additional villages, ≥2 cases of S. suis infection occurred in patients who did not know each other and had no common exposure to a pig.

Clinical Patterns

All 215 affected persons were previously healthy adults. We observed 3 distinct clinical symptom settings (Table 2). First, 28% of patients had sepsis characterized by acute onset of fever, chills, headaches, dizziness, malaise, abdominal pain, and diarrhea. In some severe cases, patients became comatose. Second, 48% of patients had meningitis characterized by headache, stiff neck, and other signs of acute meningitis. Some meningitis patients also had disseminated intravascular coagulation and coma. Third, 28% of patients had STSS that has been described in other forms of streptococcal infections (13) and met the criteria established by Centers for Disease Control and Prevention (14). Patients with STSS had a 62% case-fatality ratio compared to 0.6% for other clinical forms of streptococcal infections. Fatal STSS cases progressed from onset to death in a median of 25 hours (range 8 hours to 10.5 days). Discharge records available on 85 survivors in all 3 clinical symptom settings showed a median interval from onset to recovery of 15 days (range 5–36 days).

We determined exposure and onset times for 63 of the 66 laboratory-confirmed cases. Of the 215 cases, we could determine exposure time and onset times for 203. The median interval between exposure and onset was 2.2 days (range 3 hours to 14 days). The patients with STSS had a shorter incubation period and a higher frequency of gastrointestinal symptoms, coma, and petechiae and ecchymoses than did other patients (Table 3). Eight percent of non-STSS cases had petechiae or ecchymoses, and 9% had hypotension but did not fully fit the criteria for STSS.

Figure 1. Epidemic curve showing the dates of onset for 215 human cases of Streptococcus suis infection, Sichuan, China (as of August 18, 2005).

Figure 2. Suspected cases of meningococcal meningitis in the 12 affected prefectures in Sichuan.
Table 1. Demographic features and exposure history of 215 Streptococcus suis patients in Sichuan, China, 2005

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Probable cases, n = 149</th>
<th>Confirmed cases, n = 66</th>
<th>Total, N = 215</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (%)</td>
<td>120 (81)</td>
<td>60 (91)</td>
<td>180 (84)</td>
</tr>
<tr>
<td>Median age, y (range)</td>
<td>54 (26–82)</td>
<td>57 (33–81)</td>
<td>54 (26–82)</td>
</tr>
<tr>
<td>Farmer (%)</td>
<td>145 (97)</td>
<td>62 (94)</td>
<td>207 (96)</td>
</tr>
<tr>
<td>Other occupation (%)*</td>
<td>4 (3)</td>
<td>4 (6)</td>
<td>8 (4)</td>
</tr>
<tr>
<td>Wounds on hands during pig exposure (%)</td>
<td>74 (50)</td>
<td>30 (45)</td>
<td>104 (48)</td>
</tr>
<tr>
<td>Exposure history 7 days before onset of symptom, no. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slaughtered sick pig or goat</td>
<td>93 (62)</td>
<td>47 (71)</td>
<td>140 (65)</td>
</tr>
<tr>
<td>Prepared carcasses of pig or goat without slaughtering</td>
<td>44 (30)</td>
<td>16 (24)</td>
<td>60 (26)</td>
</tr>
<tr>
<td>Other exposure to sick pigs</td>
<td>12 (8)</td>
<td>3 (5)</td>
<td>15 (7)</td>
</tr>
<tr>
<td>Only ate meat from sick/dead pig/goat</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Only contact with known case-patients</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Fed sick pigs or handled carcasses (e.g., sold carcasses, buried carcasses) of pigs that died from unexplained illness.

Typical skin manifestations are shown in Figure 4. Leukocytosis and thrombocytopenia were found in more than half of the patients (Table 4). Liver impairment was found in 74%, and renal function impairment was found in 19% of the patients who had been tested. CSF abnormalities compatible with purulent meningitis were found in 31 (40%) of 77 patients who had a lumbar puncture.

Postmortem examination of 4 STSS patients (2 confirmed and 2 probable infections) showed features of disseminated intravascular coagulation. Evidence of multiple organ damage was observed, primarily involving kidneys, adrenal glands, lungs, liver, pancreas, and heart. Histologic findings included microthrombosis (hyaline thrombus) in organ capillaries; necrosis of parenchymal cells; and congestion, exudate, and hemorrhage of interstitial vessels of kidneys, lungs, and other organs.

Microbiologic Investigations

We collected 348 specimens of blood (271), CSF (53), and tissue (24) from postmortem examination of 172 case-patients. We isolated S. suis from blood (36), CSF (27), and postmortem liver, spleen, and heart tissues (3). Fifty-five (83%) of the confirmed patients were diagnosed after July 23, 2005, representing 42% (55/130) (data not shown) of all tested samples, compared to that of 26% (11/42) (data not shown) before enhancement of surveillance.

Isolates from 66 patients and 3 diseased pigs featured pure growth of tiny α-hemolytic colonies on sheep blood agar. The colony shape and biochemical reactions by Vitek2 compact and API-Strep were all compatible with that of S. suis. In the investigations after July 23, 2005, the results matched the suggested key indicators for the pathogen, including Voges-Proskauer negativity, hydrolysis of esculin, trehalose positivity, negativity for growth in 6.5% NaCl, and absence of β-hemolysis on sheep blood agar. PCR on all isolates showed gene coding for tuf, species-specific 16S rRNA of S. suis, genes coding for the capsule of S. suis serotypes 2 (cps2J) and 1/2, and mrp, sly, and ef. The PCR products of virulence genes of all 69 strains were sequenced. These were identical to the sequences published by the National Center for Biotechnology Information. On further investigation, only a single ribotype for either PvuII or PstI restriction was identified among the 25 S. suis type 2 isolates, including 22 from patients and 3 from diseased pigs (Figure 5), indicating a single clonal strain as the source of the infection (1).
Discussion

We report an unprecedented outbreak of human S. suis serotype 2 infection involving 215 patients in Sichuan Province during the summer of 2005. This outbreak was characterized by the large number of patients involved, distinctive clinical manifestations, and the major challenges facing public health authorities in both surveillance and control.

This is the largest recorded outbreak of S. suis infection in humans. From late July to early August 1998, an outbreak of 25 cases with 14 deaths occurred in Jiangsu Province, China, from serotype 2 infection (15). The size of the outbreak in our study was probably related to a local farming practice. In Sichuan, a sizable swine population was found in small backyard farms; each family kept only a few animals. Farmers habitually slaughtered sick pigs for human consumption. Beginning mid-June 2005, a major outbreak of S. suis killed 647 pigs in almost the same areas as the outbreak in humans (16). The outbreak in swine peaked around July 20 with ≈4 dead pigs in each affected village. S. suis caused 98% of the deaths of these pigs in Sichuan during this period (17). All infected pigs came from backyard farms, usually with 1 sick pig in the herd. A pathogenic strain could have spread by distributing infected piglets to the backyard pig farms and then propagated among healthy pigs. The single ribotype identified in the investigation lends support to this theory.

The main risk factor for S. suis infection in the outbreak was direct involvement in slaughtering sick pigs and preparing carcasses of pigs that died of unknown causes. Unlike professionals in modern abattoirs, the local farmers did not wear protective gear or gloves. Normally 1–2 persons carried out the procedure, which involved bloodletting though a neck artery, manually inflating the carcasses, scalding the pigskin with ≈80°C water, and splitting and shaving the skin with large knives. Scalding and shaving were often performed together. The farmers then sliced the meat into smaller pieces before cooking for food. The complete process of slaughtering could take >1 hour. Our study demonstrated that all patients had been infected during direct contact with blood or tissues of sick or dead pigs. Often this may have occurred through direct exposure of skin wounds. Droplet exposure may also have occurred

Table 2. Clinical symptoms and case-fatality ratio of 215 Streptococcus suis patients in Sichuan Province, China, 2005*

<table>
<thead>
<tr>
<th>Clinical symptom</th>
<th>Probable (No. (%)</th>
<th>No. deaths (case-fatality %)</th>
<th>Confirmed (No. (%)</th>
<th>No. deaths (case-fatality %)</th>
<th>Total (No. (%)</th>
<th>No. deaths (case-fatality %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sepsis</td>
<td>45 (30)</td>
<td>7 (11)</td>
<td>102 (48)</td>
<td>1 (1)</td>
<td>149 (100)</td>
<td>24 (16)</td>
</tr>
<tr>
<td>Meningitis</td>
<td>69 (46)</td>
<td>33 (50)</td>
<td>3 (6)</td>
<td></td>
<td>102 (48)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>STSS</td>
<td>35 (24)</td>
<td>26 (39)</td>
<td>66 (100)</td>
<td>15 (58)</td>
<td>121 (86)</td>
<td>21 (17)</td>
</tr>
<tr>
<td>Total</td>
<td>149 (100)</td>
<td>66 (100)</td>
<td>215 (100)</td>
<td>39 (18)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Streptococcal toxic shock syndrome (STSS) is defined according to the 1996 criteria established by the Centers for Disease Control and Prevention, Atlanta, GA, USA, which include hypotension (systolic blood pressure ≤90 mm Hg for adults) and multorgan involvement characterized by ≥2 of the following: renal impairment, coagulopathy, liver involvement, acute respiratory distress syndrome, generalized erythematous macular rash that may desquamate, soft-tissue necrosis, including necrotizing fasciitis or myositis, or gangrene. Difference in case-fatality ratio between STSS and other clinical symptoms p<0.001 by χ² test.

Table 3. Clinical symptoms of human cases of Streptococcus suis infection in Sichuan, China, 2005*

<table>
<thead>
<tr>
<th>Symptoms and signs</th>
<th>STSS, no. (%)</th>
<th>Non-STSS, no. (%)</th>
<th>Total, no. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever (temperature >37.3°C)</td>
<td>n = 61</td>
<td>n = 154</td>
<td>N = 215</td>
</tr>
<tr>
<td>Chills</td>
<td>48 (79)</td>
<td>128 (83)</td>
<td>176 (82)</td>
</tr>
<tr>
<td>Headache</td>
<td>38 (62)</td>
<td>110 (71)</td>
<td>148 (69)</td>
</tr>
<tr>
<td>Myalgia</td>
<td>30 (49)</td>
<td>73 (47)</td>
<td>103 (48)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>41 (67)</td>
<td>80 (52)</td>
<td>121 (56)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>24 (39)</td>
<td>33 (21)</td>
<td>57 (27)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>28 (46)</td>
<td>22 (14)</td>
<td>50 (23)</td>
</tr>
<tr>
<td>Coma</td>
<td>16 (26)</td>
<td>26 (17)</td>
<td>42 (20)</td>
</tr>
<tr>
<td>Petechiae, ecchymosis†</td>
<td>37 (61)</td>
<td>12 (8)</td>
<td>49 (23)</td>
</tr>
<tr>
<td>Neck rigidity</td>
<td>4 (7)</td>
<td>50 (32)</td>
<td>54 (25)</td>
</tr>
<tr>
<td>Kernig positive</td>
<td>1 (2)</td>
<td>27 (18)</td>
<td>28 (13)</td>
</tr>
<tr>
<td>Brudzinski positive</td>
<td>2 (3)</td>
<td>17 (11)</td>
<td>19 (9)</td>
</tr>
<tr>
<td>Hypotension (blood pressure <90 mm Hg)††</td>
<td>25 (93)</td>
<td>2 (9)</td>
<td>27 (55)</td>
</tr>
</tbody>
</table>

STSS, streptococcal toxic shock syndrome. Median duration between exposure and onset (range) was 1.6 d (9–h–9 d) for STSS, 2.5 d (6–d–14 d) for non-STSS, and 2.2 d (3–h–14 d) for total sample. Difference between median incubation periods of STSS and non-STSS, p<0.05, rank sum test. †Difference in frequency between STSS and non-STSS, p<0.001, χ².

††Not conducted in every patient.

Figure 4. Photograph of a Streptococcus suis patient's legs with streptococcal toxic shock syndrome, featuring purpura and evidence of gangrenous changes in the calf extending down to the foot.
during slaughter or processing of carcasses, but we could not document this occurrence. The observed risk factors were consistent with those reported in other studies (5,6). No evidence of infection from eating cooked pork from these pigs was observed. The uncooked meat was shared with neighboring families, but these villagers normally do not eat raw meat or raw animal viscera. Person-to-person transmission was highly unlikely since we found no disease in family members, neighbors, or healthcare workers who had not been exposed to sick or dead pigs.

One missing link in the outbreak is the exact relationship between the dead goat in the early cluster of patients and the subsequent propagation of the \textit{S. suis} infections. We could not confirm these 2 cases microbiologically. We speculate that \textit{S. suis} caused these 2 early human infections because they occurred shortly after exposure to the dead goat, and because clinical manifestations in the 2 patients were similar to those of others in the outbreak. Human \textit{S. suis} infection after exposure to sick goats has not been reported, despite isolation of the organism from these animals (2). In backyard farms where different animals are kept together, \textit{S. suis} infection could have been transmitted between pigs and goats. Animal surveillance would help establish the role of animals other than pigs in carriage of the bacteria and the potential for causing human infections.

Clinically, 3 distinctive forms of human \textit{S. suis} infection occurred, namely, STSS, sepsis, and meningitis. STSS has not been reported from \textit{S. suis} infection, although it has been previously described in other streptococcal infections (13) and \textit{Staphylococcus aureus} infections (18). Unusual STSS-like illnesses brought the outbreak to the attention of local health authorities. A dose effect may explain the relatively high proportion of culture-positive human cases, especially during the early phase of the outbreak. Many patients died without having sought treatment from any health facility. As for the investigation process, the existing surveillance system that covers meningitis is not robust enough to alert public health personnel of the impending threat of \textit{S. suis}. Control measures included prohibiting by law of slaughtering, eating, selling, and transporting deceased or sick pigs. Subsidies were offered to families to support hygienic handling of

<p>| Table 4. Initial laboratory test results of human cases of \textit{Streptococcus suis} infection in Sichuan, China, 2005* |
|---------------------------------|---------------------------------|---------------------------------|</p>
<table>
<thead>
<tr>
<th>Result</th>
<th>STSS (n = 61)</th>
<th>Non-STSS (n = 154)</th>
<th>Total (N = 215)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukocytosis, >10 x 10^9/L, no. (%)†</td>
<td>26 (52)</td>
<td>97 (71)</td>
<td>123 (66)</td>
</tr>
<tr>
<td>Mean leucocyte count (range)</td>
<td>12.3 (1.0–47.8)</td>
<td>14.5 (2.0–64.0)</td>
<td>13.9 (1.0–64.0)</td>
</tr>
<tr>
<td>Thrombocytopenia, <100 x 10^9/L, no. (%)†</td>
<td>34 (74)</td>
<td>53 (45)</td>
<td>87 (53)</td>
</tr>
<tr>
<td>Mean platelet count (range)</td>
<td>94.7 (10.0–287.0)</td>
<td>118.5 (13.3–689.0)</td>
<td>115.0 (4.4–689.0)</td>
</tr>
<tr>
<td>Liver function impairment, no. (%)‡‡</td>
<td>27 (90)</td>
<td>50 (68)</td>
<td>77 (74)</td>
</tr>
<tr>
<td>Renal impairment, no. (%)‡</td>
<td>20 (59)</td>
<td>3 (3)</td>
<td>23 (19)</td>
</tr>
<tr>
<td>CSF abnormality, no. (%)‡‡</td>
<td>0</td>
<td>31 (46)</td>
<td>31 (40)</td>
</tr>
</tbody>
</table>

*STSS, streptococcal toxic shock syndrome.
†Not all tests were conducted on all patients.
‡Alanine aminotransferase >2 x upper limit of normal.
§Creatinine >177 μmol/L for adults or >2 x upper limit of normal for age.
¶CSF, cerebrospinal fluid; protein >0.45 g/L, glucose <2.5 mmol/L, and >8 leukocytes x 10^6/L.
Acknowledgments

We thank the Sichuan Health Bureau, the government of Ziyang, the Center for Disease Control and Prevention of Chengdu, and Ziyang, Neijiang, Suining, Mianyang, Zigong, Luzhou, Yibing, Deyang, Leshan, Nanchong, and Guangan Prefectures for assisting in coordinating field investigations and providing logistics support. The Ministry of Health in China has generously facilitated this study. We thank Lee Chin-Kei and Robert E. Fontaine for helping us prepare the article.

The Chinese Center for Disease Control and Prevention supported this study both technically and administratively.

Dr Yu is a medical epidemiologist in the Office for Disease Control and Emergency Response, Chinese Center for Disease Control and Prevention. His research interests include surveillance, prevention, and control of emerging infections, including severe acute respiratory syndrome, avian influenza, and S. suis infections.

References

Despite the success of the adenovirus vaccine administered to US military trainees, acute respiratory disease (ARD) surveillance still detected breakthrough infections (respiratory illnesses associated with the adenovirus serotypes specifically targeted by the vaccine). To explore the role of adenoviral co-infection (simultaneous infection by multiple pathogenic adenovirus species) in breakthrough disease, we examined specimens from patients with ARD by using 3 methods to detect multiple adenoviral species: a DNA microarray, a polymerase chain reaction (PCR)–enzyme-linked immunosorbent assay, and a multiplex PCR assay. Analysis of 52 samples (21 vaccinated, 31 unvaccinated) collected from 1996 to 2000 showed that all vaccinated samples had co-infections. Most of these co-infections were community-acquired serotypes of species B1 and E. Unvaccinated samples primarily contained only 1 species (species E) associated with adult respiratory illness. This study highlights the rarely reported phenomenon of adenoviral co-infections in a clinically relevant environment suitable for the generation of new recombinational variants.

Adenoviruses cause an estimated 8% of clinically relevant viral disease globally (1). Human adenoviruses (HAdVs) are divided into 51 serotypes (HAdV-1–HAdV-51) on the basis of type-specific antisera-mediated neutralization of infectivity (determined primarily by the hexon coat protein and terminal knob portion of the fiber protein) (2) and into 6 species, also referred to as subgenera or subgroups (HAdV-A, B, C, D, E, and F) on the basis of hemagglutination inhibition and biochemical criteria (3–5). Species HAdV-B is further classified into subspecies B1 and B2 (3). In civilian populations, HAdV-B1 serotypes 3, 7, 16, and 21; HAdV-E serotype 4; and 1 member of subspecies HAdV-B2, serotype 14, cause outbreaks of illness ranging from mild febrile respiratory infections and conjunctivitis to potentially lethal disseminated infections in both adults and children (1,6). HAdV-C serotypes 1, 2, 5, and 6 cause locally endemic upper respiratory infections in infants and children (7,8) and occasional outbreaks in adults. Other HAdV species are usually not associated with respiratory disease in otherwise healthy humans.

HAdV seems to have found a particularly destructive niche in military training camps. HAdV-B1 serotypes 3, 7, and 21; HAdV-E serotype 4; and HAdV-B2 serotype 14 have caused severe outbreaks of acute respiratory disease (ARD) among military recruits in training centers (9,10). Before initiation of an HAdV vaccination program in 1971, outbreaks occurred regularly, and ~1 of 6 recruits in affected camps required hospitalization (1). Systematic vaccination of recruits against the 2 most common agents of ARD in the military, HAdV serotypes 4 and 7, decreased HAdV-specific respiratory illness by 95% to 99% and overall respiratory illness rates by 50% to 60% (11–13). Despite this general efficacy, breakthrough infection (infection of vaccinated persons by the vaccine-targeted adenoviral serotypes) was still regularly reported (14). Production of the vaccine was suspended in 1996, at which point vaccination became sporadic until the existing stocks ran out in 1999. ARD rates quickly returned to prevaccine levels, with HAdV as the apparent causal agent. As a result, reintroduction of the vaccine is being actively pursued (15).
To explore the possibility that unique HAdV strains were causing ARD in vaccinated persons, throat swab samples were selected from the Naval Health Research Center population-based febrile respiratory illness surveillance collection from vaccinated (n = 21) and unvaccinated (n = 31) recruits who reported ARD from 1996 to 2000. Samples were chosen that had tested positive for serotypes 4 or 7 by culture and serotypic antibody neutralization. The gene coding for the primary adenoviral antigen, the hexon coat protein, was sequenced from these isolates. The sequence data suggested that the detectable serotype 4 and 7 strains apparently responsible for breakthrough infection were the same as those circulating in unvaccinated military and civilian populations (16). In this study, we reanalyze the same set of samples to identify co-infections with multiple HAdV strains and to address what role co-infections may play in breakthrough infection.

Materials and Methods

Sample Collection and Preparation

Samples were collected as throat swabs into viral transport medium from military recruits with ARD at a variety of training camps as previously described (16). The throat swab samples were cultured on A549 cells and tested by using standard serologic methods. Both original swabs and in vitro tissue culture fluid (ITCF) samples were stored at –80°C. Samples that initially tested positive for serotypes 4 or 7 by culture and microneutralization were chosen for analysis and grouped by previous vaccination status. DNA extracts from ITCF samples were collected and used in molecular assays. Collection details and symptom definitions were previously reported (16), and sample details are shown in Tables 1 and 2. Initially, 13 unidentified (blinded) samples were sent by the Naval Health Research Center to the Naval Research Laboratory personnel for testing. After the initial 13 samples showed a high rate of respiratory HAdV co-infection, primarily in vaccinated persons, an additional 39 samples were tested in an unblinded fashion.

Microarray-based Genotyping

One microliter of purified DNA extract from each of the 52 ITCF samples was used as the template in 50-μL degenerate PCR amplifications targeting portions of the E1A, hexon, and fiber genes. The primers, degenerate polymerase chain reaction (PCR) amplification protocol, probes, and microarray fabrication techniques have been previously described (18). Once constructed, the spotted microarrays were blocked with a 3% bovine serum albumin–casein solution (BSA-C) for 15 min at room temperature, and the slides were outfitted with MAUI Mixer DC hybridization chambers (BioMicro Systems, Salt Lake City, UT, USA). Twenty-microliter hybridization reactions (13.6 μL biotinylated degenerate PCR amplicons, 2 μL 3% BSA-C, 4 μL 20× SSC (0.3 mol/L sodium citrate, 3.0 mol/L NaCl, pH 7.0), and 0.4 μL 10% sodium dodecyl sulfate [SDS]) were denatured for 3 min at 98°C and immediately applied to the microarrays. Hybridizations were performed for 2 h at 63°C in a MAUI Hybridization System (BioMicro Systems). Slides were then washed twice with 4× SSC-0.2% SDS buffer and 2× SSC buffer, and hybridization was detected by the sequential addition of Cy5-conjugated mouse antibiotin immunoglobulin G (IgG) (Jackson ImmunoResearch, West Grove, PA, USA) and Cy5-conjugated goat antimouse IgG (Jackson ImmunoResearch). Images were obtained with a ScanArray Lite confocal laser scanning system (Perkin-Elmer, Torrance, CA, USA) at a laser power of 60 to 80 and a photomultiplier tube gain of 60 to 80. The fluorescent signal from each microarray element was considered positive only when its quantified intensity was >3× that of known internal negative control elements. Each ITCF sample was subjected to 2 to 5 independent amplification and hybridization experiments. Hybridization patterns unique to specific serotypes were determined empirically with prototype strains (18). Although members of species HAdV-B1 often produced complex hybridization profiles (18), these profiles were unique, reproducible, and readily identifiable in both single infections and co-infections.

Adenovirus Consensus PCR–Enzyme-linked Immunosorbent Assay

We used a commercially available kit capable of typing adenoviruses to the species level to confirm the results obtained with microarray analyses. Briefly, the Adenovirus Consensus kit (Argene, North Massapequa, NY, USA) uses a PCR–enzyme-linked immunosorbent assay that amplifies a fragment from the adenovirus virus-associated (VA) RNA gene and subsequently detects and types the amplicon with species-specific biotinylated oligonucleotide probes in a colorimetric microwell format (19). Results obtained with the kit were interpreted according to the manufacturer’s adenovirus typing protocol.

Adenovirus-specific PCR

The species-specific PCR amplification was performed with previously published primers (20) and a Multiplex PCR Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions (with 0.5× Q solution). These amplifications were performed in 25-μL reaction volumes at an annealing temperature of 52°C. In general, the PCRs were performed in an iCycler (Bio-Rad, Hercules, CA, USA) and analyzed by electrophoresis on 1.5% agarose gels. Monoplex PCR was performed under identical reaction conditions, except that the same primers were used in

922 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 12, No. 6, June 2006
Table 1. Naval Health Research Center data for molecular detection of adenoviral co-infections in vaccinated and unvaccinated patients with febrile respiratory illness

<table>
<thead>
<tr>
<th>Original designation</th>
<th>Vaccination date</th>
<th>Microneutralization</th>
<th>Multiplex PCR</th>
<th>Species-specific PCR</th>
<th>Sequencing§</th>
<th>GenBank accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7151.AV5.V.98.FJ</td>
<td>5 Nov 1997</td>
<td>4</td>
<td>B, C</td>
<td>B, C, E</td>
<td>5, 21</td>
<td>AY337237</td>
</tr>
<tr>
<td>7137.AV4.V.97.FJ</td>
<td>1 Dec 1997</td>
<td>4</td>
<td>E</td>
<td>B, E</td>
<td>4 variant</td>
<td>AY337242</td>
</tr>
<tr>
<td>7274.AV4.V.98.FJ</td>
<td>11 Feb 1998</td>
<td>4</td>
<td>E, B</td>
<td>E, B</td>
<td>4 vaccine (∆ = 2)</td>
<td>AF065062</td>
</tr>
<tr>
<td>4185.AV4.V.97.FLW</td>
<td>24 Mar 1997</td>
<td>4</td>
<td>E</td>
<td>B, E</td>
<td>4 variant, 7h</td>
<td>AY337252</td>
</tr>
<tr>
<td>4476.AV4.V.97.FLW</td>
<td>24 Oct 1997</td>
<td>4</td>
<td>E</td>
<td>B, E</td>
<td>4 variant</td>
<td>AY337249</td>
</tr>
<tr>
<td>79.AV4.V.96.GL</td>
<td>7 Oct 1996</td>
<td>4</td>
<td>E</td>
<td>E</td>
<td>4 vaccine (∆ = 3)</td>
<td>AF065062</td>
</tr>
<tr>
<td>141.AV7.V.96.GL</td>
<td>12 Nov 1996</td>
<td>7</td>
<td>B</td>
<td>B</td>
<td>7d2 (prototype)</td>
<td>AY337258</td>
</tr>
<tr>
<td>275.AV4.V.97.GL</td>
<td>31 Jan 1997</td>
<td>4</td>
<td>E</td>
<td>E</td>
<td>4 vaccine (∆ = 3)</td>
<td>AY337239</td>
</tr>
<tr>
<td>1212.AV7.V.97.GL</td>
<td>29 Sep 1997</td>
<td>7</td>
<td>B</td>
<td>B, E</td>
<td>7d2 (∆ = 2)</td>
<td>AY337255</td>
</tr>
<tr>
<td>1108.AV7.V.97.GL</td>
<td>8 Oct 1997</td>
<td>7</td>
<td>E, B</td>
<td>B, E</td>
<td>7 vaccine (∆ = 0)</td>
<td>AF065067</td>
</tr>
<tr>
<td>1122.AV7.V.97.GL</td>
<td>8 Oct 1997</td>
<td>7</td>
<td>B</td>
<td>B</td>
<td>7d2 (∆ = 2)</td>
<td>AF321311</td>
</tr>
<tr>
<td>1150.AV7.V.97.GL</td>
<td>8 Oct 1997</td>
<td>7</td>
<td>B</td>
<td>B, E</td>
<td>7 vaccine (∆ = 2)</td>
<td>AY337254</td>
</tr>
<tr>
<td>1152.AV7.V.97.GL</td>
<td>8 Oct 1997</td>
<td>7</td>
<td>B</td>
<td>B</td>
<td>7 vaccine (∆ = 1)</td>
<td>AY337253</td>
</tr>
<tr>
<td>1186.AV7.V.97.GL</td>
<td>8 Oct 1997</td>
<td>7</td>
<td>B</td>
<td>B, E</td>
<td>7d2 (∆ = 2)</td>
<td>AY321311</td>
</tr>
<tr>
<td>1251.AV7.V.97.GL</td>
<td>8 Oct 1997</td>
<td>7</td>
<td>B</td>
<td>B</td>
<td>7d2 (∆ = 2)</td>
<td>AY321311</td>
</tr>
<tr>
<td>1275.AV7.V.97.GL</td>
<td>8 Oct 1997</td>
<td>7</td>
<td>B</td>
<td>B, E</td>
<td>7 vaccine (∆ = 1)</td>
<td>AY337257</td>
</tr>
<tr>
<td>1302.AV7.V.97.GL</td>
<td>8 Oct 1997</td>
<td>7</td>
<td>B</td>
<td>B, E</td>
<td>7 vaccine (∆ = 2)</td>
<td>AY337256</td>
</tr>
<tr>
<td>1649.AV7.V.98.GL</td>
<td>13 Jan 1998</td>
<td>7</td>
<td>B</td>
<td>B</td>
<td>7d2 (∆ = 2)</td>
<td>AF321311</td>
</tr>
<tr>
<td>60406.AV7.99.FB</td>
<td>7</td>
<td>B</td>
<td>B</td>
<td>7 vaccine (∆ = 2)</td>
<td>AY337256</td>
<td></td>
</tr>
<tr>
<td>60673.AV4.00.FB</td>
<td>4</td>
<td>E</td>
<td>E</td>
<td>4 variant</td>
<td>AY337237</td>
<td></td>
</tr>
<tr>
<td>60683.AV4.00.FB</td>
<td>4</td>
<td>E</td>
<td>E</td>
<td>B</td>
<td>4 variant</td>
<td>AY337238</td>
</tr>
<tr>
<td>60684.AV4.00.FB</td>
<td>4</td>
<td>E</td>
<td>E</td>
<td>4 variant</td>
<td>AY337246</td>
<td></td>
</tr>
<tr>
<td>60708.AV4.00.FB</td>
<td>4</td>
<td>E</td>
<td>E</td>
<td>4 variant</td>
<td>AY337237</td>
<td></td>
</tr>
<tr>
<td>60716.AV4.00.FB</td>
<td>4</td>
<td>E</td>
<td>E</td>
<td>4 variant</td>
<td>AY337247</td>
<td></td>
</tr>
<tr>
<td>CHPM2.AV4.00.FB</td>
<td>E</td>
<td>E, B</td>
<td>4 variant</td>
<td>AY337237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHPMP9.AV4.00.FB</td>
<td>E</td>
<td>E, B</td>
<td>4 variant</td>
<td>AY337237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHPMP13.AV4.00.FB</td>
<td>E</td>
<td>E, B</td>
<td>4 variant</td>
<td>AY337237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHPMP29.AV4.00.FB</td>
<td>E</td>
<td>E</td>
<td>4 variant</td>
<td>AY337237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHPMP44.AV4.00.FB</td>
<td>E</td>
<td>E</td>
<td>4 variant</td>
<td>AY337237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7372.AV5.98.FJ</td>
<td>4</td>
<td>C</td>
<td>B, C, E</td>
<td>5, 7h</td>
<td>AY337241</td>
<td></td>
</tr>
<tr>
<td>40098.AV4.98.FJ</td>
<td>4</td>
<td>E</td>
<td>E</td>
<td>4 variant</td>
<td>AY337237</td>
<td></td>
</tr>
<tr>
<td>40160.AV4.98.FJ</td>
<td>4</td>
<td>E</td>
<td>E</td>
<td>B</td>
<td>4 variant</td>
<td>AY337237</td>
</tr>
<tr>
<td>40183.AV4.98.FJ</td>
<td>4</td>
<td>E</td>
<td>E</td>
<td>4 variant</td>
<td>AY337237</td>
<td></td>
</tr>
<tr>
<td>40781.AV4.99.FJ</td>
<td>4</td>
<td>E</td>
<td>E</td>
<td>4 variant</td>
<td>AY337238</td>
<td></td>
</tr>
<tr>
<td>40844.AV4.99.FJ</td>
<td>4</td>
<td>E</td>
<td>E</td>
<td>4 variant</td>
<td>AY337237</td>
<td></td>
</tr>
<tr>
<td>41059.AV4.99.FJ</td>
<td>4</td>
<td>E</td>
<td>E</td>
<td>4 variant</td>
<td>AY337237</td>
<td></td>
</tr>
<tr>
<td>10060.AV4.98.GL</td>
<td>E</td>
<td>E</td>
<td>4 variant</td>
<td>AY337237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10190.AV4.98.GL</td>
<td>4</td>
<td>E</td>
<td>E</td>
<td>B</td>
<td>4 variant</td>
<td>AY337237</td>
</tr>
<tr>
<td>10206.AV4.98.GL</td>
<td>4</td>
<td>E</td>
<td>E</td>
<td>4 variant</td>
<td>AY337244</td>
<td></td>
</tr>
<tr>
<td>10213.AV4.98.GL</td>
<td>4</td>
<td>E</td>
<td>E</td>
<td>4 variant</td>
<td>AY337240</td>
<td></td>
</tr>
<tr>
<td>10257.AV4.98.GL</td>
<td>4</td>
<td>E</td>
<td>E</td>
<td>4 variant</td>
<td>AY337237</td>
<td></td>
</tr>
<tr>
<td>10258.AV4.98.GL</td>
<td>4</td>
<td>E</td>
<td>E</td>
<td>4 variant</td>
<td>AY337237</td>
<td></td>
</tr>
<tr>
<td>10756.AV4.00.GL</td>
<td>4</td>
<td>E</td>
<td>E</td>
<td>4 variant</td>
<td>AY337243</td>
<td></td>
</tr>
<tr>
<td>50108.AV4.00.LAC</td>
<td>E</td>
<td>B, E</td>
<td>4 variant</td>
<td>AY337251</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20044.AV4.98.MCRD</td>
<td>4</td>
<td>E</td>
<td>B, E</td>
<td>4 variant</td>
<td>AY337248</td>
<td></td>
</tr>
<tr>
<td>20139.AV4.98.MCRD</td>
<td>E</td>
<td>E</td>
<td>4 variant</td>
<td>AY337237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20142.AV4.98.MCRD</td>
<td>E</td>
<td>E</td>
<td>4 variant</td>
<td>AY337250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20143.AV4.98.MCRD</td>
<td>E</td>
<td>E, B</td>
<td>4 variant</td>
<td>AY337237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20145.AV4.98.MCRD</td>
<td>E</td>
<td>E</td>
<td>4 variant</td>
<td>AY337245</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*PCR, polymerase chain reaction. Letters or numbers in boldface indicate weak positives.
†Acquisition number, serotype, isolation year, and isolation location.
‡Results are listed as serotypes. Species B includes serotypes 3, 7, 16, 21; species C includes serotypes 1, 2, 5, 6; and species E includes serotype 4.
§Variant/vaccine grouping based on the hexon gene sequence defined by Blasiolo et al. (16). ∆ = # reflects number of base substitutions from vaccine strain in 1,490 bp of the hexon sequence (16). The 7d2 designation is based on that of Blasiolo et al. (16). The 7h designation based on fiber gene sequence is as defined by Kajon and Wadell (17).
Table 2. Naval Research Laboratory data for molecular detection of adenoviral co-infections in vaccinated and unvaccinated patients with febrile respiratory illness*

<table>
<thead>
<tr>
<th>Original designation†</th>
<th>Vaccination date</th>
<th>Microarray‡</th>
<th>Adenovirus Consensus kit</th>
<th>PCR determination†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Positive</td>
</tr>
<tr>
<td>7151.AV5.V.98.FJ</td>
<td>5 Nov 1997</td>
<td>C, 21</td>
<td>C, B1</td>
<td>5, 21</td>
</tr>
<tr>
<td>7307.AV5.V.98.FJ</td>
<td>9 Feb 1998</td>
<td>C, 21</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>1212.AV7.V.97.GL</td>
<td>29 Sep 1997</td>
<td>7, 4, 3</td>
<td>B1, E, F</td>
<td>7, 4, 3, F</td>
</tr>
<tr>
<td>1108.AV7.V.97.GL</td>
<td>8 Oct 1997</td>
<td>7, 4, C, 3</td>
<td>B1, E, F</td>
<td>7, 4, C</td>
</tr>
<tr>
<td>1122.AV7.V.97.GL</td>
<td>8 Oct 1997</td>
<td>7, 4, C, 3</td>
<td>B1, E, F</td>
<td>7, 4, 3</td>
</tr>
<tr>
<td>1150.AV7.V.97.GL</td>
<td>8 Oct 1997</td>
<td>7, 4, C, 3</td>
<td>B1, E, F</td>
<td>7, 3, F</td>
</tr>
<tr>
<td>1152.AV7.V.97.GL</td>
<td>8 Oct 1997</td>
<td>7, 4, 3</td>
<td>B1</td>
<td>7, 4</td>
</tr>
<tr>
<td>1186.AV7.V.97.GL</td>
<td>8 Oct 1997</td>
<td>7, 4, 3</td>
<td>B1, E, F</td>
<td>7</td>
</tr>
<tr>
<td>1251.AV7.V.97.GL</td>
<td>8 Oct 1997</td>
<td>7, 4, 3</td>
<td>B1, E, F</td>
<td>7, 4, 3</td>
</tr>
<tr>
<td>1275.AV7.V.97.GL</td>
<td>8 Oct 1997</td>
<td>7, 4, 3</td>
<td>B1, E</td>
<td>7, 4</td>
</tr>
<tr>
<td>1302.AV7.V.97.GL</td>
<td>8 Oct 1997</td>
<td>7, 4, 3</td>
<td>B1, E, F</td>
<td>7, 4</td>
</tr>
<tr>
<td>1649.AV7.V.98.GL</td>
<td>13 Jan 1998</td>
<td>7, 3, 4</td>
<td>B1</td>
<td>7, 3</td>
</tr>
<tr>
<td>1856.AV5.V.98.GL</td>
<td>25 Mar 1998</td>
<td>C, 7</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>60406.AV7.99.FB</td>
<td></td>
<td>7</td>
<td>B1</td>
<td>7</td>
</tr>
<tr>
<td>60673.AV4.00.FB</td>
<td>4, C</td>
<td>E</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>60691.AV4.00.FB</td>
<td>4, C</td>
<td>E</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>60697.AV4.00.FB</td>
<td>4, C</td>
<td>E</td>
<td>4, 1</td>
<td></td>
</tr>
<tr>
<td>60708.AV4.00.FB</td>
<td>4, C</td>
<td>E</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>60716.AV4.00.FB</td>
<td>4, C</td>
<td>E</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>CHPPM2.AV4.00.FB</td>
<td>4, C</td>
<td>E</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>CHPPM9.AV4.00.FB</td>
<td>4, C</td>
<td>E</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>CHPPM13.AV4.00.FB</td>
<td>4, C</td>
<td>E</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>CHPPM29.AV4.00.FB</td>
<td>4, C</td>
<td>E</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>CHPPM44.AV4.00.FB</td>
<td>4, C</td>
<td>E</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>7372.AV5.98.FJ</td>
<td>C, 7</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>40098.AV4.98.FJ</td>
<td>4</td>
<td>E, F</td>
<td>4, F</td>
<td></td>
</tr>
<tr>
<td>40160.AV4.98.FJ</td>
<td>4</td>
<td>E</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>40163.AV4.98.FJ</td>
<td>4</td>
<td>E</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>40781.AV4.99.FJ</td>
<td>4, C</td>
<td>E, B2</td>
<td>4, B2</td>
<td></td>
</tr>
<tr>
<td>10160.AV4.98.GL</td>
<td>4</td>
<td>E</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10257.AV4.98.GL</td>
<td>4, B2</td>
<td>E</td>
<td>4, B2</td>
<td></td>
</tr>
<tr>
<td>10258.AV4.98.GL</td>
<td>4</td>
<td>E</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10756.AV4.00.GL</td>
<td>4</td>
<td>E</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>50108.AV4.00.LAC</td>
<td>4, B2</td>
<td>E</td>
<td>4, B2</td>
<td></td>
</tr>
<tr>
<td>20044.AV4.98.MCRD</td>
<td>4, C, 7, 3</td>
<td>E</td>
<td>4, 1, B2, 7</td>
<td></td>
</tr>
<tr>
<td>20139.AV4.98.MCRD</td>
<td>4</td>
<td>E</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>20142.AV4.98.MCRD</td>
<td>4</td>
<td>E</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

*PCR, polymerase chain reaction. Species and serotype are listed in order of predominance. Letters or numbers in **boldface** indicate weak positives.
†Acquisition number, serotype, isolation year, and isolation location.
‡Results are listed as serotypes or species. Species B1 includes serotypes 3, 7, 16, 21; species C includes serotypes 1, 2, 5, 6; and species E includes serotype 4.
independent reactions. Sequencing reactions and microneutralization assays were performed as previously described (21,22). Serotype-specific PCR assays (Tables 1 and 2) were verified as described (20,23–26), with occasional substitutions of polymerase type and annealing temperature adjustments.

Co-infection Separation

Limiting dilutions of ITCF sample 7151 were plated on A549 cells and allowed to adsorb for 16 hours, after which agarose overlays (0.4% agarose in Dulbecco minimal essential medium, 2% fetal bovine serum, 4 mmol/L glutamine) were added to each infected monolayer. Well-separated virus plaques were picked 5 days postinfection, placed into viral transport medium, and tested by PCR for HAdV-B and HAdV-C. A second round of plaque purification was performed on several plaque isolates that were treated with 0.05% Triton-X 100 to potentially disrupt virus clumps before their dilution and plating. After 6 hours of adsorption, the original inoculum was removed, and the monolayers were overlayed with agarose solution. The newly formed plaques were tested as described above.

Results

By using a new 70-mer spotted microarray (18), a PCR–enzyme-linked immunosorbent assay (19), and a species-specific multiplex PCR assay (20), we generated data profiles for each of the 52 tissue culture-amplified samples; the raw data from 2 of these samples are shown as representative examples (Figure). The microarray profile of vaccinated sample 7274 detected HAdV-4 (species E), HAdV-21 (species B1), HAdV-C, and HAdV-B2 according to previously validated hybridization patterns (18) (Figure, panel A). Except for detection of an apparent low-level HAdV-C co-infectant, the results of the Adenovirus Consensus kit (HAdV-B1, HAdV-B2, and HAdV-E) (Figure, panel B), multiplex and monoplex species-specific PCR (HAdV-B and HAdV-E) (Figure, panel C), and serotype-specific PCR (HAdV-4, HAdV-21, and HAdV-B2) (Figure, panel D) confirmed the microarray-based identification of multiple adenoviral strains in sample 7274.

In contrast, the microarray profile of unvaccinated sample 10756 detected a single serotype, HAdV-4 (Figure, panel E). The microarray-based finding was verified by results of the Adenovirus Consensus kit (Figure, panel F),
multiplex species-specific PCR (Figure, panel G), and HAdV-4 serotype-specific PCR (Figure, panel H). The data profiles for all 52 samples assembled and compared in this manner are shown in Tables 1 and 2. Dual, triple, and quadruple infections were found in all 21 of the vaccinated samples and in 14 of the 31 unvaccinated samples tested (Tables 1 and 2).

Previously vaccinated persons showed a high rate of co-infection with both species commonly associated with ARD (HAdV-B1 and HAdV-E), whereas unvaccinated persons were primarily infected with HAdV-E. Since HAdV-4 and HAdV-7 are the 2 most common ARD-associated serotypes, that they were also the most commonly paired respiratory pathogenic co-infectants detected in vaccinated persons is not surprising. When the vaccine was used, the rates of other respiratory adenoviruses were much higher than when the vaccine was not used (16). However, these isolates were chosen for study because they yielded antigenic signals consistent with either HAdV-4 or HAdV-7 and were therefore expected to contain at least 1 of these 2 viruses as the highest titer adenoviral components (Table 1) (16).

The ability of the microarray to identify to the serotype level resulted in the detection of the greatest number of co-infections, despite its inability to detect members of species B2 when a co-infecting HAdV-7 was present (hybridization pattern interference) and members of species F that were not targeted (Table 3). Microarray-based identification of multiple ARD-associated serotypes from diverse HAdV-B1 species (serotypes 3, 7, and 21) was necessary because co-infections with these serotypes would not have been indicated or resolved by methods limited to species-level identification.

Although most apparent co-infections could be verified by each of the primary methods tested and by serotype-specific PCR (e.g., single infections: 10756, 60406, 20142; co-infections: 1212, 7151, 7274), some could not be verified (e.g., 60691, CHPPM2). Those co-infectant signals that could not be verified were usually weak positives. The strains responsible for these signals appeared to be subordinate co-infectants because the predominant serotype or species signals generated for the associated samples by the microarray, Adenovirus Consensus kit, and serotype-specific PCR were corroborated in every case and matched the results obtained from the sequencing experiments previously reported (16).

The microarray and Adenovirus Consensus kit use detection and signal amplification techniques that enhance assay sensitivity and thus render them more sensitive than traditional PCR/agarose gel visualization techniques, as shown by the number of triple and quadruple co-infections detected with these techniques (Table 3). Thus, attempting to corroborate these methods with the 3 PCR-based methods used was not completely successful. Nevertheless, most of the positive results from these tests were verified by comparing the microarray and Adenovirus Consensus kit results or by comparison with the results from independent methods such as microneutralization, hexon sequence analysis, serotype-specific PCR that uses primers not used in the multiplex tests, and PCR amplicon sequencing (Tables 1, 2, and 4). These results suggest that these methods can identify and corroborate HAdV co-infections and that, in general, the HAdV load in ARD patients is more complex than previously thought.

To determine whether >1 replication-competent serotype or strain was present in the samples with evidence of co-infection, we attempted to physically separate the paired co-infectants in sample 7151 by plaque purification. Of 92 plaques picked from the initial plate, all tested positive for HAdV-C by PCR and 12 of 92 also tested positive for HAdV-B. Several of the plaques that retained both HAdV-B and HAdV-C signals were replaqued, and PCR testing of these plaques yielded only HAdV-C isolates. Further efforts that used a detergent to increase separation within the original ITCF sample 7151 and applied the agarose overlay more quickly (6 hours) to prevent inter-plaque contamination also yielded only HAdV-C plaques (data not shown).

Discussion

We demonstrate the rarely reported phenomenon of co-infections with multiple adenoviral species. Two previous

Table 3. Human adenovirus load detected with molecular identification methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Status</th>
<th>X = 1</th>
<th>X = 2</th>
<th>X = 3</th>
<th>X = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microarray</td>
<td>Vaccinated</td>
<td>0</td>
<td>4</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Unvaccinated</td>
<td>9</td>
<td>16</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Adenovirus Consensus kit</td>
<td>Vaccinated</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Unvaccinated</td>
<td>22</td>
<td>5</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Multiplex PCR</td>
<td>Vaccinated</td>
<td>17</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Unvaccinated</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Monoplex PCR†</td>
<td>Vaccinated</td>
<td>7</td>
<td>11</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Unvaccinated</td>
<td>21</td>
<td>9</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

*PCR, polymerase chain reaction.†Species-specific PCR from Table 1, Naval Health Research Center data.
studies have noted rare instances of HAdV-C dual infections in small numbers (27,28). HAdV-C, although rarely associated with pharyngitis outbreaks in recruits (10), is usually seen in children (7,8) and can produce latent infections that last into young adulthood. This fact, combined with low incidence of co-infection (27,28), has led to the assertion that multistrain adenovirus co-infections are not common (28) or clinically relevant. The results from the population tested in this study suggest otherwise. Samples from vaccinated recruits showed a high rate of co-infection with multiple species of adenovirus associated with adult ARD (HAdV-E and HAdV-B1).

Many of the identified co-infectants in this study were species not generally associated with ARD in the military (HAdV-C, HAdV-B2, and HAdV-F). Although these species were not likely the cause of ARD observed in these patients, since they are not believed to cause ARD in adults and because they have a high potential for latent carriage (1,7,8,29), their presence sheds new light on the general complexity of the human adenoviral load. In addition, they remain viable reservoirs capable of genetic complementation or recombination with upper respiratory strains.

Recombination can generate new strains with unique and stable phenotypes. Intraspecies adenovirus recombination has been demonstrated in laboratory cell-culture co-infection studies (30–32). These recombination events can generate viable hybrids with intermediate or unique immunogenic and tropic properties. Evidence suggests recombination can generate hybrids in immunocompromised patients (29,33,34), possibly as a result of co-infection with normally isolated serotypes. Recombination, particularly intraspecies, seems to play a major role in the evolution of new, virulent strains of HAdV (1,17,35,36). The currently dominant pathogenic HAdV in US military

Table 4. Human adenovirus (HAdV) species and serotype-specific primers

<table>
<thead>
<tr>
<th>Name</th>
<th>Primer</th>
<th>Sequence</th>
<th>Target gene</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer 1</td>
<td>CTT GGT CTA CGA CCA GAC GG</td>
<td>Species B2 E3</td>
<td>(26)</td>
<td></td>
</tr>
<tr>
<td>Primer 3</td>
<td>GTT TGC TCA TGA ACA TGG CCA GAT CGC AC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F30</td>
<td>CTT CAA CCC TGT CTA CCC TAT GAA</td>
<td>HAdV11 fiber</td>
<td>(25)</td>
<td></td>
</tr>
<tr>
<td>F69</td>
<td>TTC TCT ATT GTA TGA AAG GG</td>
<td>Species F hexon</td>
<td>(24)</td>
<td></td>
</tr>
<tr>
<td>HsgF1</td>
<td>ATT TCT ATT CCT TCG CG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HsgF2</td>
<td>TCA GGC TGG GTA CGG CC</td>
<td>Species C hexon</td>
<td>(24)</td>
<td></td>
</tr>
<tr>
<td>HsgC1</td>
<td>ACC TTT GAC TCT TCT GT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HsgC2</td>
<td>TCC TGG TAT TAT GTA TC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ad3F</td>
<td>GGT AGA GAT GCT GTT GCA GGA</td>
<td>HAdV3 hexon</td>
<td>(23)</td>
<td></td>
</tr>
<tr>
<td>Ad3R</td>
<td>CCC ATC CAT TAG TGT CAT CGG T</td>
<td>HAdV7 hexon</td>
<td>(23)</td>
<td></td>
</tr>
<tr>
<td>Ad7F</td>
<td>GGA AGA ACA TTA CTG CAG ACA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ad7R</td>
<td>AAT TCC AGG CGA AAA AGC GTC A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ad21F</td>
<td>GAA ATT ACA GAC GGC GAA GCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ad21R</td>
<td>AAC CTG CTG GTT TGG CGG TTG</td>
<td>HAdV21 hexon</td>
<td>(23)</td>
<td></td>
</tr>
<tr>
<td>Ad4F5</td>
<td>GTT GCT AAC TAC GAT CCA GAT ATT G</td>
<td>HAdV4 hexon</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Ad4R4</td>
<td>CCT GGT AAG TGT CTG TCA ATC C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ad7F-F</td>
<td>ACA ACT GCC TAT CCT TCT AAT G</td>
<td>HAdV7 fiber</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Ad7F-R</td>
<td>GAC CAA GGT ACA CGA ATA CAA TAT G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ad5 E1A-F1</td>
<td>CCT AAA ATG GCC GCT GCT ATC CTG</td>
<td>HAdV5 E1A</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Ad5 E1A-R1</td>
<td>GGC AGC CCC ACC AAC TCT CAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ad5 E1A-F2</td>
<td>GAG CCT TGG GTC GCG TTT CTA TG</td>
<td>HAdV5 E1A</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Ad5 E1A-R2</td>
<td>CCA TTT TAG GAC GGG GGG TAG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ad5 hexon-F1</td>
<td>GAC GGA GCC AGC ATT AAG TTT GAT</td>
<td>HAdV5 hexon</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Ad5 hexon-R1</td>
<td>GTT GCC GGG TAT AGG GTA GAG CAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ad5 fiber-F1</td>
<td>TAT TCA GCA TCA CCT CCT TCT C</td>
<td>HAdV5 fiber</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Ad5 fiber-R1</td>
<td>AAG ATA GGT GGT GGT AAG GC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdA1</td>
<td>GCT GAA GAA MCA GAA GAA AAT GA</td>
<td>Species A fiber</td>
<td>(20)</td>
<td></td>
</tr>
<tr>
<td>AdA2</td>
<td>CRT TTG GTC TAG GTG AAG CAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdB1</td>
<td>TST ACC CYT ATG AAG ATG AAG GC</td>
<td>Species B fiber</td>
<td>(20)</td>
<td></td>
</tr>
<tr>
<td>AdB2</td>
<td>GGA TAA GCT GTA GTR CTG GCC AT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdC1</td>
<td>TAT TCA GCA TCA CCT CCT TCT C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdC2</td>
<td>AAG CTA TGT GTG GGT GGG GC</td>
<td>Species C fiber</td>
<td>(20)</td>
<td></td>
</tr>
<tr>
<td>AdD1</td>
<td>GAT GTC AAA TTC CTG TCT GAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdD2</td>
<td>TAC CCG TGC TGG TGT AAA AAT C</td>
<td>Species D fiber</td>
<td>(20)</td>
<td></td>
</tr>
<tr>
<td>AdE1</td>
<td>TCC CTG GCA TCG AGA CAA CG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdE2</td>
<td>AGT GCC ATC ATT GCT ATC TCC</td>
<td>Species E fiber</td>
<td>(20)</td>
<td></td>
</tr>
<tr>
<td>AdF1</td>
<td>ACT TAA TGC TGA CAC GGG CAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdF2</td>
<td>TAA TGT TTG TGT TAT TCC GCT C</td>
<td>Species F fiber</td>
<td>(20)</td>
<td></td>
</tr>
</tbody>
</table>
recruits, a considerably diverged variant HAdV-4 strain (16), appears to be a recent recombinant between HAdV-4 and an HAdV-B1 serotype, probably HAdV-7 (37). Given that these 2 are the most common co-infectants seen in our sample set, this finding suggests that the observed dominance of co-infections in vaccinated persons may have contributed to the emergence of this new variant. In general, the understanding and control of situations that create or promote co-infection may be important considerations.

The HAdV vaccine, an enteric-coated live-virus tablet designed to transiently and selectively infect the gastrointestinal tract with normal respiratory HAdV strains, contains viable HAdV-4 and HAdV-7. Thus, we cannot assume whether the detected co-infectants arose from the vaccine itself or from community acquisition of circulating strains. Most HAdV-4 strains in this study are not the vaccine strain but rather a highly divergent variant that has recently been dominant in military training centers (GenBank strain Z-G 95-873). This identity was shown by sequence analysis of 1,500 bp of the hexon gene from many primary infectants identified in the same sample set that was analyzed here (16). The variant HAdV-4 isolates consistently differ from the vaccine strain by 32 base substitutions, including 9 coding changes, in this region (16) (Table 1). Hexon sequence analysis showed that many HAdV-7 co-infectants are HAdV-7d2. HAdV-7d2 is distinguished from the HAdV-7 vaccine strain (HAdV-7a) by a single coding polymorphism in the hexon sequence, but this polymorphism (protein L443Q or nucleotide T1328A in GenBank [18]) is specific to HAdV-7d and HAdV-7d2 and is not found in HAdV-7a, b, c, g, or h or in the vaccine strain (16,38,39). Three of the other HAdV-7 co-infectants (1856, 4185, and 7372) were shown to be HAdV-7h by fiber gene sequencing. The fiber gene of HAdV-7h appears to have been horizontally transferred from HAdV-3 and thus is highly diverged from the usual HAdV-7 fiber gene, as found in the vaccine strain (17). Thus, sequence analyses show that most, if not all, co-infectants are currently circulating HAdV-4 and HAdV-7 strains that are distinct from the vaccine strains (16) (Table 1).

Four lines of evidence support the idea that most of the apparent genetic complexity in the throat swab samples comes from multiple strains, as opposed to recombinants with mixed genetic characteristics. The first comes from the microarray data. The microarray tests for hybridization of 6 independent probes designed to match serotype-specific sequences in 3 genes (18). Since different species do not cross-react among the microarray probes, hybridization of genes from 1 species to the identifying probes for 2 species would require redundant presence of 2 different alleles in all 3 genes. Since both natural recombination in hosts (17) and artificially encouraged recombination in cell culture (30,32) strongly favor homologous recombination and generation of nonredundant hybrid strains, redundant characterization of paired, divergent alleles is inconsistent with a single recombinant genome.

The second line of evidence supporting co-infection with independent genomes comes from comparisons of relative co-infectant titers before and after potentially selective events, such as growth in tissue culture. PCR amplification of fiber gene sequences using species B- and E-specific primers was performed on serial dilutions of vaccinated sample 7274 before and after passage of the original ITCF through 2 additional cycles of growth in A549 cells. In this instance, the relative titers of HAdV-4 and HAdV-7, as measured by serial-dilution PCR, changed by 2 orders of magnitude (data not shown). The rapid drift in relative concentrations of PCR targets from paired co-infecting strains strongly suggests that the co-infectants’ genomes are replicating independently and thus likely to be physically separate entities.

The third line of evidence supporting co-infectant independence comes from whole-genome sequencing efforts. Several molecular methods indicated that vaccinated sample 7151 harbored an HAdV-5/HAdV-21 co-infection (Tables 1 and 2). The genome of the HAdV-5 co-infecting strain was sequenced and assembled into a contiguous sequence (GenBank no. AY601635) consistent with a published HAdV-5 genome (GenBank accession no. AY339865) (40), which suggested no recombination of foreign DNA. However, this effort also generated several orphan sequences that did not fit into the assembled sequence and were subsequently identified as genetically redundant HAdV-21 regions. Further amplification and sequencing of several genetically distant fragments from the same sample using HAdV-21-specific primers yielded ≈2 kb of HAdV-21 sequence. On the basis of the entire genome and partial PCR sequencing analyses, ≥2 co-infecting HAdV genomes are contained in sample 7151.

The fourth line of evidence comes from our attempts to physically separate paired co-infectants by plaque purification. Sample 7151, which contained the HAdV-5/HAdV-21 co-infection, was used initially because it contained relatively equal titers of both co-infectants. Although most of the plaques tested contained HAdV-5, some contained both HAdV-5 and HAdV-21. Although we were unable to identify plaques that contained only HAdV-21, our results demonstrate the physical independence of the co-infecting entities and the functional independence of HAdV-5. Our results also suggest that either the HAdV-21 co-infectant is functionally dependent on HAdV-5 or is effectively outgrown by HAdV-5 to a degree that prevents independent isolation. Similar attempts were made with a few samples that had HAdV-4/HAdV-7 co-infections, but these were generally biased in titer (104 in favor of HAdV-7) and, as expected, yielded only HAdV-7 in >300 plaques tested.
The data demonstrated the functional independence of 1 co-infectant (HAdV-7) and physical independence of the co-infecting entities but could not conclusively demonstrate functional independence of the minor co-infectant.

Conventional clinical microbiologic methods, including microneutralization and hemagglutination inhibition, are comparative and designed to identify the primary HAdV serotype (or species) in a sample. Secondary infections are masked in these methods by the tests (e.g., microneutralization is reported as the strongest reaction, not the spectrum of reactions across all serotypes). Likewise, direct sequencing (16) may restrict identification to a single strain, particularly if 1 co-infectant is dominant. Restriction enzyme analysis methods are capable of resolving HAdV-C dual infections in which both serotypes are present in similar numbers (27). In contrast, when using sensitive molecular methods that can yield measurable signals from secondary (less numerous) co-infectants against the background of stronger signals produced by primary infecting strains, these methods may identify co-infections more than do conventional methods. In the case of respiratory infections, this finding has previously been documented (41).

Finally, each of the methods designed to test for multiple species or serotypes showed a higher number of HAdV (and accepted virulent HAdV species and serotypes) in vaccinated persons than in unvaccinated persons. HAdV vaccine was administered routinely to all trainees until supplies were exhausted, at which point adenovirus vaccination was stopped. Since trainees were vaccinated systematically, persons tended to be sampled at times when either all or no recruits were being vaccinated. Therefore, vaccinated samples collected and tested (from 1996 to 1998) are not concurrent with unvaccinated samples (collected from 1998 to 2000). Because of this sampling limitation, we could not confidently correlate HAdV co-infection with breakthrough infections in previously vaccinated persons. Thus, although this study highlights the previously underappreciated phenomenon of adenoviral co-infection, the conclusive examination of its relationship to vaccination must await reintroduction of HAdV vaccine (15).

Acknowledgments

We thank Gregory C. Gray and Dan Blasiole for critical preceding work, including collection and initial analysis of strains that we reanalyzed, and Beth Metzgar and Valerie de Crecy-Lagard for critically reading the manuscript.

Partial support was provided by the Epidemic Outbreak Surveillance Consortium2 funded by the US Air Force Surgeon General Office, the Modernization Directorate, the Defense Threat Reduction Agency, and the Office of Naval Research.

Dr Vora is a research biologist at the Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC. His primary research interest is development of microarray-based molecular diagnostics for human pathogenic microorganisms.

References

Address for correspondence: David Metzgar, Naval Health Research Center, PO Box 85122, San Diego, CA 92186-5122, USA; email: metzgar@nhr.navy.mil
The primary pathogens related to shellfishborne gastroenteritis outbreaks are noroviruses. These viruses show persistence in oysters, which suggests an active mechanism of virus concentration. We investigated whether Norwalk virus or viruslike particles bind specifically to oyster tissues after bioaccumulation or addition to tissue sections. Since noroviruses attach to carbohydrates of the histo-blood group family, tests using immunohistochemical analysis were performed to evaluate specific binding of virus or viruslike particles to oyster tissues through these ligands. Viral particles bind specifically to digestive ducts (midgut, main and secondary ducts, and tubules) by carbohydrate structures with a terminal N-acetylgalactosamine residue in an α linkage (same binding site used for recognition of human histo-blood group antigens). These data show that the oyster can selectively concentrate a human pathogen and that conventional depuration will not eliminate noroviruses from oyster tissue.

Twelve years ago, the question, “Should shellfish be purified before public consumption?” was asked in Lancet (1). Since then, new evidence of gastroenteritis outbreaks linked to shellfish consumption, even depurated shellfish, has been published, and raw or cooked oysters are the predominant bivalve mollusks involved (2–5). Regulations for Escherichia coli counts in shellfish-growing waters (United States) or shellfish meat (European Community) have failed to protect consumers because most shellfish-associated gastroenteritis outbreaks have a viral origin (4). Enteric viruses are different from enteric bacteria in terms of resistance to sewage treatment, persistence under unfavorable conditions such as occur in sea water, and transmission into the environment (6–8).

Shellfish mollusks cultivated in coastal areas close to human activities can be contaminated by human sewage, which can spread >100 types of viruses (9). Viruses persist in shellfish for an extended period and can adversely affect public health; despite improvements, depuration does not eliminate viral particles (2,10–14).

Noroviruses are the most frequent cause of diarrhea outbreaks in all age groups (8,15). These viruses, which are commonly associated with foodborne and waterborne outbreaks, are resistant to sewage treatment and are present in high concentrations during the epidemic season (3,7,15). They are the primary pathogens associated with shellfishborne outbreaks worldwide (3,4). Oysters are rapidly contaminated, as shown by outbreaks linked to accidental input, and viruses then persist for up to several weeks (2,13,16). These data suggest that contamination by a passive process during mollusk filter feeding may be too simplistic an explanation. We tested whether oysters can actively capture noroviruses and determined the fate of prototype genogroup I Norwalk virus particles in bioaccumulation experiments. Since noroviruses can attach to carbohydrates of the ABH and Lewis histo-blood group family in humans, we also examined the possibility of a similar specific binding to oyster tissues through related carbohydrates (17,18).

Materials and Methods
Norwalk Virus Strain and Recombinant Viruslike Particles
Norwalk virus strain 8FIIa was purified from a stool sample of an infected volunteer and assayed by reverse transcription–polymerase chain reaction (RT-PCR) endpoint dilution (RT-PCR units) to determine the amount of viral RNA in the sample (19). Based on the equivalence of 1 RT-PCR unit to 30–40 genomic copies of RNA, the titer was estimated to be $=3 \times 10^{10}$ particles/mL (2).
 Constructs containing open reading frames 2 and 3 were used to produce recombinant viruslike particles (VLPs) as described previously (20). Virus concentration, as calculated with the detergent compatible protein assay (Bio-Rad Laboratories, Hercules, CA, USA), was 2.11 × 10^{15} particles/mL. The number of particles in 1 µg of VLPs was calculated by multiplying the molecular mass of the major capsid protein VP1 (58 kDa) by the number of copies of the protein in a particle (180) and by a mass of 1 Da (1.66 × 10^{-24} g) (21).

Mutants in the P2 subdomain of VP1 were generated by Ala point substitution and used to produce recombinant VLPs His 329 (H329A), Asn 331 (N331A), and Trp 375 (W375A) (22). Concentrations of these 3 mutant VLPs were adjusted to 5.78 × 10^{14} particles/mL.

Oysters

All experiments were performed with Crassostrea gigas from a clean area (Class A, European Regulations), with no viral contamination, as tested after viral concentration, RNA extraction, and RT-PCR (2). Two batches of oysters collected in March and October 2004 were used to prepare tissue sections.

Bioaccumulation of Norwalk Virus and Recombinant VLPs

Norwalk virus (5 × 10^8 particles) or recombinant VLPs (10^{12} or 10^9 particles) were added to 500 mL clean sea water and homogenized for 5 min. Three oysters were added to the sea water and incubated at room temperature for 12 or 24 h. Sea water was continuously aerated to maintain adequate oxygen levels. A negative control was used under similar conditions but without the addition of Norwalk virus or recombinant VLPs.

Immunohistochemical Analysis

Oysters (uncontaminated or after bioaccumulation) were shucked, and the flesh was fixed in 10% formaldehyde for 48 hours. The digestive gland was then dissected, embedded in paraffin, and sliced into thin sections (5 µm). After preparation of tissue sections, sections from uncontaminated oysters were covered with 4 × 10^9 particles of recombinant wild-type VLPs, 3 × 10^9 particles of Norwalk virus, or 2 × 10^8 particles of mutant VLPs, incubated overnight at 4°C, and washed 3 times (5 min per wash) in phosphate-buffered saline (PBS) at room temperature (23). VLPs bound to oyster tissue or virus trapped after the bioaccumulation experiments was detected by using a rabbit polyclonal antibody to recombinant VLP as previously described (23). Negative controls included sections from uncontaminated samples not exposed to Norwalk virus or recombinant VLPs and virus-exposed sections without antibody. Immunoreactivity, which was detected by microscopic analysis, was graded as strong (intense brown-red staining), weak (pale brown-red staining), or negative (no staining).

Inhibition of Recombinant VLP Binding to Tissue Sections

Treatment with periodate was performed as previously described (23). VLPs were incubated overnight on slides, and the immunohistochemical detection was conducted. Saliva samples from 18 persons with secretor type O, 14 with secretor type A, 4 with secretor type B, and 5 nonsecretors were tested. Phenotyping was performed by enzyme-linked immunosorbent assay, and secretor phenotype was confirmed by genotyping as previously described (17). For the inhibition assay, VLPs were mixed with saliva samples diluted 1:100 for 90 min at room temperature, placed on shellfish tissues, and incubated overnight at 4°C. Positive (without treatment) and negative (without recombinant VLPs) samples were included in this assay.

Binding and Inhibition by Specific Lectins and Carbohydrate-specific Antibodies

Three biotinylated lectins, derived from Helix pomatia (HPA), Dolichos biflorus (DBA), and Ulex europaeus (UEA-1) (Biovalley SA, Marne la Vallée, France), were used for analysis of binding to tissues and inhibition of VLP binding. UEA-1 recognizes the H type 2 trisaccharide and shows some cross-reactivity with Le^α. HPA and DBA recognize α-linked N-acetylgalactosamine residues. For the binding assay, lectins were applied to shellfish tissues for 30 min at different concentrations (50, 20, 10, 5, and 1 µg/mL).

Monoclonal antibodies were used for tissue staining. The antibodies used were anti-A (3-3A), which recognizes all A epitopes; anti-A types 3/4 (III-2A3, III-2A18, and III-2A24); anti-A type 2 (III-2A5); anti-H/Le^α (LM-137); anti-H type 2 (19-OLE); anti-Le^α (12-4LE); and anti-H type 1. The primary antibodies were serially diluted, incubated with tissues overnight at 4°C, and subjected to standard immunohistochemical analysis (23). Negative (without lectin or primary antibody) and positive (known rat or human tissue sections) controls were also tested. For inhibition assays, antibodies or lectins were applied to shellfish tissues for 1 h at 37°C or 1 h at 4°C, respectively, at concentrations 10-fold higher than the lowest dilution that showed binding to the oyster tissues, incubated with VLPs, and analyzed as described above.

Results

Binding of Virus in Oysters after Bioaccumulation

Oysters were immersed in sea water seeded with Norwalk virus at a final concentration of 10^6 particles/mL.
or recombinant VLPs at final concentrations of 2×10^9 and 2×10^6 particles/mL. After incubation for 12 h, virus was detected in digestive diverticula. Immunostaining showed particles in the lumen of tubules and ducts or in phagocytes between epithelial cells and in the surrounding connective tissue (Figure, panels A and B). No difference was observed for the 2 recombinant VLP concentrations used. After incubation for 24 h in sea water at final concentrations of 5×10^8 and 5×10^9 particles/mL for Norwalk virus and recombinant VLPs, respectively, similar results were obtained with particles binding to digestive ducts and isolated cells in connective tissue (data not shown).

Binding of Virus in Oyster Digestive Tissues

The binding of virus or recombinant VLPs was tested directly on oyster gut sections. Both recombinant VLPs and native virions bound to the midgut, the main and secondary ducts of the digestive diverticula, and tubules, although labeling of tubules was weaker (Figure, panels C, D, and E). Binding to connective tissue was not observed. Staining was not observed in negative controls.

Recombinant VLPs can attach to human digestive epithelial cells by recognizing carbohydrate structures. To determine if attachment to oyster digestive cells was also carbohydrate dependent, tissues sections were treated with 10 mmol/L sodium periodate before adding the VLPs. A reduction in VLP binding occurred, which suggested that, similar to the case with human tissue, binding to oyster tissue involves carbohydrates (Figure, panels E and F).

Inhibition of Virus Binding to Oyster Digestive Cells by Human Saliva

Since attachment of recombinant VLPs to human tissue sections involves carbohydrates of the ABH, secretor, and Lewis histo-blood group family, which are present on human salivary mucins, we evaluated the ability of saliva of different ABO and secretor phenotypes to block the binding of VLPs to shellfish tissues. Complete inhibition of binding was observed after pretreatment of the recombinant VLPs with type A secretor saliva, and binding was markedly reduced after incubation with type O secretor saliva. However, after incubation with type B secretor saliva or nonsecretor saliva, binding was as strong as that observed in positive controls (Table 1). All samples in subgroups of saliva showed similar patterns.

Binding of Mutant Recombinant VLPs

Our results suggested that attachment of VLPs to oyster tissue involves carbohydrate binding sites that overlap the site that attaches to human digestive cells. This site has been mapped to a restricted area of the viral capsid P2 domain. Mutations in key residues in this domain inactivate the binding activity to histo-blood group structures. To confirm that the binding to oyster tissue involved the same binding site, VLPs with point mutations were tested. Among 3 mutants, only mutant N331A binds to tissues similar to parental recombinant VLP (Figure, panel G). The 2 other mutants, H329A and W375A, did not bind to tissues (Figure, panel H).

Figure. Immunohistochemical detection of Norwalk viruslike particles (VLPs) in oyster digestive tissue. **A**) VLPs in the digestive diverticulum 12 h after seeding sea water with 10^9 particles. The arrows show immunoreactivity detected in intraepithelial cells. **B**) VLPs in the digestive diverticulum 12 h after seeding sea water with 10^{12} particles. The arrowhead shows immunoreactivity in a phagocyte located in connective tissue, and the arrow shows immunoreactivity in the lumen of a digestive tubule. **C**) Attachment of recombinant VLPs to secondary ducts of the digestive diverticula after incubation on tissue sections. The arrows show immunoreactivity in the lumen of ducts. **D**) Attachment of Norwalk virus to a main digestive duct. The arrow shows immunoreactivity in epithelial duct cells. **E** and **F**) Attachment (arrows) of recombinant VLPs to digestive ducts without (E) or with (F) periodate treatment of serial tissue sections. **G**) Binding of VLPs (arrows) to a main digestive duct of VLPs from the H331A mutant capsid protein. **H**) Lack of binding of the H329A mutant. **I**) Binding of HPA lectin to the digestive diverticula. Scale bars: A and B, 10 μm; C, E, F, and H, 40 μm; D, G, and I, 20 μm.
Inhibition of VLP Binding by Antibodies to Carbohydrate and Lectins

Antibodies to carbohydrates on cells in the human digestive tract can inhibit binding of recombinant VLPs to human tissue (18). Primary antibodies that recognize various determinants of the histo-blood group family were evaluated for binding to oyster digestive tract and inhibition of VLP binding. Antibodies that recognize all types of A determinants (3-3A) or those that are restricted to A type 3/4 determinants bound strongly to shellfish tissues (Table 2). Anti-H type 1 BG-4 labeled oyster digestive cells intracellularly and also labeled connective tissue. Antibody LM137, which recognizes all H determinants and Leb tetrasaccharide, also labeled connective tissue and digestive epithelial cells intracellularly. However, staining had a more punctiform appearance. Despite recognition of oyster ligands, in inhibition assays none of these antibodies inhibited binding of VLPs to oyster tissues. Antibodies directed against H type 2 (19-OLE,), Ley (12-4LE), or A type 2 epitopes (III-2A-5) showed little staining of shellfish tissues and when positive, staining did not correspond to cells to which VLPs bind. These results indicate that oyster tissues have carbohydrates that resemble human histo-blood group antigens, but structures recognized by VLPs were not identical to those recognized by these antibodies.

Lectins have been used to determine the distribution of carbohydrate residues in tissue. Since lectins have a broader reactivity than monoclonal antibodies, we used lectins to identify recombinant VLP-specific carbohydrate ligand in oyster tissue. UEA-1 bound to shellfish tissues, but only at high concentration (50 µg/mL), whereas 2 other lectins, DBA and HPA, bound at a lower concentration (1 µg/mL) (Table 3). Tissue and cellular distribution of staining overlapped with that of the recombinant VLPs (Figure, panel I). When these lectins were used in an inhibition assay, only HPA had an inhibitory effect on binding of recombinant VLPs to shellfish tissues. Complete inhibition was observed at a concentration of 25 µg/mL (Table 3). This inhibitory effect was reproducible and observed on tissues from different shellfish, indicating that attachment of recombinant VLPs to oysters involves carbohydrate structures with a terminal N-acetylgalactosamine residue in an α linkage.

Discussion

Virus-mediated disease can be transmitted when contaminated shellfish are eaten. Oysters are believed to act as filters or ionic traps, passively concentrating particles. A simple depuration process should be sufficient to rid oysters of virus, as observed for bacteria (12). However, long-term virus persistence in shellfish is a serious public health issue, and depuration or relaying is known to be inefficient (10,12,14). After bioaccumulation, only 7% of Norwalk virus is depurated, compared to a 95% reduction in bacterial levels (13). Virus is located mainly in pancreatic tissue (digestive diverticula), and various mechanisms have been suggested to explain differences between oyster species regarding virus accumulation, such as mechanical entrapment or ionic bonding (10,13,24,25).

Our data demonstrate specific binding of viral particles from a genogroup I norovirus to the oyster digestive tract and suggest a specific mechanism for concentration of virus particles. We tested recombinant VLPs of prototype genogroup I Norwalk virus. VLPs are stable in the marine environment and the disinfection processes (14,26). Bioaccumulation and tissue-binding experiments showed no difference between native Norwalk virus and VLPs, which confirmed that VLPs are good surrogates of infectious virions.

Different results were seen between bioaccumulation experiments and particle binding to tissues sections. After bioaccumulation, some viral particles were detected in phagocytes in either epithelium or connective tissue. This finding could reflect elimination of virus during digestion. The time required for food to pass through the entire shellfish intestinal tract varies from 90 to 150 min. We do not know whether immunoreactive material detected in phagocytes corresponds to particle degradation and digestion or if particles can escape digestion. Binding to main ducts may provide a mechanism for viral particles to avoid entering the digestive system and being degraded. Specific attachment of virus to oyster cells and capture by

Table 1. Inhibition of binding of Norwalk viruslike particles (VLPs) to oyster digestive tissues by saliva

<table>
<thead>
<tr>
<th>Saliva</th>
<th>No. samples tested</th>
<th>VLP binding*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>14</td>
<td>–</td>
</tr>
<tr>
<td>O</td>
<td>18</td>
<td>+</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>+++</td>
</tr>
<tr>
<td>Nonsecretor</td>
<td>5</td>
<td>+++</td>
</tr>
<tr>
<td>Control</td>
<td>5</td>
<td>+++</td>
</tr>
</tbody>
</table>

*After incubation with saliva, no (–), weak (+), or strong (++) VLP binding to oyster digestive tissues was observed. For controls, VLPs were applied to shellfish tissues in phosphate-buffered saline/1% bovine serum albumin instead of a saliva sample diluted in the same buffer.

Table 2. Binding of carbohydrate antibodies to oyster digestive tissues

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Binding*</th>
<th>Tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-A all types</td>
<td>+++</td>
<td>Digestive cells</td>
</tr>
<tr>
<td>Anti-A types 2</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Anti-A type 3/4</td>
<td>+++</td>
<td>Digestive cells</td>
</tr>
<tr>
<td>Anti-H type 1</td>
<td>+++</td>
<td>Digestive cells (intracellularly) and connective tissue</td>
</tr>
<tr>
<td>Anti-H type 2</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Anti-H/Leb</td>
<td>+++</td>
<td>Digestive cells (intracellularly) and connective tissue</td>
</tr>
<tr>
<td>Anti-Leb</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

*+++ strong, + weak.
phagocytes may explain why depuration in oysters is not an effective mechanism for eliminating virus.

Virus accumulation in oysters may depend on factors such as water temperature, mucus production, glycogen content of connective tissue, or gonadal development (25). In our study, no difference was seen in binding location between samples collected in March or October, although studies during other seasons are warranted.

Human susceptibility factors for norovirus infections that depend upon carbohydrates of the ABH, secretor, and Lewis histo-blood group family have been observed (17,27). We showed that recognition of oyster digestive epithelial cells by recombinant VLPs also involves carbohydrates. The ability of human saliva to inhibit attachment of VLPs to oyster tissue in a histo-blood group–dependent manner indicates involvement of the histo-blood group binding site and the viral P2 subdomain (18).

Similar to human histo-blood group structures, mutant VLPs showed that an alanine substitution at positions H329A and W375A prevented binding to oyster tissue. However, a mutant with a substitution at position N331A did not affect binding. This binding specificity identified the amino acids required for binding and further confirmed the similarity with the mechanism of recognition of human tissues (22). However, inhibition experiments using antibodies to carbohydrates showed that ligands on oyster tissues are not identical to those on human tissues. Since attachment of recombinant VLPs was blocked by lectin from H. pomatia, which recognizes α-linked N-acetylgalactosamine terminal residues of glycans, the oyster ligands are similar to those of histo-blood group A. The DBA lectin did not inhibit attachment of recombinant VLPs, which indicates that it does not bind oligosaccharide structures recognized by VLPs and HPA. Although DBA binds to N-acetylgalactosamine residues similar to HPA, the 2 lectins have different carbohydrate specificities that depend on the subjacent sugar residues (28). Thus, Norwalk virus binds to oyster tissues through an A-like carbohydrate structure recognized by HPA at a binding site also used for attachment to carbohydrate on human epithelial cells.

Genogroup I and II strains of norovirus show various binding patterns with different carbohydrate structures of the histo-blood group family, which suggests coevolution of this group of viruses and their host or carrier vector. The ability of Norwalk virus to bind to oysters tissues at the same binding site as that used to bind to human tissues suggests a possible coevolution mechanism involving the oyster as an intermediary vector. This mechanism would favor selection of some viruses, such as Norwalk virus, over other viruses that are unable to bind to the oyster and would not be transmittable by this intermediary host. Epidemiologic data suggest a predominance of genogroup I strains in oyster-related gastroenteritis outbreaks, whereas genogroup II strains are predominant in other food-related outbreaks (2,3,5,8,15,16). To clearly address this point, binding of other norovirus strains needs to be evaluated because VLP-carbohydrate binding patterns differ, and binding should also be evaluated with other shellfish species (18,27).

As knowledge increases in understanding the binding of these viruses in humans, we will likely further understand more about their behavior in shellfish. This knowledge may help identify species that could be less sensitive to contamination. Since the oyster can actively and specifically bind a human pathogen, this knowledge has practical consequences because conventional depuration cannot eliminate noroviruses from oyster tissues.

Acknowledgments

We thank Jezabel Rocher for technical assistance and R. Fraser, J. Bara, and Signet Pathology Systems for providing monoclonal antibodies.

This work was supported in part by the European Commission, QLRT-1999-0634, and the Institut National de la Santé et de la Recherche Médicale.

Dr Le Guyader is a molecular biologist at the Institut Français de Recherche pour l’Exploitation de la Mer in Nantes. Her research interests include norovirus released by humans and shellfish contamination.

References

An increase in Haemophilus influenzae type b (Hib) in British children has been linked to the widespread use of a diphtheria/tetanus/acellular pertussis combination vaccine (DTaP-Hib). We measured anti-polyriboyl-ribitol phosphate antibody concentration and avidity before and after a Hib booster in 176 children 2–4 years of age who had received 3 doses of DTP-Hib (either DT whole cell pertussis-Hib or DTaP-Hib) combination vaccine in infancy. We also measured pharyngeal carriage of Hib. Antibody concentrations before and avidity indices after vaccination were low (geometric mean concentration 0.46 µg/mL, 95% confidence interval [CI] 0.36–0.58; geometric mean avidity index 0.16, 95% CI 0.14–0.18) and inversely related to the number of previous doses of DTaP-Hib (p = 0.02 and p<0.001, respectively). Hib was found in 2.1% (95% CI 0.7%–6.0%) of study participants. Our data support an association between DTaP-Hib vaccine combinations and clinical Hib disease through an effect on antibody concentration and avidity.

After the introduction of conjugate Haemophilus influenzae type b (Hib) vaccines in October 1992, the incidence of invasive Hib disease in England and Wales dramatically declined. From 1990 to 1992, the annual incidence in children <5 years of age was 20.5–22.9 per 100,000 and by 1998 it had fallen to 0.65 per 100,000 (1). However, since 1999 the number of invasive Hib infections has risen, with an increase every year in the number of cases in children born from 1996 to 2001; by 2002 the disease incidence had reached 4.58 per 100,000 (1). This rise coincided with a temporary change in the type of Hib vaccine combinations given for primary immunization. An acellular pertussis combination vaccine (DTaP-Hib) was used from 1999 to 2002 because of a shortage of the whole cell pertussis combination (DTwP-Hib) vaccine. It also coincided with the introduction of routine immunization with meningococcal conjugate (MCC) vaccines in 1999.

Most, but not all (2), DTaP-Hib vaccines result in lower Hib antibody concentrations shortly after vaccination when compared with DTwP-Hib vaccines (3), but the persistence of this effect has not been studied and its clinical significance is controversial (3). However, a UK case control study has demonstrated an increased risk for invasive Hib disease in children who received >2 doses of DTaP-Hib, which suggests that this effect may be clinically relevant (4). Suppression of Hib antibody responses by other concomitantly administered vaccines has also been described. These include pneumococcal conjugate vaccines (5), inactivated polio vaccines (6), and MCC vaccines (7), even when given by separate injection. With respect to MCC vaccines, lower Hib responses were observed when the CRM-197 conjugate MCC vaccine was administered simultaneously as compared with the tetanus toxoid conjugate MCC vaccine (7).

In response to the rising incidence of Hib disease, a national booster campaign was initiated in 2003 in which an extra dose of Hib vaccine was offered for all children between 6 months and 4 years of age. We used this opportunity to assess whether the number of DTaP-Hib vaccines given during primary immunization was related to the serum concentration and avidity of Hib antibody both before and after the booster in children 2–4 years of age. We also aimed to assess the prevalence of pharyngeal Hib carriage in this age group.

Methods

The UK primary vaccine schedule consisted of 3 doses of Hib conjugate vaccine, DTP vaccine, oral polio vaccine, and MCC vaccine all administered at 2, 3, and 4 months of
age. For their primary infant schedule, the participants in this study received either a DTwP-Hib (ACT-HIB DTP, Pasteur Merieux MSD Ltd, Maidenhead, UK) or DTaP-Hib (Infanrix-Hib, GlaxoSmithKline, Middlesex, UK). The Hib conjugate in both consisted of PRP conjugated to tetanus toxoid (PRP-T), and the acellular pertussis vaccine contained 3 pertussis components. The participants in the study may also have received 1 of 2 different meningococcal conjugate vaccines, a CRM197-based conjugate or a tetanus toxoid–based conjugate.

The names of children 2–4 years of age with full Hib vaccination (3 doses) were obtained from district computerized immunization records. After written informed parental consent was obtained, pharyngeal swabs and blood samples were obtained from the children, and doses of Hib conjugate vaccine were administered. Four to 6 weeks later, a second blood sample was obtained from each child. Dates and types of previous vaccinations were obtained from immunization records and the children’s handheld record. We were particularly interested in the types of DTP-Hib and MCC vaccines the children had received. The study was approved by the Wandsworth Local Research ethics committee (reference 00.6.14).

We used an enzyme-linked immunosorbent assay (ELISA) method to measure immunoglobulin G antibodies to PRP. The minimum level of detection of the assay was 0.11 µg/mL for summary calculations. Anti-PRP concentrations were log transformed, and the geometric mean concentration (GMC) and 95% confidence intervals (CIs) were calculated. Avidity was determined by using a thioypeptide elution ELISA (8) and calculating the log-transformed data as the geometric mean avidity index. Throat swab specimens were obtained with a cotton-tipped swab, placed in transport media, and cultured on anti-serum agar. Strains identified as H. influenzae were analyzed by conventional slide agglutination and polymerase chain reaction (9).

We compared proportions by using Fisher exact test and GMCs between groups by using Mann-Whitney or Kruskal-Wallis tests. Linear regression was used to explore the effects of several variables on anti-PRP antibody concentration. The variables included in the model were age, number of DTaP-Hib vaccines, and type of MCC vaccines received, and for the post-booster anti-PRP concentration, the time between vaccination and blood sampling. For statistical analysis, we used SPSS version 12.0 (SPSS, Chicago, IL, USA) for Windows (Microsoft Corp., Redmond, WA, USA).

Results

We recruited 195 study participants from April 2003 to January 2004. Throat swabs were taken from 143 participants, and blood samples were taken from 176 participants. Their median age was 37.8 months (range 24–50 months), and 92% had received their third primary vaccine dose by 7 months of age.

We identified the type of DTP-Hib combination vaccine used in all 3 primary vaccinations in 163 (92.6%) participants and the number of doses and type of MCC vaccine in 159 (90.3%) participants. Participants were assigned to 1 of 4 groups based on the number of acellular pertussis vaccines (DTaP-Hib) received (0, 1, 2, or 3 doses). In 10 additional participants, 2 of the 3 vaccine combinations they had received were classified. Type of combination vaccine received varied according to participant age with younger children more likely to have received an acellular pertussis combination. The median age of participants who received 2 or 3 doses of DTaP-Hib was 32.4 months versus 40.9 months for those who received 2 or 3 doses of DTwP-Hib (p = 0.001).

Prebooster Anti-PRP Antibody Concentrations

The prebooster GMC for all participants was 0.46 µg/mL (95% CI 0.36–0.58) with 40 of 175 (22.9%) <0.15 µg/mL and 128 (73.1%) <1.0 µg/mL. For those who received all 3 doses as DTwP-Hib, the GMC was 0.61 µg/mL (95% CI 0.41–0.92); for those who received all 3 doses as DTaP-Hib, the GMC was 0.30 µg/mL (0.19–0.49). There was a significant trend in prebooster GMC according to the number of doses of acellular pertussis vaccine received, with increasing doses of DTaP-Hib associated with decreasing anti-PRP antibody concentrations (p = 0.02) (Figure 1). Receiving 2 or 3 doses of DTaP-Hib was associated with a higher proportion of children with a nonprotective concentration (<0.15 µg/mL) than receiving 2 or 3 doses of DTwP-Hib (36% vs. 14%, p = 0.002) (Figure 2). On linear regression analysis, only the type of DTP-Hib vaccine combination received (p = 0.034) was associated with prebooster antibody concentration.

With regard to MCC vaccines, 91% of children received the CRM197 containing conjugate vaccines, and 9% received the tetanus toxoid conjugate vaccine. No significant differences were found between anti-PRP antibody concentrations achieved according to type of MCC vaccine received (data not shown).

Postbooster Anti-PRP Antibody Concentrations

The postbooster GMC was 156.1 µg/mL (95% CI 133.5–182.4); 1 of 170 (0.6%) <1.0 µg/mL; 168 (99%) >10 µg/mL; median fold rise 439, range 0.9–9,200), obtained at a median of 31 days (range 26–64). The GMC was 153.1 µg/mL (113.5–207.0, n = 50) for those who had received all primary 3 doses as DTwP-Hib; 179.1 µg/mL (139.6–229.6, n = 38) for those who received 2 doses of DTwP-Hib and 1 dose of DTaP-Hib; 147.6 µg/mL (87.1–249.5, n = 27) for those who received 1 dose DTwP-
Hib and 2 doses DTaP-Hib; and 134.0 µg/mL (96.4–186.2, n = 42) for those who received all 3 doses as DTaP-Hib. None of the variables included in the model was associated with postbooster anti-PRP antibody concentration.

Anti-PRP Avidity

No significant differences in geometric mean avidity index were found before and after receiving the Hib booster vaccine (data not shown). A significant inverse trend to lower postbooster avidity levels was evident according to the number of doses of DTaP-Hib received (p<0.001) (Figure 3).

Pharyngeal Hib Carriage

Three of 143 participants (2.1%, 95% CI 0.7%–6.0%) were found to be carrying Hib on pharyngeal culture. One child had received all DTwP-Hib, and the other 2 had received all DTaP-Hib vaccines. The prebooster anti-PRP antibody concentrations in the 3 carriers were high: 63.9, 123.7, and 4.2 µg/mL. An additional 9 participants had prebooster anti-PRP antibody concentrations >5 µg/mL (4 participants had concentrations >10 µg/mL), which suggests recent or current carriage of Hib or of a cross-reactive antigen.

Discussion

We have shown that Hib antibody concentrations in healthy UK children 2–4 years of age were low in 2003, with 23% of children unprotected based on a serologic correlate of 0.15 µg/mL and 73% of children unprotected based on a correlate of 1.0 µg/mL. This finding is consistent with national serologic data from 2000, which also showed that median anti-PRP antibody concentrations from children 2–4 years of age in 2000 were significantly lower than those from 1994 (10). The probable explanation is that children in this age group in 1994 had received 1 dose of Hib conjugate vaccine after 12 months of age as part of a catch-up program, while similarly aged children in 2000 and 2003 had received vaccine before 6 months of age as part of primary immunization. In the absence of vaccine boosting, anti-PRP antibody levels induced by vaccination in infancy wane over 2–3 years (11). However, we have shown a significant and lasting effect on anti-PRP antibody levels of the type of DTP-Hib combination vaccine used for primary vaccination. Participants who received all 3 primary doses as DTaP-Hib had antibody concentrations 2–4 years later that were approximately half those of participants who received all 3 primary doses as DTwP-Hib. This extends the findings of earlier studies in which Hib antibody concentrations were measured shortly after vaccination and found to be lower in recipients of DTaP-Hib vaccines (3).

Our data on avidity contrast with those of others who found that avidity appeared unaffected by receipt of acellular pertussis–containing Hib combination vaccines in the short term (to 1 year of age) (12,13). Our data suggest that DTaP can interfere with the normal antibody avidity maturation that occurs after priming with Hib vaccine. Since the avidity of serum antibody is likely to relate to the functional activity of the serum (14), the combination of decreased antibody concentration and decreased avidity suggests an increased susceptibility to Hib disease. This occurrence may provide the biological basis for the finding of an elevated risk of clinical vaccine failure in recipients of ≥2 doses of DTaP-Hib in a recent UK case control study (4).

Nearly all vaccinees responded well to the Hib booster dose, with 95% having >10-fold rises in antibody concentrations (median rise 439-fold) and 99% achieving concentrations >10 µg/mL. This result was independent of which combination vaccine they received in infancy. For most of

![Figure 1. Geometric mean anti-polyribosyl-ribitol phosphate antibody concentration before booster (95% confidence intervals) in 2- to 4-year-old children, according to number of doses of acellular pertussis (aP) containing *Haemophilus influenzae* type b combination vaccines received in infancy. Number of participants is shown in parentheses. GMC, geometric mean concentration.](image-url)
together with the presence of Hib carriage, likely explains the recent resurgence of invasive Hib disease. Low antibody concentrations in UK children 2–4 year of age is primarily due to the waning of vaccine-induced antibody after infant vaccination without a routine booster dose. This result may be a particular issue where accelerated schedules, such as the UK 2,3,4-month schedule, are employed because such schedules may be less immunogenic when compared to extended schedules (19). Our study indicates that this phenomenon has been compounded by the use of acellular pertussis Hib combination vaccines with lower Hib immunogenicity. As with the Alaskan experience, these results emphasize the importance of long-term surveillance of vaccine preventable diseases, particularly during changes to routine immunization schedules.

Acknowledgments

We thank John Robbins and Rachel Schneerson for providing antisera and comments on the manuscript, David Griffiths for providing antiserum agar plates, Robert Booy for providing samples from children and comments on the manuscript, and the children and parents for participating in the study.

Partial funding was received from GlaxoSmithKline. The funding body had no role in study design; collection, analysis, and interpretation of data; writing of the report; or the decision to submit the paper for publication.

P.T.H. and A.J.P. are investigators for clinical trials conducted on behalf of St. Georges, University of London, and Oxford University, respectively, sponsored by vaccine manufacturers including GlaxoSmithKline. P.T.H., A.J.P., J.U.R., and M.P.E.S. have received assistance from vaccine manufacturers to attend scientific meetings.

Dr Johnson is a consultant pediatrician with an interest in pediatric infectious diseases and immunization. He conducted this study during his pediatric training.

References

Address for correspondence: Paul T. Heath, Vaccine Institute, St. George’s University of London, London SW17 0RE, UK; email: pheath@sgul.ac.uk

Use of trade names is for identification only and does not imply endorsement by the Public Health Service or by the U.S. Department of Health and Human Services.
Previous studies have shown a high prevalence of toxoplasmosis and the frequent occurrence of ocular disease in Brazil. To identify the genotypes of parasite strains associated with ocular disease, we compared 25 clinical and animal isolates of Toxoplasma gondii from Brazil to previously characterized clonal lineages from North America and Europe. Multilocus nested polymerase chain reaction analysis was combined with direct sequencing of a polymorphic intron to classify strains by phylogenetic methods.

The genotypes of T. gondii strains isolated from Brazil were highly divergent when compared to the previously described clonal lineages. Several new predominant genotypes were identified from different regions of Brazil, including 2 small outbreaks attributable to foodborne or waterborne infection. These findings show that the genetic makeup of T. gondii is more complex than previously recognized and suggest that unique or divergent genotypes may contribute to different clinical outcomes of toxoplasmosis in different localities.

T. gondii is an obligate intracellular parasite that infects a wide range of warm-blooded vertebrates and causes disease in agricultural animals and humans (1). T. gondii has a complex life cycle that includes an asexual cycle and sexual cycle; the asexual cycle occurs in a wide range of intermediate hosts, and the sexual cycle occurs exclusively in feline hosts, which shed infectious oocysts in their feces (1). T. gondii is mainly transmitted by ingesting cysts contained within tissues of a chronically infected host or by ingesting sporulated oocysts from fecally contaminated food or water (2). T. gondii is an influential foodborne pathogen in the United States (3) and a frequent cause of waterborne infection in parts of Brazil (4,5).

Despite having a sexual phase in its life cycle, the population structure of T. gondii is markedly clonal (6). Most strains analyzed from North America and Europe belong to 1 of 3 clonal lineages known as types I, II, and III (7–9). A small number (<5%) of isolates contain different combinations of the same alleles seen in the clonal types, which indicates that recombination occurs infrequently in the wild (7). Additionally, strains with more divergent genotypes have been isolated from locations such as French Guiana (10).

The serologic prevalence of T. gondii infection in Brazil includes 50%–80% of the adult population, with the highest values found in northern and southern states (5). Waterborne transmission has been implicated in high rates of T. gondii seropositivity in northern Rio de Janeiro State (5) and in a toxoplasmosis outbreak in Santa Isabel do Ivai in southern Paraná (4). High levels of ocular disease are associated with toxoplasmosis in Brazil (11). In the southern city of Erechim, Brazil, 184 (17.7%) of 1,042 adults were found to have retinal scars, thought to be caused by toxoplasmosis (12). Epidemiologic data indicate that many cases of ocular disease are acquired after birth rather than congenitally (13–15). Whether the increased prevalence and severity of ocular toxoplasmosis in Brazil are attributable to host or parasite genetic factors or differences in exposure rate is uncertain.

Polymerase chain reaction (PCR)–based typing at the SAG2 locus has been used previously to suggest that type I strains predominate in Brazilian patients with ocular toxoplasmosis (16). While the SAG2 marker provides accurate genotyping for most strains within the clonal lineages,
it cannot detect recombinant strains or those with unusual genotypes (17). In fact, the exclusive use of any single locus may misrepresent the genotype of recombinant or unusual genotypes as having a simple genotype. This problem is partially alleviated by multilocus analysis, and random amplified polymorphic DNA (RAPD)–PCR analysis of Brazilian T. gondii strains with multiple markers showed that most strains contain both type I and III alleles at different loci (18). However, PCR-based markers, such as restriction fragment length polymorphism (RFLP) or RAPD, underestimate the true rate of nucleotide divergence and thus may not accurately classify T. gondii strains from new regions. For example, a high degree of polymorphism is detected at the GRA6 locus by sequence analysis (9 allelic sequences among 30 strains), whereas PCR-RFLP analysis differentiates only 3 groups among these same strains (19).

We have recently described a sensitive method for multilocus genotyping consisting of nested PCR (nPCR) amplification of 4 different RFLP markers (SAG2, GRA6, SAG3, and BTUB). When combined with sequencing of the UPRT-1 intron, multilocus nPCR typing provides a robust means to classify strains as having clonal, recombinant, or novel genotypes (17). Multilocus nPCR analysis also can detect as few as 5 parasite genomes and thus is applicable to low-volume samples containing few parasites, as is typical of clinical specimens (17). In this study, we examined a group of Brazilian T. gondii strains from animal and human sources, including several outbreaks, to examine the population structure of T. gondii in Brazil.

Methods

Clinical Isolates

Patients were examined at Clinica Silveira, Erechim, Rio Grande do Sul State, by indirect ophthalmoscopy or biomicroscopy by using a slit-lamp microscope. Ocular disease was evaluated on the basis of parameters described previously (11). Patient consent was obtained at the time of sample acquisition. Recently acquired toxoplasmosis was confirmed by serologic tests that monitor immunoglobulin G (IgG) and IgM by enzyme-linked immunosorbent assay (Abbott Laboratories, Abbott Park, IL, USA) (11). Ocular toxoplasmosis was diagnosed on the basis of recurrent episodes of necrotizing retinochoroiditis. Venous blood was collected before treatment in Vacutainer tubes containing heparin and cells, and serum was separated by centrifugation. The buffy-coat layer was removed, frozen at −20°C, and shipped to Washington University, Saint Louis, for analysis. Blood was also obtained from patients infected during 2 small outbreaks of toxoplasmosis in Santa Vitoria do Palmar, Rio Grande do Sul State, and Agronomica, Santa Catarina State, and processed in a similar manner. Buffy-coat samples were processed by using the DNAeasy tissue extraction kit (Qiagen Inc., Valencia, CA, USA) before PCR analysis.

Parasite Strains and Tissue Samples

Reference strains consisted of representative members of the 3 clonal lineages originally isolated from human or animal infections in North America and Europe. Reference strains for the clonal types included: 4 type I strains: ENT (ATCC 50850), RH (ATCC 50838), GT1, and VEL (ATCC 50852); 3 type II strains: Me49 (ATCC 50840), DEG (ATCC 50855), and PIH (ATCC 50857); and 3 type III strains: CTG (ATCC 50842), STRL, and VEG (ATCC 50861). In addition, 3 previously reported strains with more divergent genotypes were included: CAST (ATCC 50868), COUG, and MAS (ATCC 50870) (20). Parasite strains were grown in human fibroblast cells, harvested after natural egress from host cells and purified as above; cell lysates were prepared for PCR as described previously (17). Five Brazilian T. gondii strains isolated from Belo Horizonte, Minas Gerais, and one from São Paulo, as described previously (18), were also included.

Additional samples of porcine tissue collected from abattoirs in the Erechim region were included (R.N. Belfort, unpub. data). Six samples were analyzed, 2 negative controls and 4 samples that were positive by PCR (data not shown). Tissue samples were extracted with DNAzol, followed by an equal volume of chloroform. Polyacryl carrier (Molecular Research Center, Inc., Cincinnati, OH, USA) was added (5 µL) to the aqueous phase, and DNA was precipitated by adding an equal volume of ethanol and centrifugation at 5,000 × g for 10 min.

Genotyping Isolates by PCR-RFLP

Multilocus nPCR analysis of 4 different loci was based on the markers SAG2, SAG2, BTUB, GRA6, and SAG3 (17). Amplification was performed as described previously (20), and negative controls consisted of sterile, distilled water or proteinase K–treated cell lysate of noninfected host cells. The amplified products were digested with appropriate restriction enzymes for different loci, and the resulting fragments were analyzed by 3% agarose gel electrophoresis, stained with ethidium bromide, and imaged by an Alpha Imager version 5.5 camera (Alpha Innotech Corp., San Leandro, CA, USA).

Restriction fragments were scored visually as present or absent, and a genetic distance matrix was calculated from the proportion of shared restriction sites by using the equation of Nei and Li (21). The neighbor-joining method was used to analyze the distance matrix, and dendrograms were generated by using the phylogenetic analysis program PAUP* version 4.0b (22). Bootstrap analysis was conducted for 1,000 replicates to obtain confidence.
estimates for the taxonomic groupings. The conditions were set to distance, neighbor-joining, with mean character differences, and dendrograms were constructed by using the 50% majority rule.

UPRT-1 Intron Sequences Analysis

Sequence divergence among strains of *T. gondii* was determined at the uracil phosphoribosyl transferase (*UPRT*) intron 1 sequence (GenBank accession no. AY143141), as described previously (17). Following the previously described nPCR amplification of the *UPRT-1* intron, a third set of internal primers was used for sequencing: UPRT-1seqF 5'-CTCGTCTCGTTTCTT-3' and UPRT-1seqR 5'-TGAAAGGAAGCAGTAAAGT-3'. Sequencing was conducted on 3 independent PCR-amplified templates by using BigDye cycle sequencing (Applied Biosystems, Foster City, CA, USA) (conducted by SeqWright DNA Technology Services, Houston, TX, USA). ClustalX/W (23) was used to align the sequences for comparison with default settings. After removal of primer sequences, the UPRT-1 intron sequence used for comparison was 467 bp in length. Unrooted phylogenetic comparisons were conducted with distance and parsimony methods by using PAUP*4.0b (22). The conditions were set to distance (mean character difference, minimal evolution, negative branches = 0), and 1,000 bootstrap replicates were performed by using the BioNeighbor-Joining algorithm. Alternatively, parsimony analysis was conducted by heuristic stepwise searching, with bootstrapping for >1,000 replicates. Consensus trees were drawn with an arbitrary root according to the bootstrap 50% majority rule.

Results

Brazil has a high prevalence of ocular toxoplasmosis, and many of these cases are recurrent and serious in nature (11,12). This situation prompted us to consider whether sampling patient blood might allow diagnosis of recent (acute) or recurrent infection by direct PCR amplification. Blood was collected from 77 patients seen at the Clinica Silveira, Erechim, Brazil, from 2003 to 2005, and the buffy-coat that contained leukocytes was separated by centrifugation and used for analysis. Nested PCR analysis of these samples by using the *SAG3* gene showed that 11 of 77 were positive, including 6 patients with acute disease and 5 patients with recurrent disease (Table) (locations of the patients with positive samples are shown in Figure 1). We also analyzed several sets of samples from 2 small outbreaks of acute toxoplasmosis. The first in Santa Vitoria do Palmar consisted of 10 persons from a single family that shared a meal of home-cured sausage that contained pork. Symptoms in infected persons included lymphadenitis, myalgia, fever, headache, and sweating. One of these patients, a 53-year-old woman, had severe retinochoroiditis. Only a single sample from these 10 persons was positive by *SAG3* nPCR analysis of buffy-coat cells. A second outbreak consisted of 8 infected persons from Agronomica, a town of =4,000 residents located 200 km from Florianopolis. These 8 persons shared the same source of nontreated water in a common neighborhood, and their illness was likely caused by waterborne infection. Three of these persons had positive results by *SAG3* nPCR.

To determine the genotype of *T. gondii* strains present in clinical samples from Brazil, multilocus nPCR was conducted by using 4 independent markers, *SAG2*, *BTUB*, *GRA6*, and *SAG3*, as described previously (17). The 15 clinical samples found to be positive for *SAG3* were genotyped for most of these markers, although in some cases, insufficient material was available to type all markers (Table). We compared these isolates to strains previously characterized from Brazil and to the clonal lineages common in North America and Europe. In total, 38 strains were subjected to multilocus nPCR analysis, and after restriction digestion and gel electrophoresis of the products, the strains were classified on the basis of the alleles present relative to the reference strains (Table, Figure 2) (17). Three of the ocular toxoplasmosis samples carried alleles characteristic of type I strains at 3 or more independent markers, and 2 Brazilian chicken strains possessed alleles typical of type III strains at all loci. All of the remaining Brazilian samples had genotypes consisting of different combinations of alleles seen in the clonal types. Nine clinical samples, including samples from Agronomica from 2 outbreaks, possessed the same profile that consisted of alleles typical of type I and type II lineages. The nPCR assay used here can detect both alleles equally well for all the makers studied, yet in no case were 2 alleles detected at a single locus within a single strain (data not shown). Consequently, the genotypes observed in Brazilian isolates cannot be explained by “mixtures” of >1 strain in a given patient or sample.

The percentage of nucleotide divergence between strains was estimated from the proportion of shared restriction sites at each locus, and a distance matrix was used to construct a dendrogram by using neighbor-joining analysis (Figure 3). All the strains belonging to type II were clustered together with a high degree of confidence. All type III strains and 2 chicken strains from Brazil were grouped together with a similarly high confidence. The 4 type I reference strains and 3 human Brazilian clinical isolates (ER8, ER11, and AG2) were clustered together. However, most Brazilian *T. gondii* strains were clustered into 2 new groups that were intermediate between types I and III. These results suggest the presence of at least 2 additional haplotypes that are prevalent in Brazil and which differ from North America and European lineages. MAS, which
Table. Genotypes of *Toxoplasma gondii* in human ocular toxoplasmosis samples from Brazil*

<table>
<thead>
<tr>
<th>Strain name</th>
<th>Type of sample</th>
<th>Source</th>
<th>5'-SAG2†</th>
<th>3'-SAG2‡</th>
<th>BTUB§</th>
<th>SAG3</th>
<th>GRA6</th>
<th>Genotype</th>
<th>Reference</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENT</td>
<td>C#</td>
<td>Human</td>
<td>1**</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
<td>1</td>
<td>I</td>
<td>ENT</td>
<td>F</td>
</tr>
<tr>
<td>RH</td>
<td>C</td>
<td>Human</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
<td>1</td>
<td>I</td>
<td>RH</td>
<td>USA-OH</td>
</tr>
<tr>
<td>GT1</td>
<td>C</td>
<td>Goat</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
<td>1</td>
<td>I</td>
<td>GT1</td>
<td>USA-MD</td>
</tr>
<tr>
<td>VEL</td>
<td>C</td>
<td>Human</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
<td>1</td>
<td>I</td>
<td>VEL</td>
<td>USA-CA</td>
</tr>
<tr>
<td>Me49</td>
<td>C</td>
<td>Sheep</td>
<td>1</td>
<td>2</td>
<td>2.2</td>
<td>2</td>
<td>2</td>
<td>II</td>
<td>Me49</td>
<td>USA-CA</td>
</tr>
<tr>
<td>DEG</td>
<td>C</td>
<td>Human</td>
<td>1</td>
<td>2</td>
<td>2.2</td>
<td>2</td>
<td>2</td>
<td>II</td>
<td>DEG</td>
<td>F</td>
</tr>
<tr>
<td>PIH</td>
<td>C</td>
<td>Human</td>
<td>1</td>
<td>2</td>
<td>2.2</td>
<td>2</td>
<td>2</td>
<td>II</td>
<td>PIH</td>
<td>USA-CA</td>
</tr>
<tr>
<td>CTG</td>
<td>C</td>
<td>Cat</td>
<td>2</td>
<td>1</td>
<td>2.1</td>
<td>3</td>
<td>3</td>
<td>III</td>
<td>CTG</td>
<td>USA-NIH</td>
</tr>
<tr>
<td>STRL</td>
<td>C</td>
<td>Human</td>
<td>2</td>
<td>1</td>
<td>2.1</td>
<td>3</td>
<td>3</td>
<td>III</td>
<td>STRL</td>
<td>USA-CA</td>
</tr>
<tr>
<td>VEG</td>
<td>C</td>
<td>Human</td>
<td>2</td>
<td>1</td>
<td>2.1</td>
<td>3</td>
<td>3</td>
<td>III</td>
<td>VEG</td>
<td>USA-CA</td>
</tr>
<tr>
<td>CAST</td>
<td>C</td>
<td>Human</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
<td>1</td>
<td>I</td>
<td>CAST</td>
<td>USA-CA</td>
</tr>
<tr>
<td>COUG</td>
<td>C</td>
<td>Cougar</td>
<td>1</td>
<td>2</td>
<td>2.2</td>
<td>3</td>
<td>2</td>
<td>I/II/III</td>
<td>COUG</td>
<td>CAN-BR</td>
</tr>
<tr>
<td>MAS</td>
<td>C</td>
<td>Human</td>
<td>1</td>
<td>1</td>
<td>2.1</td>
<td>3</td>
<td>3</td>
<td>III</td>
<td>MAS</td>
<td>F</td>
</tr>
<tr>
<td>PBR</td>
<td>C</td>
<td>Dog</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>3</td>
<td>3</td>
<td>III</td>
<td>MG1</td>
<td>SP</td>
</tr>
<tr>
<td>D3</td>
<td>C</td>
<td>Dog</td>
<td>1</td>
<td>1</td>
<td>2.1</td>
<td>3</td>
<td>3</td>
<td>III</td>
<td>MG2</td>
<td>MG</td>
</tr>
<tr>
<td>CH1</td>
<td>C</td>
<td>Chicken</td>
<td>2</td>
<td>1</td>
<td>2.1</td>
<td>3</td>
<td>3</td>
<td>III</td>
<td>MG3</td>
<td>MG</td>
</tr>
<tr>
<td>CH2</td>
<td>C</td>
<td>Chicken</td>
<td>2</td>
<td>1</td>
<td>2.1</td>
<td>3</td>
<td>3</td>
<td>III</td>
<td>MG4</td>
<td>MG</td>
</tr>
<tr>
<td>EFP</td>
<td>C</td>
<td>Human</td>
<td>1</td>
<td>1</td>
<td>2.1</td>
<td>3</td>
<td>3</td>
<td>III</td>
<td>MG5</td>
<td>MG</td>
</tr>
<tr>
<td>SAF</td>
<td>C</td>
<td>Human</td>
<td>1</td>
<td>1</td>
<td>2.1</td>
<td>3</td>
<td>3</td>
<td>III</td>
<td>MG6</td>
<td>MG</td>
</tr>
<tr>
<td>6T</td>
<td>A††</td>
<td>Porcine</td>
<td>1</td>
<td>1</td>
<td>2.1</td>
<td>3</td>
<td>3</td>
<td>III</td>
<td>P1</td>
<td>EC</td>
</tr>
<tr>
<td>7T</td>
<td>A</td>
<td>Porcine</td>
<td>1</td>
<td>1</td>
<td>2.1</td>
<td>3</td>
<td>3</td>
<td>III</td>
<td>P2</td>
<td>EC</td>
</tr>
<tr>
<td>8T</td>
<td>A</td>
<td>Porcine</td>
<td>1</td>
<td>1</td>
<td>2.1</td>
<td>3</td>
<td>3</td>
<td>III/III</td>
<td>P3</td>
<td>EC</td>
</tr>
<tr>
<td>9T</td>
<td>A</td>
<td>Porcine</td>
<td>1</td>
<td>1</td>
<td>2.1</td>
<td>3</td>
<td>3</td>
<td>III</td>
<td>P4</td>
<td>EC</td>
</tr>
<tr>
<td>2147</td>
<td>Cl†‡</td>
<td>Recurrentocular</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>2</td>
<td>1</td>
<td>I/II</td>
<td>ER1</td>
<td>ER</td>
</tr>
<tr>
<td>2324</td>
<td>Cl</td>
<td>Acuteocular</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>2</td>
<td>1</td>
<td>I/II</td>
<td>ER2</td>
<td>ER</td>
</tr>
<tr>
<td>2296</td>
<td>Cl</td>
<td>Acuteocular</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>2</td>
<td>1</td>
<td>I/II</td>
<td>ER3</td>
<td>ER</td>
</tr>
<tr>
<td>2323</td>
<td>Cl</td>
<td>Acuteocular</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>2</td>
<td>1</td>
<td>I/II</td>
<td>ER4</td>
<td>EC</td>
</tr>
<tr>
<td>2434</td>
<td>Cl</td>
<td>Recurrentocular</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>2</td>
<td>1</td>
<td>I/II</td>
<td>ER5</td>
<td>ER</td>
</tr>
<tr>
<td>2325</td>
<td>Cl</td>
<td>Acuteocular</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>3</td>
<td>1</td>
<td>I/III</td>
<td>ER6</td>
<td>ER</td>
</tr>
<tr>
<td>2566</td>
<td>Cl</td>
<td>Recurrentocular</td>
<td>1</td>
<td>2</td>
<td>1.1</td>
<td>3</td>
<td>–</td>
<td>II/III</td>
<td>ER7</td>
<td>ER</td>
</tr>
<tr>
<td>2583</td>
<td>Cl</td>
<td>Acuteocular</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
<td>–</td>
<td>I</td>
<td>ER8</td>
<td>ER</td>
</tr>
<tr>
<td>2612</td>
<td>Cl</td>
<td>Recurrentocular</td>
<td>1</td>
<td>–</td>
<td>1.1</td>
<td>2</td>
<td>–</td>
<td>I/II</td>
<td>ER9</td>
<td>ER</td>
</tr>
<tr>
<td>2670</td>
<td>Cl</td>
<td>Recurrentocular</td>
<td>1</td>
<td>–</td>
<td>1.1</td>
<td>2</td>
<td>–</td>
<td>I/II</td>
<td>ER10</td>
<td>EC</td>
</tr>
<tr>
<td>2728</td>
<td>Cl</td>
<td>Acuteocular</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
<td>–</td>
<td>I</td>
<td>ER11</td>
<td>EC</td>
</tr>
<tr>
<td>2694</td>
<td>Cl</td>
<td>Outbreak</td>
<td>1</td>
<td>2</td>
<td>1.1</td>
<td>3</td>
<td>–</td>
<td>II/III</td>
<td>SV</td>
<td>SV</td>
</tr>
<tr>
<td>2712</td>
<td>Cl</td>
<td>Outbreak</td>
<td>1</td>
<td>–</td>
<td>1.1</td>
<td>2</td>
<td>–</td>
<td>II/II</td>
<td>AG1</td>
<td>AG</td>
</tr>
<tr>
<td>2717</td>
<td>Cl</td>
<td>Outbreak</td>
<td>1</td>
<td>–</td>
<td>1.1</td>
<td>1</td>
<td>–</td>
<td>I</td>
<td>AG2</td>
<td>AG</td>
</tr>
<tr>
<td>2719</td>
<td>Cl</td>
<td>Outbreak</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>2</td>
<td>1</td>
<td>I/II</td>
<td>AG3</td>
<td>AG</td>
</tr>
</tbody>
</table>

* C, culture; A, animal; CI, clinical; F, France; CA, California; NIH, National Institutes of Health; CAN-BR, British Columbia, Canada; SP, São Paulo; MG, Belo Horizonte, Minas Gerais; EC, Eerekim City; ER, Eerekim region; SV, Santa Vittoria do Palmar; AG, Agronomica.
† Genotypes I and II are the same.
‡ Genotypes I and III are the same.
§ Alleles represent BglI and TaqI, respectively.
¶ As referred in figures.
Culture strains used as reference.
** Alleles defined by pattern in type I strain = 1, second allele = 2, allele 3 is defined by the presence of a second biallelic polymorphism.
†† Meat tissue samples, primary source.
‡‡ Human ocular toxoplasmosis.
††† Refers to negative amplification product.
was isolated from a patient with a congenital case of toxoplasmosis in France, clustered with 1 of these Brazilian haplotypes.

To more accurately assess genetic divergence, we characterized the strains by UPRT-1 intron sequencing, a method that is highly sensitive for detecting divergent strains (17). UPRT-1 intron sequences from 35 strains (1 clinical sample was not available in sufficient quantity for analysis, and 2 samples gave unsatisfactory sequence quality) were aligned by using Clustal X (online Appendix Figure, available at http://www.cdc.gov/ncidod/EID/vol12no06/06-0025-appG.htm), and the relative divergence of different Brazilian strains was determined by phylogenetic comparison. The results of parsimony and distance analysis were similar and the neighbor-joining distance analysis is shown in Figure 4. Because of the strongly biallelic pattern of T. gondii, types II and III are identical at the UPRT locus, while type I possesses a unique haplotype distinguished by 6 single nucleotide polymorphisms (17,20). Most Brazilian T. gondii strains (13 of 22) shared a new allele that was distinguished by 6 additional polymorphisms not seen in the clonal lineages (online Appendix Figure). This new Brazilian allele was also shared by the previously characterized divergent strain MAS (Figure 4). Additionally, 3 outbreak strains (AG1, AG2, AG3) from Agronomica and 1 strain each from chickens (MG4) and pigs (P3) were found in this group that otherwise contained a majority of ocular toxoplasmosis isolates from the Erechim region. Other strains from Brazil contained equally divergent but unique alleles that in some cases formed smaller groups (i.e., P1, P2, P4 and MG1, ER4) (Figure 4). Only a single Brazilian strain (ER8) contained a haplotype characteristic of 1 of the clonal lineages, and this strain was identical to the type I lineage in both the PCR-RFLP and UPRT-1 intron trees.

Discussion

T. gondii is highly prevalent in Brazil, where human infection is associated with an unusually high occurrence of ocular disease in some locations. We examined the genotype of T. gondii strains collected from a variety of sources in southern Brazil. Included in this study were a group of patients seen at an eye clinic in Erechim, a region known for high levels of ocular toxoplasmosis (11). We also examined strains from several small outbreaks from nearby regions and compared these strains to animal isolates from Erechim and the more central region of Minas Gerais. Multilocus PCR-RFLP and sequenced-based analysis showed that they differ substantially from the previously described clonal lineages and instead define several new haplotypes that appear to be predominant in Brazil. The abundance of genotypes that do not fit the conventional classification shows the global pattern of T. gondii population structure to be more complex than previously thought. These findings have implications for the transmission of T. gondii as a waterborne and foodborne human pathogen and for studies on the role of genetic composition in virulence, pathogenesis, and life cycle dynamics.

Most human infections of T. gondii are not clinically severe and progress rapidly to a chronic state that is characterized by semidormant tissue cysts (2,24). During the chronic infection, parasites are generally not found in circulation, and obtaining parasites without performing invasive procedures such as tissue biopsy is relatively difficult. Previous reports have suggested that parasites may be found circulating in blood during reactivation of toxoplasmosis in AIDS patients (25,26). Our studies show that by using highly sensitive and specific nPCR, small numbers of parasites may be detected in circulating blood from some patients with either acute-onset or recurrent ocular toxoplasmosis. False-positive PCR amplification did not appear to be a substantial problem, as shown by consistently negative results for water and host-cell-only samples and the fact that the genotypes of clinical strains did not resemble common laboratory strains that would be the likely source of any contamination.

Genotyping T. gondii strains found in clinical and animal samples from Brazil showed that all strains except 1
This pattern could indicate that Brazilian strains of *T. gondii* undergo more frequent sexual recombination, resulting in mixed genotypes. However, the true extent of sequence divergence is not captured by multilocus RFLP analysis. We have previously shown that direct sequencing of introns from housekeeping genes provides a more accurate picture of sequence divergence (17,20). Introns are also likely to be selectively neutral and therefore well suited for phylogenetic comparisons (27). In the present study, when the *UPRT*-1 intron sequence was compared, all strains from Brazil except 1 (ER8) had multiple additional polymorphisms not seen in the clonal lineages. This locus indicates a low genetic diversity in *T. gondii* strains in Brazil, although they include genotype(s) uncommon in North America and Europe. Both the RFLP and intron analysis indicate several predominant haplotypes in Brazil, along with less common unique genotypes. Further studies will be necessary to define the population structure of *T. gondii* in Brazil and other South American locations.

The high seropositivity to *T. gondii* (11,28,29), combined with unusually high levels of ocular disease in some regions, shows that toxoplasmosis is a notable health problem in Brazil. Previous studies have shown a high prevalence of *T. gondii* in food animals such as pigs (30) and chickens (31) and in companion animals such as dogs (32) and cats (33). Although companion animals are not typically a source of human infection, the high prevalence in these species indicates a high level of transmission in Brazil. A recent survey of pig samples obtained from...
plasmosis (adults were found to have retinal scars, likely due to toxoplasmosis) and have been associated with an increased risk of serious ocular disease, even in otherwise healthy persons. Previous studies have shown a high level of seropositivity in north Rio de Janeiro State, Brazil (5). Although small animal models have been used for evaluating virulence traits of T. gondii, collective epidemiologic features suggest that infection with T. gondii in Brazil is more likely to lead to serious ocular disease, even in otherwise healthy persons. The extent to which host genetics, immune status, and exposure rate contribute to this pattern is unknown.

Collectively, these epidemiologic features suggest that infection with T. gondii in Brazil is more likely to lead to serious ocular disease, even in otherwise healthy persons. The extent to which host genetics, immune status, and exposure rate contribute to this pattern is unknown.

However, we have previously advocated using SAG2 for genotyping T. gondii strains, since it is capable of distinguishing all 3 clonal genotypes at a single locus (35). This approach works well in North America and Europe, where the 3 major lineages predominate because of extreme linkage disequilibrium (7). Our current findings indicate that most strains from Brazil do not fit the clonal pattern seen in North America. Additionally, T. gondii strains isolated from French Guiana are also genetically distinct from the clonal lineages seen in North America (10). Consequently, studies that rely solely on SAG2 typing will necessarily underestimate the true genetic divergence in many regions. SAG2 typing has been used for genotyping T. gondii isolates from various animals in Brazil (30–33,36), other parts of South America (37,38), and Africa (39,40). Researchers also recently suggested that strains associated with an outbreak of waterborne toxoplasmosis in Paraná, Brazil, were type I strains, based solely on genotyping with the SAG2 marker (4). However, analyses based solely on SAG2 almost certainly underestimate the genetic diversity of T. gondii in these regions. Further strain comparisons based on a wider set of sequence-based markers will be necessary to define the global population structure of T. gondii and to resolve the relationships between major strain types seen in different regions. Establishing the population structure of T. gondii is highly relevant to transmission dynamics because the suggestion has been made that recently derived clonal lineages arose through a process of recombination that led to enhanced asexual oral transmission (20). Whether other, more divergent strains also express this trait and to what extent their genetic makeup contributes to transmission are highly relevant to understanding the pathogenesis of toxoplasmosis.

Acknowledgments

We thank J.P. Dubey, Tovi Lehmann, Chunlei Su, Ben Rosenthal, Michael Grigg, Jim Ajioka, and Blima Fux for helpful comments and discussions and Julie Suetterlin for expert technical assistance.

This study was supported by a grant from the National Institutes of Health (AI059176).

Dr Khan is a postdoctoral research associate at Washington University. His research interests include molecular epidemiology and microbial pathogenesis.

References

Genetic Divergence of Brazilian *Toxoplasma gondii* Strains

Address for correspondence: L. David Sibley, Washington University Medical School, 660 S Euclid Ave, St. Louis, MO 63130, USA; email: sibley@borcim.wustl.edu

All material published in Emerging Infectious Diseases is in the public domain and may be used and reprinted without special permission; proper citation, however, is required.
Social Behavior and Meningococcal Carriage in British Teenagers

Jenny MacLennan,* George Kafatos,† Keith Neal,‡ Nick Andrews,† J. Claire Cameron,§ Richard Roberts,¶ Meiron R. Evans,# Kathy Cann,** David N. Baxter,†† Martin C.J. Maiden,* James M. Stuart,‡‡ on behalf of the United Kingdom Meningococcal Carriage Group 1

Understanding predisposing factors for meningococcal carriage may identify targets for public health interventions. Before mass vaccination with meningococcal group C conjugate vaccine began in autumn 1999, we took pharyngeal swabs from ≈14,000 UK teenagers and collected information on potential risk factors. Neisseria meningitidis was cultured from 2,319 (16.7%) of 13,919 swabs. In multivariable analysis, attendance at pubs/clubs, intimate kissing, and cigarette smoking were each independently and strongly associated with increased risk for meningococcal carriage (p<0.001). Carriage in those with none of these risk factors was 7.8%, compared to 32.8% in those with all 3. Passive smoking was also linked to higher risk for carriage, but age, sex, social deprivation, home crowding, or school characteristics had little or no effect. Social behavior, rather than age or sex, can explain the higher frequency of meningococcal carriage among teenagers. A ban on smoking in public places may reduce risk for transmission.

Pharyngeal carriage of Neisseria meningitidis, however brief, is a prerequisite for invasive meningococcal disease. Highest age-specific disease attack rates are seen in young infants. Another peak of disease that is accompanied by higher frequency of pharyngeal carriage is seen in teenagers (1). N. meningitidis may be cultured from the pharynx in as many as 1 in 4 teenagers (2). Male sex (2–5), cigarette smoking (6–8), passive exposure to smoke (8), bar patronage, discotheque visits (9), antimicrobial drug use (9,10), kissing (5), and overcrowding (11) have been associated with carriage, and many of these factors are also risk factors for meningococcal disease (12–15). Outbreaks of meningococcal disease are well documented in educational institutions (16), but no data exist on institutional factors that might contribute to carriage and transmission of meningococci. Social deprivation is associated with meningococcal disease (17), but whether it is associated with carriage is unknown. Greater knowledge of risk factors for meningococcal carriage may help to identify useful public health interventions.

In 1999, meningococcal group C conjugate vaccine (MenC) was offered to all persons ≤18 years of age in the United Kingdom (18). We identified risk factors for carriage among 14,000 teenagers as an integral part of a large, 3-year, multicenter study to determine the effect of this mass vaccination program on the carriage of meningococci. A reduction in serogroup C carriage after this intervention has already been reported (19). The study size gave us high statistical power to investigate the independent effects of risk factors at both individual and school levels.

Methods

Study Population

Students from 15 to 19 years of age who were attending school or college full- or part-time (but not at university) were recruited from centers in 8 geographic regions.
throughout the United Kingdom (Table 1) as previously described (19). The study was approved by the Trent MultiCentre Research Ethics Committee. Culture-positive data were not available for the London center in 1999; consequently, this center was not included in the analysis for this study.

The local consultant in communicable disease control (public health) asked schools and colleges in their health authority area to participate in the study, with the aim of selecting a sample of schools that broadly represented the social diversity of that population. Each center trained staff to take pharyngeal swabs according to a standard protocol. The swabbing teams visited schools and colleges from October to December for 3 successive years. In year 1 of the study (1999), swabbing took place immediately before MenC vaccination. All students 15–19 years of age in the last 2 school years before university were eligible for the study. After obtaining signed informed consent from the student (or parent/guardian), swabbing teams took a pharyngeal swab, and the student completed a short questionnaire assessing risk factors for carriage. Participants were questioned about age, sex, home postal code, school year, number of persons and rooms in household (to derive persons/room), sharing of bedroom, previous vaccination with meningococcal polysaccharide vaccine, current and recent antimicrobial drug use, active smoking, passive smoking at home, number of days in the last week they had visited a pub or club, and number of people they had intimately kissed in the last week.

Using data from the 1991 census, the postal code of home residence was used to link each person to an electoral ward and its Carstairs deprivation score (20) (http://www.mimas.ac.uk). A higher score reflects a greater level of social deprivation.

The following information was requested about schools and colleges: type of establishment, selective or nonselective entry, independent or state funded, single sex or coeducational, day pupils with or without boarders, and school size (small [<200 pupils], medium [200–499 pupils], or large [>500 pupils]).

Here we present the results from the first year of the study; swabs were collected in November and December 1999. The results represent meningococcal carriage just before MenC immunization.

Laboratory Methods

Swabs were plated onto selective medium either directly or within 6 hours and incubated in CO₂ at 37°C. Colonies resembling meningococci were identified by conventional tests, and oxidase-positive, gram-negative diplococci were frozen and stored in duplicate as putative meningococci at −70°C. Plates negative after 24 h were reincubated and examined again after 48 h. All isolates from England and Wales were sent to the Meningococcal Reference Laboratory, Manchester, for typing and subtyping. Scottish isolates were sent to the Scottish Pneumococcal and Meningococcal Reference Laboratory, Stobhill, Glasgow. A sample was considered positive if *N. meningitidis* was confirmed by the reference laboratory. The duplicate isolate was examined if a viable *Neisseria* sp. was not obtained from the initial isolate.

Statistical Methods

Data from questionnaires were entered twice and validated by using Epi Info version 6.0 (21). Data inconsistencies were found and corrected when possible, and efforts were made to clarify incomplete dates of birth. Individual-level risk factors for meningococcal carriage were initially analyzed in single-variable models by using logistic regression in the package Stata 8.0 (StataCorp, College Station, TX, USA). School-level risk factors were initially analyzed individually within a multilevel model with students at level 1 and schools at level 2. All risk factors with *p*<0.1 were then included in a multilevel logistic regression model for a multivariable analysis; again, individual students were at level 1, and schools were at level 2 of the model with explanatory variables at both levels. Center was regarded as having a fixed effect at the school level. A further analysis regarding center as a third level was undertaken but gave similar results, and the 2-level model is

Table 1. Sample characteristics by study center, UK Meningococcal Carriage Study, 1999

<table>
<thead>
<tr>
<th>Center</th>
<th>Swabs n</th>
<th>No. analyzed</th>
<th>M</th>
<th>F</th>
<th>12</th>
<th>13</th>
<th>Other</th>
<th>Comprehensive</th>
<th>Independent/grammar</th>
<th>Sixth form college</th>
<th>Further education college</th>
<th>Plating method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangor</td>
<td>972</td>
<td>971</td>
<td>439</td>
<td>532</td>
<td>529</td>
<td>344</td>
<td>94</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>Direct</td>
</tr>
<tr>
<td>Cardiff</td>
<td>1,718</td>
<td>1,712</td>
<td>829</td>
<td>883</td>
<td>916</td>
<td>692</td>
<td>102</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Direct</td>
</tr>
<tr>
<td>Glasgow</td>
<td>2,896</td>
<td>2,896</td>
<td>1,317</td>
<td>1,499</td>
<td>1,823</td>
<td>1,073</td>
<td>0</td>
<td>20</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>Indirect</td>
</tr>
<tr>
<td>Nottingham</td>
<td>1,685</td>
<td>1,654</td>
<td>848</td>
<td>806</td>
<td>659</td>
<td>475</td>
<td>489</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>Direct</td>
</tr>
<tr>
<td>Oxford</td>
<td>2,398</td>
<td>2,391</td>
<td>1,175</td>
<td>1,216</td>
<td>1,239</td>
<td>622</td>
<td>309</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>Direct</td>
</tr>
<tr>
<td>Plymouth</td>
<td>1,394</td>
<td>1,399</td>
<td>688</td>
<td>701</td>
<td>585</td>
<td>437</td>
<td>366</td>
<td>9</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>Indirect</td>
</tr>
<tr>
<td>Stockport</td>
<td>3,011</td>
<td>2,906</td>
<td>1,598</td>
<td>1,408</td>
<td>1,514</td>
<td>1,023</td>
<td>320</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>Indirect</td>
</tr>
<tr>
<td>Total</td>
<td>14,074</td>
<td>13,919</td>
<td>6,874</td>
<td>7,045</td>
<td>7,265</td>
<td>4,866</td>
<td>1,680</td>
<td>47</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 12, No. 6, June 2006 951
presented (the 3-level model is available on request). Each variable included was tested for significance by using the Wald test. Interactions between significant variables were also investigated. The multilevel analysis was carried out in MLwiN (22), and the glamm command (23) in Stata 8.0 was used.

Results
A total of 14,057 swab samples were obtained. Persons were excluded if they were <15 years or >19 years (n = 101) of age, if their age was not known and their attendance in the last 2 school years (n = 16) could not be confirmed, or if their questionnaire was missing (n = 21). A total of 13,919 (99.0%) questionnaires remained for analysis (Table 1). The analysis included 6,874 male students and 7,045 female students from 74 schools or colleges. The overall frequency of carriage was 2,319 (16.7%) of 13,919 students.

Single Variable Analysis
Meningococcal carriage increased with age (Table 2, Figure 1). Some social and behavioral factors (level 1 factors) had a strong positive association with meningococcal carriage, namely, cigarette smoking, exposure to passive smoke at home, intimate kissing of ≥1 persons, and attendance at pubs or clubs in the previous week (Table 2). Weak evidence was found of an association with Carstairs score and number of persons per room. Current or recent antimicrobial drug use was negatively associated with meningococcal carriage. School year was associated with carriage; however, this variable was highly correlated with age and was not considered in the multivariable model. No association was found between carriage and sex, sharing a bedroom, and previous meningococcal polysaccharide vaccination. School-level analysis (Table 3) showed variation in frequency of carriage between centers (7.7%–23.7%, p<0.001). Associations with school type and school size were also highly significant. The presence of boarders, the source of funding, and the gender mix showed no significant association.

Multivariable Analysis
In the multivariable analysis, strong associations were found with cigarette smoking, intimate kissing, pub or club patronage, and antimicrobial drug use (Table 4). The association with pub or club attendance showed a clear dose-response relationship. The association with passive smoking was not as strong but remained significant. The rise in carriage by age was much reduced after controlling for these other factors (Figure 1, Table 4). The 15-year-olds had the highest adjusted carriage, but the numbers in this age group were relatively small, and the significant trend in age is attributable to the rise in carriage from 16 years to 18 or 19 years. Associations with Carstairs score and persons per room were no longer significant. Of the level 2 factors, no school characteristics were linked to carriage, and only the association with center remained significant.

The analysis of interactions showed evidence of small, but significant interactions between smoking and kissing (p = 0.005) and also between smoking and pub or club attendance (p = 0.003). Investigation of the relationship between these 3 variables showed that crude carriage rates varied from 7.8% to 32.8% (Figure 2). The interaction effect appears to be due to relatively high carriage (20.5%) in teenagers whose only risk factor among these 3 is smoking. This analysis was repeated by calculating odds ratios from the multivariable analysis for all combinations of the 3 variables, and the pattern was similar to that seen with the crude carriage rates.

Discussion
To our knowledge, this is the largest study, several times larger than other published studies (2–10), that examines risk factors for meningococcal carriage. Humans are the only natural hosts for meningococcus, and carriage in the nasopharynx, however brief, is both a prerequisite of invasive disease and essential for transmission. Our study strongly suggests that behavior, not age, is largely responsible for the increase in meningococcal carriage seen in teenagers. Active and passive smoking, intimate kissing, and attending pubs and clubs were all strongly and independently linked to the risk for meningococcal carriage. The size of this study allowed us to quantify these contributions and identify a “dose-dependent” increase in risk for attendance at pubs and clubs. The presence of all 3 risk factors increased the risk of carriage 4-fold, compared to the baseline risk in teenagers with none of these factors. The results of the risk factor analysis in the succeeding study years (2000 and 2001) were similar to those presented here. The same factors were significant, and a dose-response relationship to smoking was found in 2000.

Active and passive smoking have both been linked to risk for meningococcal carriage (6). Both are shown as independent risk factors in this study, and the increasing risk with the number of days that persons visited pubs or clubs may well be due to passive smoking. Other possible risk factors associated with pub and club attendance include alcohol consumption (24) and overcrowding (11). Loud music may indirectly increase risk for transmission as persons raise their voices and move closer to each other to be heard. Although salivary contact itself is probably not a risk factor (25), frequency of intimate kissing would be expected to increase risk for transmission through close contact with respiratory droplets from the nasopharynx (14).
Table 2. Single-variable analysis of risk factors for meningococcal carriage in British teenagers at an individual level*

<table>
<thead>
<tr>
<th>Variable</th>
<th>No. swab samples</th>
<th>Total positive (%)</th>
<th>OR (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>6,874</td>
<td>1,156 (16.8)</td>
<td>1.00, reference</td>
<td>0.625</td>
</tr>
<tr>
<td>Female</td>
<td>7,045</td>
<td>1,163 (16.5)</td>
<td>0.98 (0.89–1.07)</td>
<td></td>
</tr>
<tr>
<td>Age (y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>959</td>
<td>108 (11.3)</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5,656</td>
<td>639 (14.3)</td>
<td>1.32 (1.06–1.63)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>5,575</td>
<td>1,027 (18.4)</td>
<td>1.78 (1.44–2.20)</td>
<td></td>
</tr>
<tr>
<td>18, 19</td>
<td>1,511</td>
<td>342 (22.6)</td>
<td>2.31 (1.82–2.91)</td>
<td><0.001</td>
</tr>
<tr>
<td>School year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>7,265</td>
<td>1,096 (15.1)</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4,866</td>
<td>883 (18.1)</td>
<td>1.25 (1.13–1.38)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>1,860</td>
<td>310 (16.5)</td>
<td>1.27 (1.11–1.46)</td>
<td><0.001</td>
</tr>
<tr>
<td>Cigarettes smoked/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>10,732</td>
<td>1,496 (13.9)</td>
<td>1.00, reference</td>
<td><0.001</td>
</tr>
<tr>
<td>1–5</td>
<td>1,343</td>
<td>335 (24.9)</td>
<td>2.05 (1.79–2.35)</td>
<td></td>
</tr>
<tr>
<td>6–10</td>
<td>1,016</td>
<td>277 (27.3)</td>
<td>2.31 (1.99–2.68)</td>
<td></td>
</tr>
<tr>
<td>11–20</td>
<td>531</td>
<td>153 (28.8)</td>
<td>2.50 (2.05–3.04)</td>
<td></td>
</tr>
<tr>
<td>>21</td>
<td>12</td>
<td>7 (15.2)</td>
<td>1.11 (0.49–2.48)</td>
<td></td>
</tr>
<tr>
<td>Other smokers at home</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>No</td>
<td>8,457</td>
<td>1,271 (15.0)</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>5,064</td>
<td>974 (19.2)</td>
<td>1.35 (1.23–1.48)</td>
<td></td>
</tr>
<tr>
<td>No. persons kissed in last week</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>0</td>
<td>7,564</td>
<td>935 (12.4)</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4,910</td>
<td>1,049 (21.4)</td>
<td>1.93 (1.75–2.12)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>662</td>
<td>142 (21.5)</td>
<td>1.94 (1.59–2.36)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>233</td>
<td>68 (29.2)</td>
<td>2.92 (2.18–3.91)</td>
<td></td>
</tr>
<tr>
<td>4–5</td>
<td>328</td>
<td>79 (24.1)</td>
<td>2.25 (1.73–2.92)</td>
<td></td>
</tr>
<tr>
<td>No. nights attended pub or club in last week</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>0</td>
<td>5,164</td>
<td>523 (10.1)</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3,805</td>
<td>648 (17.0)</td>
<td>1.82 (1.6–2.06)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2,301</td>
<td>482 (20.9)</td>
<td>2.35 (2.05–2.69)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,207</td>
<td>285 (23.6)</td>
<td>2.74 (2.34–3.22)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>562</td>
<td>150 (26.7)</td>
<td>3.23 (2.63–3.98)</td>
<td></td>
</tr>
<tr>
<td>5–7</td>
<td>572</td>
<td>175 (30.6)</td>
<td>3.91 (3.20–4.78)</td>
<td></td>
</tr>
<tr>
<td>No. persons sharing bedroom</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>1</td>
<td>11,900</td>
<td>1,963 (16.5)</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,862</td>
<td>284 (17.1)</td>
<td>1.04 (0.91–1.20)</td>
<td></td>
</tr>
<tr>
<td>>3</td>
<td>145</td>
<td>22 (15.2)</td>
<td>0.91 (0.57–1.43)</td>
<td>0.751</td>
</tr>
<tr>
<td>No. persons/room†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–1</td>
<td>13,197</td>
<td>2,196 (16.6)</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>>1–1.5</td>
<td>457</td>
<td>79 (17.3)</td>
<td>1.05 (0.82–1.34)</td>
<td></td>
</tr>
<tr>
<td>>1.5</td>
<td>122</td>
<td>11 (9.0)</td>
<td>0.50 (0.27–0.92)</td>
<td>0.073</td>
</tr>
<tr>
<td>Recent antimicrobial drug use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>11,749</td>
<td>2,021 (17.2)</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>682</td>
<td>64 (9.4)</td>
<td>0.50 (0.38–0.65)</td>
<td></td>
</tr>
<tr>
<td>Stopped last week</td>
<td>303</td>
<td>48 (15.8)</td>
<td>0.91 (0.66–1.24)</td>
<td></td>
</tr>
<tr>
<td>Stopped last month</td>
<td>733</td>
<td>99 (13.5)</td>
<td>0.75 (0.60–0.93)</td>
<td><0.001</td>
</tr>
<tr>
<td>Prior polysaccharide vaccine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>12,493</td>
<td>2,076 (16.6)</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1,042</td>
<td>170 (16.3)</td>
<td>0.98 (0.82–1.16)</td>
<td>0.791</td>
</tr>
<tr>
<td>Carstairs score, per unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month of swabbing†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td>7,050</td>
<td>1,192 (16.9)</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td>6,869</td>
<td>1,127 (16.4)</td>
<td>0.96 (0.88–1.05)</td>
<td>0.426</td>
</tr>
</tbody>
</table>

*OR, odds ratio; CI, confidence interval.
†Derived data.
The overall prevalence of carriage was close to expected levels for a European population of this age group, mainly 16- to 17-year-olds (2,3). Although increasing age showed a strong relationship with increasing prevalence of carriage in the univariable analysis, this increase was much reduced after adjustment for other factors. This observation is striking since other studies have suggested an increased risk of meningococcal carriage with age (2–5).

We observed no association of sex with carriage, in contrast to results of other studies (2–5). This finding strongly suggests that behavior, rather than age or sex, is the driving force behind the increased risk of meningococcal carriage in teenagers. This study involved ≈14,000 persons, had more power than those previously undertaken, and was restricted to older teenagers.

This study is the first to examine a link between meningococcal carriage and social deprivation in the United Kingdom. We found no evidence of an association. The methods used had some limitations, since we were only able to link by postal code to a ward and not to individual households. These findings contrast with the increased risk for disease in young children found in lower socioeconomic groups by using similar methods (26–28). However, this association has only been reported in young children and may not apply to the teenage population. Some previous studies have reported an association between crowding and meningococcal carriage (11,29) and meningococcal disease (13,30). This study showed no evidence that increasing levels of crowding in the home, as measured by the number of rooms or persons per household and number of persons per room, was associated with increasing levels of meningococcal carriage. Crowding in the home may also be less relevant to teenagers than to young children because teenagers spend less time at home.

![Figure 1. Relationship between age and meningococcal carriage in British teenagers 15–19 years of age before and after adjustment for other factors. Error bars indicate 95% confidence intervals.](image-url)

Table 3. Single variable analysis of risk factors for meningococcal carriage in British teenagers at school level

<table>
<thead>
<tr>
<th>Variable</th>
<th>No. schools</th>
<th>% positive†</th>
<th>OR (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>School type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comprehensive</td>
<td>47</td>
<td>13.1</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>Independent/grammar</td>
<td>9</td>
<td>12.0</td>
<td>0.90 (0.60–1.35)</td>
<td></td>
</tr>
<tr>
<td>Sixth form college</td>
<td>9</td>
<td>19.6</td>
<td>1.71 (1.18–2.48)</td>
<td></td>
</tr>
<tr>
<td>Further education college</td>
<td>9</td>
<td>19.1</td>
<td>1.66 (1.14–2.42)</td>
<td>0.002</td>
</tr>
<tr>
<td>Funding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>68</td>
<td>14.6</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>Independent</td>
<td>6</td>
<td>13.8</td>
<td>0.94 (0.57–1.56)</td>
<td>0.808</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single sex</td>
<td>5</td>
<td>14.8</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>Coeducational</td>
<td>69</td>
<td>14.7</td>
<td>1.52 (0.87–2.64)</td>
<td>0.139</td>
</tr>
<tr>
<td>School size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small (<200 pupils)</td>
<td>11</td>
<td>13.5</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>Medium (200–499)</td>
<td>47</td>
<td>12.8</td>
<td>0.98 (0.68–1.41)</td>
<td></td>
</tr>
<tr>
<td>Large (≥500)</td>
<td>16</td>
<td>20.2</td>
<td>1.78 (1.18–2.69)</td>
<td><0.001</td>
</tr>
<tr>
<td>Boarding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>71</td>
<td>14.6</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>3</td>
<td>13.1</td>
<td>0.79 (0.39–1.61)</td>
<td>0.512</td>
</tr>
<tr>
<td>Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiff</td>
<td>9</td>
<td>14.2</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>Glasgow</td>
<td>22</td>
<td>11.7</td>
<td>0.75 (0.54–1.03)</td>
<td></td>
</tr>
<tr>
<td>Bangor</td>
<td>6</td>
<td>19.4</td>
<td>1.47 (0.99–2.20)</td>
<td></td>
</tr>
<tr>
<td>Nottingham</td>
<td>9</td>
<td>18.0</td>
<td>1.36 (0.94–1.95)</td>
<td></td>
</tr>
<tr>
<td>Oxford</td>
<td>11</td>
<td>20.8</td>
<td>1.63 (1.16–2.29)</td>
<td></td>
</tr>
<tr>
<td>Plymouth</td>
<td>14</td>
<td>7.9</td>
<td>0.52 (0.36–0.75)</td>
<td></td>
</tr>
<tr>
<td>Stockport</td>
<td>3</td>
<td>23.5</td>
<td>1.92 (1.22–3.03)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*OR, odds ratio; CI, confidence interval.
†This is calculated as the average of the percentages positive across the schools.
Of the study participants, 16% reported previous meningococcal vaccination. The only meningococcal vaccine available before this study was the plain polysaccharide vaccine. The lack of impact of this vaccine on carriage is not surprising. Any effect of polysaccharide vaccination on carriage is probably short term, and the most commonly used polysaccharide vaccine is directed against serogroups A and C. Very few carriers of serogroup A and C strains were found in this study. A protective effect from recent antimicrobial drug use was expected because many antimicrobial drugs temporarily suppress or eradicate meningococcal carriage (31).

The design and size of this study allowed us to examine school characteristics as possible risk factors for meningococcal carriage. Although outbreaks often occur in educational institutions, no previous data existed on institutional factors that might contribute to carriage and transmission of meningococci. We did not identify any school characteristics that had an independent effect on carriage. Differences between centers remained significant even after adjustment for other factors. These may have been true differences between centers or the result of differences in the methods of swabbing, plating, and laboratory procedures. For example, in 1 study, direct plating resulted in a doubling of the detectable frequency of carriage, compared to results of indirect plating (32).

In conclusion, this study suggests that the rise in meningococcal carriage in teenagers is driven by changes in social behavior. Since carriage is a prerequisite for invasive disease (33), this rise in carriage is likely to explain the well-documented peak in meningococcal disease attack rates in teenagers (1,34–36). Explaining the risks of smoking, intimate kissing, and pub and club attendance may be a useful public health intervention, particularly in an outbreak situation. In the United Kingdom, a ban on

Table 4. Multivariable analysis of independent risk factors for meningococcal carriage in British teenagers, based on 12,437 samples with complete information*

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.79 (0.61–1.03)</td>
<td>0.17</td>
</tr>
<tr>
<td>17</td>
<td>0.89 (0.68–1.16)</td>
<td>0.48</td>
</tr>
<tr>
<td>18, 19</td>
<td>0.98 (0.73–1.32)</td>
<td>0.025</td>
</tr>
<tr>
<td>No. cigarettes smoked/day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>1–5</td>
<td>1.55 (1.33–1.81)</td>
<td>0.0001</td>
</tr>
<tr>
<td>6–10</td>
<td>1.69 (1.43–2.00)</td>
<td>0.0001</td>
</tr>
<tr>
<td>11–20</td>
<td>1.62 (1.29–2.03)</td>
<td>0.0001</td>
</tr>
<tr>
<td>>21</td>
<td>0.95 (0.41–2.23)</td>
<td>>0.001</td>
</tr>
<tr>
<td>Other smokers at home</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1.17 (1.05–1.30)</td>
<td>0.004</td>
</tr>
<tr>
<td>No. persons kissed in last week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.49 (1.34–1.66)</td>
<td>0.0001</td>
</tr>
<tr>
<td>2</td>
<td>1.25 (1.00–1.57)</td>
<td>0.0001</td>
</tr>
<tr>
<td>3</td>
<td>2.00 (1.44–2.78)</td>
<td>0.0001</td>
</tr>
<tr>
<td>4–5</td>
<td>1.41 (1.05–1.91)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Nights attended pub or club in last week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.52 (1.33–1.75)</td>
<td>0.0001</td>
</tr>
<tr>
<td>2</td>
<td>1.86 (1.44–2.39)</td>
<td>0.0001</td>
</tr>
<tr>
<td>3</td>
<td>2.00 (1.52–2.39)</td>
<td>0.0001</td>
</tr>
<tr>
<td>4</td>
<td>1.90 (1.50–2.42)</td>
<td>0.0001</td>
</tr>
<tr>
<td>5–7</td>
<td>2.27 (1.79–2.87)</td>
<td>0.0001</td>
</tr>
<tr>
<td>No. persons/room</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–1</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>>1–1.5</td>
<td>1.01 (0.76–1.34)</td>
<td>0.267</td>
</tr>
<tr>
<td>>1.5</td>
<td>0.57 (0.29–1.12)</td>
<td>0.267</td>
</tr>
<tr>
<td>Recent antimicrobial drug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>0.51 (0.38–0.67)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Stopped last week</td>
<td>0.51 (0.57–1.13)</td>
<td></td>
</tr>
<tr>
<td>Stopped last month</td>
<td>0.66 (0.52–0.83)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Carstairs score, per unit</td>
<td>1.00 (0.86–1.02)</td>
<td>0.909</td>
</tr>
<tr>
<td>School type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comprehensive</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>Independent/grammar</td>
<td>1.04 (0.67–1.60)</td>
<td>0.681</td>
</tr>
<tr>
<td>Sixth college</td>
<td>0.87 (0.32–1.40)</td>
<td></td>
</tr>
<tr>
<td>College</td>
<td>0.82 (0.49–1.37)</td>
<td>0.681</td>
</tr>
<tr>
<td>School size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small (<200 pupils)</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>Medium (200–499)</td>
<td>0.92 (0.65–1.30)</td>
<td>0.617</td>
</tr>
<tr>
<td>Large (>500)</td>
<td>1.18 (0.6–2.06)</td>
<td>0.617</td>
</tr>
<tr>
<td>Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiff</td>
<td>1.00, reference</td>
<td></td>
</tr>
<tr>
<td>Glasgow</td>
<td>0.89 (0.62–1.28)</td>
<td>0.537</td>
</tr>
<tr>
<td>Bangor</td>
<td>1.33 (0.83–2.14)</td>
<td>0.537</td>
</tr>
<tr>
<td>Nottingham</td>
<td>1.45 (0.86–2.44)</td>
<td></td>
</tr>
<tr>
<td>Oxford</td>
<td>1.46 (0.99–2.16)</td>
<td>0.537</td>
</tr>
<tr>
<td>Plymouth</td>
<td>0.28 (0.23–0.34)</td>
<td>0.537</td>
</tr>
<tr>
<td>Stockport</td>
<td>1.99 (1.01–3.90)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*OR, odds ratio; CI, confidence interval.

Figure 2. The combined effect of varying attendance at pubs and clubs, cigarette smoking, and intimate kissing on the risk for meningococcal carriage in British teenagers.
smoking in public places will be introduced in 2007 (37). Potential health benefits from such a measure may include a reduction in the risk of meningococcal meningitis and septicaemia.

Acknowledgments

We thank the head teachers, staff, and pupils at the participating schools and colleges for their support and the public health and microbiology staff at the study centers for their essential contribution to the success of this study.

This work was funded by Project Grants from the Wellcome Trust nos. 059987 and 062057 (sampling in England and Wales), the Chief Scientist Office of the Scottish Executive Health Department (sampling in Scotland), and the Meningitis Trust (risk factor survey). M.C.J.M. was a Wellcome Trust Senior Research Fellow in Basic Biomedical Sciences. The sponsors of this study had no role in the study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Dr MacLennan is a research associate at the Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, and currently based at the Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi. Her research has focused on the immune response to vaccination with meningococcal conjugate and polysaccharide vaccines and their effect on meningococcal carriage.

References

Address for correspondence: James M. Stuart, Health Protection Agency South West, The Wheelhouse, Bond’s Mill, Stonehouse, GL10 3RF, UK; email: james.stuart@hpa.org.uk

Disease emergence and control

Search past issues
EID Online
www.cdc.gov/eid
The early manifestations of coccidioidomycosis (valley fever) are similar to those of other causes of community-acquired pneumonia (CAP). Without specific etiologic testing, the true frequency of valley fever may be underestimated by public health statistics. Therefore, we conducted a prospective observational study of adults with recent onset of a lower respiratory tract syndrome. Valley fever was serologically confirmed in 16 (29%) of 55 persons (95% confidence interval 16%–44%). Antimicrobial medications were used in 81% of persons with valley fever. Symptomatic differences at the time of enrollment had insufficient predictive value for valley fever to guide clinicians without specific laboratory tests. Thus, valley fever is a common cause of CAP after exposure in a disease-endemic region. If CAP develops in persons who travel or reside in Coccidioides-endemic regions, diagnostic evaluation should routinely include laboratory evaluation for this organism.

Coccidioidomycosis (valley fever) is an infection caused by Coccidioides immitis or Coccidioides posadasii, which are fungi endemic to parts of Arizona, California, Utah, New Mexico, Texas, Mexico, and elsewhere in Central and South America (1). The most common clinical syndrome resulting from infection is community-acquired pneumonia (CAP), which is characterized by systemic illness, lower respiratory tract symptoms, and various immunologic manifestations such as rashes and skeletal discomfort (2–5). This syndrome, which occurs 1–3 weeks after inhalation of a fungal spore, may be present for protracted periods. Although infection occasionally spreads hematogenously to other parts of the body, most infections eventually resolve without complications or specific antifungal therapy.

Enormous disparities exist between the predicted number of illnesses caused by coccidioidal infection and the actual number of infections reported to state departments of public health. For example, rates of skin test conversion (6) and the size of the susceptible population in southern Arizona indicate that illness should develop in ≈30,000 persons per year. Similar frequencies are obtained from other indirect analyses (7). If these estimates were accurate, coccidioidomycosis would be a common cause of CAP in this disease-endemic region. In contrast, cases reported to the Arizona Department of Health Services from 1998 to 2001 averaged <2,000 annually (8) or 15-fold fewer than estimated. The figure that best reflects the actual frequency of illness has profound implications for diagnostic evaluation and therapeutic management in patients with exposure to Coccidioides species in a disease-endemic region.

In this report, we present results of evaluations of patients seeking care for symptoms of CAP with respect to the incidence of coccidioidomycosis. Because CAP is often managed by clinicians as part of general medical practices, we chose that setting for our studies. Our findings provide the first prospective evidence that coccidioidomycosis is a common cause of CAP in the study area. In addition to the relevance of these results for residents within Coccidioides-endemic regions, a similar risk for coccidioidal infection should be expected for others with CAP and a recent travel history to Coccidioides-endemic areas.

Methods

Study Sample

Patients were recruited from 3 primary care sites in Tucson, Arizona: the Urgent Care Center of University
Medical Center and 2 of the medical offices of Arizona Community Physicians. Recruitment was conducted during 2 time periods: from December 1, 2003, through February 21, 2004, and from May 1, 2004, through August 14, 2004. Although we sought to enroll as many eligible persons as possible during these periods, study personnel were not always available to do so.

To be eligible for enrollment, patients had to exhibit a lower respiratory syndrome of <1 month’s duration that included ≥1 of the following: pleuritic chest pain, dyspnea on exertion, having an evaluation by a chest radiograph, multiple visits for the same respiratory problem, or administration of an antibacterial drug for presumed CAP. Patients were excluded from enrollment if they had a previously diagnosed, laboratory-confirmed coccidioidal infection, another laboratory-confirmed diagnosis for inclusion-defining illness, were <18 years of age, or had not had previous exposure >1 week in a disease-endemic area. Fewer than 5% of the patients offered enrollment refused to participate in the study.

Study Protocol
This was an observational study, and medical management of each patient’s condition remained entirely with the responsible clinician. After informed consent was obtained, persons were interviewed and their clinical records were reviewed to collect information regarding demographics, comorbid conditions, time ranges of exposure in a disease-endemic region, and recent antimicrobial therapy for current respiratory illness. Persons were asked to complete the Medical Outcomes Study 36-Item Short Form Health Survey (SF-36) (9), the Iowa Fatigue Scale (10), and a respiratory infection severity scale (11). Results from chest radiographs and complete blood counts, where obtained as part of routine medical care, were also recorded. A second visit was scheduled for all persons.

Serum samples were obtained at both visits. They were stored at −70°C until tested at the completion of the study. Persons identified as having a coccidioidal infection were also contacted during or within the next 6 months to determine the status of their illness.

Serologic Analysis
Anti-coccidioidal antibodies were measured in the laboratory of 1 of the authors (J.N.G.) by several conventional methods. The double immunodiffusion technique was used to measure tube precipitin-type and complement fixing-type anti-coccidioidal antibodies (12,13). Serum samples qualitatively positive for complement fixing-type anti-coccidioidal antibodies were retested quantitatively (14). Anti-coccidioidal immunoglobulin M (IgM) and IgG antibodies were measured by enzyme-linked immunosassay by using a commercial kit according to the manufacturer’s instructions (Coccidioides EIA-Gold, Meridian Diagnostics, Cincinnati OH, USA) (15). An optical density ≥0.20 was considered positive. The relative sensitivity of these tests in patients with coccidioidal pneumonia has been previously analyzed (15).

Statistical Analysis
Patient and laboratory data were entered into a database (Access 2003, Microsoft Corp., Bellingham WA, USA), and statistical analysis was accomplished with SAS version 8.2 (SAS Institute, Inc., Cary, NC, USA). Differences between groups for categorical variables were compared with the χ² test and those for continuous variables were compared with the Wilcoxon sign-rank test and Wilcoxon rank-sum test as appropriate. Differences with p values <0.05 were considered significant.

Results
Of the 56 persons enrolled in this study, 1 did not provide a serum sample at baseline and was excluded from analysis. Fifty-five percent of the enrollees were male, and the median age was 48 years (interquartile range 33–63 years) (Table 1). Most (87%) persons were non-Hispanic whites, which reflected the demographics of the study-site sample. Patients with lower respiratory syndromes had a median of 3 additional inclusion criteria. Individual criteria were evaluation by a chest radiograph (82%), administration of an antimicrobial drug (80%), dyspnea on exertion (56%), pleurisy (44%), and multiple visits for the same condition (42%).

Frequency of Coccidioidomycosis as a Cause of CAP
Of the 55 persons who provided serum samples at baseline, 19 provided second serum samples 10–40 days later (median 18 days). Of these persons, 16 were positive by ≥1 serologic test (29%, 95% confidence interval [CI] 16%–44%). At baseline, 12 (75%) of the 16 were positive by multiple assays, and all but 3 had positive results for multiple serologic tests for both serum samples (Table 2). Of the remaining 36 persons, all had negative results for all tests at baseline, and a second serum sample obtained from 12 persons was also nonreactive.

Comparison of Clinical Characteristics between Groups
Demographic results for persons with and without valley fever are shown in Table 1. Length of exposure in the disease-endemic area was significantly shorter for patients with valley fever than for those who were seronegative (p = 0.043). The odds ratio for developing coccidioidomycosis in persons with exposure of <10 years to a disease-endemic area compared to those with a longer exposure time was 4.11 (95% CI 1.01–16.8). No other significant
demographic differences were identified between the 2 groups. Twenty, 24, and 11 participants had age ranges of <40 years, 40–64 years, and >65 years, respectively. The percentage of participants in each of these age groups with valley fever was 30%, 29%, and 27%, respectively.

Respiratory, systemic, and musculoskeletal symptoms are shown in Table 3. Only myalgia showed a significant difference between the 2 groups. The SF-36 survey and respiratory infection severity scale did not identify additional differences. However, the Iowa Fatigue Scale survey median productivity domain score (maximum score = 10 indicates greatest reduction) was 7 for persons with valley fever compared with 4.5 for all other persons (p = 0.008).

The proportion of patients in whom a chest radiograph was obtained was similar between seropositive and seronegative patients (75% vs. 72%). However, for those from whom chest radiographs were obtained (n = 40), abnormalities were significantly more frequent in participants with valley fever (75% vs. 25%, p = 0.005). Radiographic abnormalities associated with coccidioidal infection included pulmonary infiltrates in 88% and hilar adenopathy in 1 participant.

Use of Antimicrobial Drugs

Of the 55 persons who were seen in the primary care setting, 46 (84%) were prescribed antimicrobial medications; 13 received 2 consecutive courses of treatment, and 1 received 3 consecutive courses of treatment. No differences were seen between the seropositive and seronegative groups in either the proportion treated with antimicrobial drugs (81% vs. 85%) or the proportion treated with multiple courses of drugs (31% vs. 26%).

Follow-up of Persons with Valley Fever

All persons improved in the 6 months after enrollment. Only 1 received specific antifungal therapy (oral fluconazole for 1 month), and none required hospitalization. Eleven persons with valley fever repeated the symptom survey and the Iowa Fatigue Scale a median of 22 days after enrollment. Their responses indicated significant improvement for cough (p<0.016), fatigue (p<0.0039), cognition (p = 0.016), energy (p = 0.0015), and productivity (p = 0.062). Similar improvements were noted with the SF-36 survey and the Iowa Fatigue Scale readministered to 10 persons at the 6-month follow-up visit.

Discussion

Of the patients enrolled in our prospective study from select ambulatory care settings within the disease-endemic region, 29% were diagnosed serologically as having

Table 1. Demographic characteristics of the study sample*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total (N = 55)</th>
<th>Persons with valley fever (n = 16)</th>
<th>Others (n = 39)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex, no. (%)</td>
<td>30 (55)</td>
<td>8 (50)</td>
<td>22 (56)</td>
</tr>
<tr>
<td>Median age, y (IQR)</td>
<td>48 (33–63)</td>
<td>47 (30–57)</td>
<td>48 (33–63)</td>
</tr>
<tr>
<td>Race, no. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic white</td>
<td>46 (87)</td>
<td>13 (81)</td>
<td>35 (90)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>4 (3.6)</td>
<td>2 (13)</td>
<td>2 (5.1)</td>
</tr>
<tr>
<td>Asian</td>
<td>3 (5.5)</td>
<td>1 (6.3)</td>
<td>2 (5.1)</td>
</tr>
<tr>
<td>Median body mass index (IQR)</td>
<td>26 (22–31)</td>
<td>25 (22–30)</td>
<td>28 (23–31)</td>
</tr>
<tr>
<td>Median length of exposure in disease-endemic area, y (IQR)†</td>
<td>9 (5–24)</td>
<td>8.5 (3.5–10)</td>
<td>10 (6–26)</td>
</tr>
<tr>
<td>Coexisting condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPD</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Asthma</td>
<td>9</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Lung disease</td>
<td>9</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>History of pneumonia</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Renal disease</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Liver disease</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Immunocompromised</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rheumatologic</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

*IQR, interquartile range; COPD, chronic obstructive pulmonary disease.
†p = 0.043.

Table 2. Serologic characteristics of the study sample*

<table>
<thead>
<tr>
<th>Seropositive persons (N = 16)</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline serum sample</td>
<td></td>
</tr>
<tr>
<td>Positive by >1 method</td>
<td>11</td>
</tr>
<tr>
<td>IDTP only</td>
<td>1</td>
</tr>
<tr>
<td>EIA IgM only</td>
<td>1</td>
</tr>
<tr>
<td>EIA IgG only</td>
<td>2</td>
</tr>
<tr>
<td>Negative†</td>
<td>1</td>
</tr>
<tr>
<td>Second serum sample</td>
<td></td>
</tr>
<tr>
<td>Positive by >1 method</td>
<td>8</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
</tr>
<tr>
<td>Not obtained</td>
<td>8</td>
</tr>
<tr>
<td>Seronegative persons (N = 39)</td>
<td></td>
</tr>
<tr>
<td>Baseline serum sample</td>
<td>39</td>
</tr>
<tr>
<td>Second serum sample</td>
<td>12</td>
</tr>
<tr>
<td>Second serum sample not obtained</td>
<td>27</td>
</tr>
</tbody>
</table>

*IDTP, immunodiffusion tube precipitin; EIA, enzyme immunoassay; IgM, immunoglobulin M.
†This person was subsequently positive by multiple assays on his second serum sample.
Coccidioidomycosis and Community-acquired Pneumonia

The high frequency of valley fever as a cause of CAP found in this study is consistent with previous estimates of coccidioidomycosis as a dominant cause of CAP with exposure in disease-endemic areas. A similar estimate of 25% to 30% has been obtained retrospectively at the Southern Arizona Veterans Administration Health Care System in Tucson, Arizona (7). Conversely, a diagnosis of valley fever requires laboratory testing. That this practice may not be uniform among clinicians was shown in a retrospective analysis of physician-specific diagnoses at primary care clinics in Tucson, Arizona, in which the rate of diagnosing coccidioidomycosis varied between 0% and 25% among physicians within the same group practice (7). Similar differences might also account for the increasing case rate associated with patient age that was reported in a recent analysis of 2001 Arizona state statistics (8). Case rates for persons >44 years of age were nearly twice those for persons 21–44 years of age. In our study in which all persons were uniformly evaluated for valley fever, all age groups had similar rates (27.3%–30.0%). Furthermore, although not detailed in our results, severity of illness in terms of respiratory symptoms was less in elderly subjects. We interpret the differences between the state statistics and those of our study as indicating that older persons who develop an illness are more likely to have an exact diagnosis determined, underscoring underreporting of illness in some patient groups such as young adults.

A corollary to the high frequency of coccidioidomycosis seen in this study is that persons anywhere with CAP and a history of recent travel to south-central Arizona or other regions where coccidioidomycosis is highly endemic would be expected to have a similarly high risk. For this reason, obtaining a travel history for any patient with CAP is essential for early and accurate diagnosis of this disease, as well as for other regional problems such as severe acute respiratory syndrome (SARS), hantavirus pneumonia, and avian influenza. Although the Infectious Diseases Society of America practice guidelines for CAP currently recommend obtaining a complete travel history only in patients with refractory pneumonia (19), we recommend that the guidelines be revised to recommend obtaining a travel history at the first evaluation.

Analysis of multiple symptoms at baseline showed several characteristics associated with coccidioidal infections. Both a shorter length of exposure in a disease-endemic region and a greater frequency of radiographic abnormalities were seen in persons with valley fever compared with those without valley fever. These associations were also evident in a previous report from a university health center (5). Symptoms of myalgia and reduced productivity were also evident with coccidioidal infection. However, none of these associations, alone or in combination, were of sufficient magnitude to assist clinicians in the initial diagnosis. Therefore, our findings, as in the previous study (5), emphasize that laboratory testing at the initial physician visit is essential to identify patients with symptoms of CAP that are caused by valley fever.

A high proportion (81%) of persons with valley fever were prescribed an initial course of antimicrobial drugs. Of these, 12 patients, 3 of whom were diagnosed with valley fever, received 2 courses of these drugs. Although diagnosis of valley fever by serologic methods is frequently delayed by 3–5 days, use of antimicrobial drugs could still be avoided or stopped earlier in patients whose illness is determined to be caused by Coccidioides species.

The inclusion criteria used in this study were designed both to be broadly inclusive and to select patients with more severe illness. As such, they differ in some respects from commonly used entry criteria for clinical trials of new antimicrobial drugs as treatment for CAP. For example, we chose pleuritic chest pain and dyspnea at rest and fever as an entry requirement. By using these entry

Table 3. Symptoms of the study sample at enrollment

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Persons with valley fever (n = 15), no. (%)</th>
<th>Others (n = 39), no. (%)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cough</td>
<td>11 (69)</td>
<td>35 (90)</td>
<td>0.10</td>
</tr>
<tr>
<td>Sputum production</td>
<td>8 (50)</td>
<td>28 (72)</td>
<td>0.21</td>
</tr>
<tr>
<td>Hemoptysis</td>
<td>1 (6.3)</td>
<td>3 (7.7)</td>
<td>1.0</td>
</tr>
<tr>
<td>Pleurisy</td>
<td>9 (56)</td>
<td>15 (38)</td>
<td>0.25</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>10 (63)</td>
<td>21 (54)</td>
<td>0.77</td>
</tr>
<tr>
<td>Systemic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td>9 (56)</td>
<td>19 (49)</td>
<td>0.77</td>
</tr>
<tr>
<td>Chills</td>
<td>9 (56)</td>
<td>17 (44)</td>
<td>0.55</td>
</tr>
<tr>
<td>Night sweats</td>
<td>9 (56)</td>
<td>21 (54)</td>
<td>1.0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>16 (100)</td>
<td>34 (87)</td>
<td>0.31</td>
</tr>
<tr>
<td>Weight loss</td>
<td>3 (19)</td>
<td>7 (18)</td>
<td>1.0</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myalgia</td>
<td>11 (69)</td>
<td>9 (23)</td>
<td>0.0022</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>7 (44)</td>
<td>11 (28)</td>
<td>0.35</td>
</tr>
<tr>
<td>Rash</td>
<td>3 (19)</td>
<td>3 (7.7)</td>
<td>0.34</td>
</tr>
</tbody>
</table>
criteria, we found that 3 of the 12 patients with valley fever who underwent radiographic examination had normal radiographs, which is consistent with results of a previous study (3), but did not adhere to Infectious Diseases Society of America or American Lung Association definitions of pneumonia (19). When comparing our findings to those of other studies, the way in which patients were selected should be taken into account.

Several limitations of our methods deserve emphasis. Because our inclusion criteria were not standard, comparison of our results to those of other studies of CAP is difficult. Also, we did not have a diagnosis for patients without valley fever. Since this is a relatively small study, additional expanded studies may be useful, especially to extend observations to other groups such as children, the elderly, those requiring hospitalization, and residents elsewhere within disease-endemic regions. Future studies are also needed to determine best practices for management of primary coccidioidal infection and possible therapy with specific antifungal treatment. Such a high proportion of CAP caused by Coccidioides species should provide further impetus to conduct those studies.

This work was supported in part by the US Department of Veterans Affairs, the Department of Health and Human Services, and grant 1P01AI061310-01 from the National Institute of Allergy and Infectious Diseases, National Institutes of Health.

Dr Valdivia is a physician in private practice affiliated with Tucson Medical Center and Carondolet St. Joseph’s Hospital in Tucson. Her research interests include new therapies for coccidioidomycosis.

References

Address for correspondence: John N. Galgiani, Valley Fever Center for Excellence, College of Medicine, University of Arizona, 3601 S Sixth Ave, Tucson, AZ 85723, USA; email: spherule@u.arizona.edu

Use of trade names is for identification only and does not imply endorsement by the Public Health Service or by the U.S. Department of Health and Human Services.
A total of 3,101 fecal specimens were collected during an 8-year survey for rotavirus infection in São Paulo, Brazil. Group A rotavirus was detected in 774 (25.0%) specimens. Of these, 431 strains (55.7%) were analyzed for G and P types by reverse transcription–polymerase chain reaction; G1 was the predominant serotype (68.2%), followed by G9 (17.2%), G4 (6.3%), G2 (1.2%), G3 (0.7%), mixed infection (1.8%), and untypeable (4.6%). Both rotavirus G and P types could be established in 332 strains (77.0%). We identified the 4 most common strains worldwide: P[8]G1 (66.6%), P[4]G2 (1.0%), P[8]G3 (0.6%), and P[8]G4 (7.2%). Among the single G9 strains detected, VP4 genotyping showed that P[8]G9 was the most prevalent, followed by P[4]G9 and P[6]G9. The emergence and high frequency of rotavirus G9 in São Paulo, Brazil, and other parts of the world will affect the development and evaluation of future vaccines.

Group A rotavirus is the most common cause of acute gastroenteritis in infants and young children worldwide (1). More than 130 million cases of diarrhea each year are attributed to rotavirus. It is estimated to cause >400,000 deaths annually in children <5 years of age and is responsible for 2 million hospital admissions due to acute diarrhea worldwide. In developing countries, an estimated 1,205 children die from rotavirus disease each day, and 82% of these deaths occur in children in the poorest countries (2)

Rotavirus serotypes are determined by neutralizing antibody responses to each of the 2 outer capsids proteins, VP7 (G serotype) and VP4 (P serotype) (1). To date, 11 VP7 G serotypes and 13 P serotypes have been identified in humans. Serotypes G1, G2, G3, and G4 are frequently associated with diarrhea in humans and have become prime targets for vaccine development (3,4). The recent emergence and wide distribution of rotavirus G9 indicate that this serotype may become the fifth relevant strain (5,6). Unusual types of rotavirus have been described in certain settings. The G5 type has been reported in Brazil, Argentina, Paraguay, Cameroon, and the United Kingdom (6,7); G6 has been detected in Italy, Australia, India, the United States, Belgium, and Hungary; G8 has been frequently isolated in Africa and sporadically in other countries; rotavirus G10 specificity has been reported in the United Kingdom, India, Thailand, Paraguay, and Brazil (6); G11 type was recently detected in Dhaka, Bangladesh (4); and the G12 type has been detected in the Philippines (8), Thailand (9), the United States (10), India (11), Japan (12), Korea (13), Argentina (14), and Brazil (15).

The genotypes VP4 P[8] and P[4] are the most common P types that infect humans. The P[8] type is generally associated with VP7 types G1, G3, and G4, and the P[4] type is associated with G2 (16). Combined G and P genotyping may have advantages in identifying reassortants as unusual or new virus strains (17). Continued surveillance of the diverse rotavirus strains circulating in a community is crucial before developing a vaccine and during and after implementing an immunization program. Therefore, we describe the results of an 8-year surveillance study of G- and P-type rotavirus strains from persons with acute diarrhea in the state of São Paulo, Brazil.

Materials and Methods

From 1996 to 2003, a total of 3,101 fecal specimens were collected from children <5 years of age, school-age children (5–17 years), adults (18–59 years), and elderly patients (≥60 years) with acute gastroenteritis. These patients received treatment for diarrhea at the departments of public health or were admitted to hospitals in several cities in São Paulo State, in southeast Brazil. São Paulo
State has an area of ≈248,800 km² and a population of 40 million (21.5% of the population of Brazil). Figure 1 shows main cities in São Paulo where samples were collected. Epidemiologic data (age, date of diarrhea onset, date of sample collection) were available from some patients. Specimens were stored at −20°C until tested for rotavirus and characterized. Study methods were approved by the ethical committee of Adolfo Lutz Institute.

All specimens were screened for rotavirus by using a commercial enzyme-linked immunosorbent assay (ELISA) (Premier Rotaclone, Meridian Diagnostics, Cincinnati, OH, USA) with monoclonal antibodies specific for group A human rotavirus, according to the manufacturer’s protocol. Rotavirus double-stranded RNA (dsRNA) was extracted directly from stool by the TRIzol method (Invitrogen, Carlsbad, CA, USA) and precipitated with isopropanol. The extracted dsRNA was subjected to G and P typing by multiplex reverse transcription–polymerase chain reaction (RT-PCR) with type-specific primers. Consensus primers Beg9 and End9 were used in a first-round PCR (30 cycles) to amplify the full-length VP7 gene (1,062 bp); cDNA was used in a second-round PCR for G typing (25 cycles) with primer set aBT1 (G1), aCT2 (G2), aET3 (G3), aDT4 (G4), aFT9 (G9) and primer set FT5 (G5), DT6 (G6), HT8 (G8), ET10 (G10), BT11 (G11) (18, 19). For P typing, consensus primers Con2 and Con3 were used in a first-round RT-PCR (30 cycles) to amplify the 876 bp of the VP8* region of the VP4 gene, and the second-round PCR (20 cycles) used primer set 1T-1 (P[8]), 2T-1 (P[4]), 3T-1 (P[6]), 4T-1 (P[9]), 5T-1 (P[10]) (20). All PCR products were analyzed by electrophoresis in 1.2% agarose gels, containing 0.5 µg ethidium bromide per milliliter and visualized under UV illumination.

Results

Rotavirus was detected in 774 (25.0%) of 3,101 specimens collected from children, adults, and elderly patients in São Paulo during an 8-year period. Rotavirus infection was found predominantly in the winter and in drier months. The incidence peaked in August (Figure 2). The age or date of birth was provided for 677 (87.5%) of 774 patients who tested positive for rotavirus. Rotavirus disease was detected mainly in children <2 years of age (463 [59.8%] of 774), and peaks of incidence occurred from 7 to 12 months (Figure 3). However, rotavirus infection also was detected in adults and elderly patients (55 [7.1%] of 774).

We randomly selected 431 rotavirus-positive samples (55.7%) for determination of G and P genotypes by an RT-PCR assay. G1 was the predominant serotype in these samples (294, 68.2%), followed by G9 (74, 17.2%), G4 (27, 6.3%), G2 (5, 1.2%), G3 (3, 0.7%), mixed infection (8, 1.8%), and untypeable (20, 4.6%) (Table 1). The distribution of rotavirus types in São Paulo during this 8-year period shows that G1 was the most prevalent genotype in most years, but it was displaced by G9 in 2002. Incidence of G2 and G3 serotypes was low during the period of analysis. Frequency of G4 serotype differed during the surveillance period; it was not detected in 1996 and 2003. We found several mixed infections from 2000 to 2003 (G1+G4, G1+G9, G2+G3, and G4+G9).

Discussion

We detected rotaviruses in the specimens of 25.0% of patients with acute diarrhea, which is comparable to the
prevalence seen in other studies in Brazil (27). Among children <5 years of age, we detected rotavirus infection mainly in those <2 years of age (81.0%) (data not shown); in adults, rotavirus was detected less frequently (7.1%). The finding of a low percentage of rotavirus infection among adults is likely because the disease is generally perceived to be a childhood infection (22). Common epidemiologic settings for rotavirus infection among adults include endemic disease, epidemic outbreak, travel-related infection, and child-to-adult transmission (23).

In studies performed at various locations in Brazil with diverse climatic conditions, rotavirus disease appears to occur year-round (24). In São Paulo State, however, infection occurred mainly during cooler and drier seasons; similar observations have been made in other countries with temperate climates (16).

During the 8-year period studied, the G1 type was the most prevalent rotavirus strain. The second most prevalent was the G9 type, which accounted for 17.2% of disease, followed by G4, G2, and G3, which are common around the world. G1 was the most prevalent type in most years; however, it was displaced by G9 during the 2002 season, when G9 accounted for 46.9% of typed isolates. The G9 type has been reported to be a common cause of diarrhea and has become the fifth most common serotype, which suggests that it may be a substantial cause of diarrhea in humans (5,6). This type has been detected in Brazil since 1997 (25,26).

Surveillance on rotavirus types has been performed in São Paulo for ≥18 years, from 1986 to 2003 (27,28). The first G9 type was isolated in 2000 and has been fluctuating in frequency since its emergence (Table 1). The G5 type, normally associated with animal rotavirus (pigs and horses), has been frequently detected in persons in Brazil and it was considered an endemic virus (28,29). Nevertheless, in our survey in São Paulo, G5 rotavirus was not detected. Its incidence in Brazil has been decreasing over the last few years, and it may be disappearing (25,26); this type of rotavirus is likely to be a cyclic form. G9 strains have also been detected in animals (lambs and pigs [f]); detection of animal rotavirus provides evidence for natural human-ani-
data from P and G typing are relevant to identify new strains that might have resulted from reassortment of genes between diverse human-human and human-animal rotaviruses (38). Recently, 2 live rotavirus oral vaccines have been licensed in some countries and made available on the market, including a monovalent vaccine derived from the most common human rotavirus strain, P[8]G1, and a pentavalent vaccine based on a bovine strain, WC3, that contains 5 human-bovine reassortant viruses (G1, G2, G3, G4, and P[8]). Both vaccines have shown efficacy against severe rotavirus disease (39,40). In August 2005, the live, attenuated P[8]G1 human rotavirus vaccine was licensed in Brazil, the first country to introduce this vaccine into the public health network.

Our data show that challenges exist for the design of rotavirus vaccine for the Brazilian population and underscore that virus strain surveillance should be ongoing. Surveillance programs can establish whether G9 rotavirus strains will continue to rise in prevalence or whether they will follow a cyclical pattern of emergence, as has been shown for G1–G4. The composition of future rotavirus vaccines is likely to be formulated according to the geographic setting and the distribution of G and P strains.

Acknowledgments

We thank Carla Uchida Tanuma, Daniela Bernardes Borges, Fernanda Ferreira da Silva, Karla Tatiana Rubini, Raquel de Souza Pereira, and Tomoko Sekiya for their technical assistance. This work was supported by Adolfo Lutz Institute, São Paulo State Secretary of Health, São Paulo.

Dr Carmona is a research scientist in the Enteric Virus Laboratory, Adolfo Lutz Institute, São Paulo State Department of Health, São Paulo, Brazil. Her research interests are focused on the diagnosis of enteric virus diseases and the molecular

<table>
<thead>
<tr>
<th>Year</th>
<th>No. rotavirus isolates</th>
<th>No. (%) selected for genotyping</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G9</th>
<th>Mixed*</th>
<th>Not typeable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>33</td>
<td>21 (63.3)</td>
<td>19 (90.5)</td>
<td>2 (9.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>121</td>
<td>48 (39.7)</td>
<td>45 (93.8)</td>
<td>0</td>
<td>0</td>
<td>3 (6.3)</td>
<td>0</td>
<td>0</td>
<td>1 (2.1)</td>
</tr>
<tr>
<td>1998</td>
<td>45</td>
<td>16 (35.6)</td>
<td>12 (75.0)</td>
<td>0</td>
<td>0</td>
<td>4 (25.0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>99</td>
<td>56 (56.6)</td>
<td>46 (82.1)</td>
<td>0</td>
<td>0</td>
<td>10 (17.9)</td>
<td>0</td>
<td>0</td>
<td>2 (3.6)</td>
</tr>
<tr>
<td>2000</td>
<td>98</td>
<td>52 (53.1)</td>
<td>42 (80.8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7 (13.4)</td>
<td>3 (5.8)</td>
<td>5 (9.6)</td>
</tr>
<tr>
<td>2001</td>
<td>57</td>
<td>46 (80.7)</td>
<td>28 (60.9)</td>
<td>2 (4.3)</td>
<td>1 (2.2)</td>
<td>6 (13.0)</td>
<td>4 (8.7)</td>
<td>1 (2.2)</td>
<td>1 (2.2)</td>
</tr>
<tr>
<td>2002</td>
<td>90</td>
<td>49 (54.4)</td>
<td>18 (36.7)</td>
<td>0</td>
<td>2 (4.1)</td>
<td>4 (8.2)</td>
<td>23 (46.9)</td>
<td>2 (4.1)</td>
<td>6 (12.2)</td>
</tr>
<tr>
<td>2003</td>
<td>231</td>
<td>127 (55.0)</td>
<td>84 (66.1)</td>
<td>1 (0.8)</td>
<td>0</td>
<td>0</td>
<td>40 (31.5)</td>
<td>2 (1.6)</td>
<td>5 (3.9)</td>
</tr>
<tr>
<td>Total</td>
<td>774</td>
<td>431 (55.7)</td>
<td>294 (68.2)</td>
<td>5 (1.2)</td>
<td>3 (0.7)</td>
<td>27 (6.3)</td>
<td>74 (17.2)</td>
<td>8 (1.8)</td>
<td>20 (4.6)</td>
</tr>
</tbody>
</table>

*Mixed infections: 2000, G1+G9 (n = 3); 2001, G2+G3 (n = 1), 2002, G1+G9 (n = 1) and G4+G9 (n = 1); 2003, G1+G9 (n = 2).
characterization and epidemiology of rotavirus, norovirus, and enteroviruses.

References

Address for correspondence: Rita de Cássia Compagnoli Carmona, Laboratório de Vírus Entéricos, Instituto Adolfo Lutz, Av Dr Arnaldo 355, São Paulo, Brazil, 01246-902; email: rcarmona@ial.sp.gov.br

All material published in Emerging Infectious Diseases is in the public domain and may be used and reprinted without special permission; proper citation, however, is required.
A new reverse transcription–polymerase chain reaction assay was developed for identification of 28 Canadian human parechovirus (HPeV) isolates, including 20 HPeV-1, 3 HPeV-2, and 5 HPeV-3, recovered from 1985 to 2004. All HPeV-1 isolates but 1 were genetically distinct from the Harris reference strain. One HPeV-2 isolate was related to the Williamson strain; the other 2 were related to the Connecticut strain. HPeV-3 isolates clustered together. Seventy-five percent of isolates were recovered during the typical enterovirus season. All patients but 1 were children with a mean age of 14.6 months, 6.3 months, and 0.7 months for HPeV-1, HPeV-2, and HPeV-3 patients, respectively. All HPeV-2– and HPeV-3–infected children were hospitalized with a diagnosis of viremia or sepsis. HPeV-1–infected children had bronchiolitis diagnosed in 50% of the cases, with few cases of pneumonia and enteritis. Two infected patients (1 child with leukemia and a 78-year-old woman) died of septic shock and severe pneumonia, respectively.

Picornaviruses constitute a diverse family of single-stranded positive-sense RNA viruses whose genome is packed into a nonenveloped icosahedral capsid (1). Within the Picornaviridae family, 5 genera are known to cause infections in humans: Enterovirus, Hepatovirus, Rhinovirus, Kobuvirus, and Parechovirus (1). The Parechovirus genus contains 3 human pathogens (HPeV-1, -2, and -3) as well as Ljungan virus, a rodent parechovirus isolated from bank voles (2). These viruses have several atypical biologic and molecular properties compared to other picornaviruses, such as unusual cytopathic effects and the lack of cleavage of the VP0 protein into VP4 and VP2, which results in a virion particle with only 3 capsid proteins rather than 4 (3).

Previous studies demonstrated that HPeV-1 (formerly echovirus 22) had a worldwide distribution and was associated with diseases similar to those caused by human enteroviruses (HEVs), i.e., gastroenteritis, respiratory diseases, aseptic meningitis, encephalitis, and neonatal sepsis–like syndromes (3–6). In general, HPeV-1 seems to be responsible for more gastrointestinal and respiratory syndromes and for fewer central nervous system (CNS) symptoms than enteroviruses (3,6). HPeV-2 (formerly echovirus 23) has been rarely reported, despite its early description in 1961 (7). In a retrospective Swedish study covering a period of >30 years, only 5 cases of HPeV-2 infections (including 4 cases of gastrointestinal symptoms and 1 case of respiratory symptoms) were reported (8), compared to 109 HPeV-1 infections during the same period (9). The third type of HPeV (HPeV-3) was reported in 2004 from stool specimen of a 1-year-old Japanese girl with transient paralyis (10). Subsequently, we reported 3 cases of sepsislike illnesses attributable to HPeV-3 infections in Canadian neonates (11). The association of HPeV-3 with 3 cases of sudden infant death syndrome was also suggested (12). In a recent Dutch study, HPeV-3 was shown to be more involved in CNS infections than HPeV-1 (13).

Similar to HEVs, HPeVs infections are commonly identified by virus isolation in cell culture, followed by neutralization typing (6,9). Isolation in cell culture is laborious and time-consuming. In addition, the method may lack sensitivity, thus leading to false-negative results (14,15). Because of increasing knowledge of genome sequences of HPeVs, development of molecular techniques such as reverse transcription–polymerase chain reaction (RT-PCR) could be an important alternative tool for specific and sensitive detection of these viruses. The increased sensitivity of RT-PCR compared to virus isolation has already been demonstrated for other clinically important picornaviruses such as enteroviruses and rhinoviruses (16–19). Nevertheless, HPeVs could not be detected by most molecular assays designed for HEV diagnosis because of considerable sequence differences between these 2 viral genera (20–22). In this study, we
developed a single RT-PCR test for detecting the 3 HPeV types based on sequence alignments of HPeV-1, -2, and -3 reference strains and various clinical HPeV isolates. This test was applied for the identification of several putative HPeV isolates recovered in Quebec (Canada) during the last 2 decades (1985–2004).

Materials and Methods

Viral Strains and Cell Culture Procedures

A total of 30 HPeV strains, including the reference strains Harris (HPeV-1, ATCC VR-52), and Williamson (HPeV-2, ATCC VR-53), as well as 28 clinical HPeV isolates were used in this study (Table). Clinical specimens of various origins, such as nasopharyngeal aspirates (NPA), throat swabs, stools, cerebrospinal fluid (CSF), and endotracheal secretions (online Appendix Table, available from http://www.cdc.gov/ncidod/EID/vol12no06/05-1675.htm#table_app), were first added to different continuous cell lines, including human lung adenocarcinoma (A-549), human rhabdosarcoma (RD), transformed human kidney (293), human colon adenocarcinoma (HT-29), human laryngeal carcinoma (Hep-2), human foreskin fibroblast, mink lung, African green monkey kidney (Vero), Madin Darby canine kidney, and rhesus monkey kidney (LLC-MK2) cells. The viral cultures were incubated for 3 weeks at 37°C in a 5% CO₂ atmosphere. Viral isolates with cytopathic effects (CPE) suggestive of HEV or HPeV were further analyzed by neutralization assays with Lim and Benyesh-Melnick antiserum pools A-H (National Institutes of Health, Bethesda, MD, USA) and specific antisera for HPeV-1 and -2 (MA Bioproducts, Walkersville, MD, USA).

Molecular Characterization

HPeV genomic RNA was isolated from the supernatant of infected cell cultures with the QIAamp Viral RNA kit (Qiagen, Mississauga, Ontario, Canada). cDNA was prepared by using the HPeVUniv5′ primer selected from the C-terminal region of the capsid VP0 encoding gene: 5′-GCT GAC CTA TGY ATC CCC TAT GT-3′ (nt 1358–1379, GenBank accession no. AJ998818) and the SuperScript II reverse transcriptase (Gibco BRL, Burlington, Ontario, Canada). Viral cDNA was then amplified by PCR by using the Pfu Turbo Polymerase (Stratagene, La Jolla, CA, USA) and primers HPeVUniv5′ and HPeVUniv3′ (selected from the N-terminal region of the capsid VP1 encoding gene): 5′-GTG AAC CCC AYG AAT TTT GGA A-3′ (nt 2351–2330, accession no. AJ998818). After a primary denaturation step at 95°C for 5 min, 35 cycles of denaturation at 94°C for 50 s, annealing at 58°C for 50 s, and extension at 72°C for 2 min were performed, followed by a final extension step at 72°C for 7 min. PCR products were analyzed by electrophoresis on a 1.2 % agarose gel and the expected amplicons of ≈1,000 bp were purified by using the GenElute PCR clean-up kit (Sigma-Aldrich, St-Louis, MO, USA). Nucleotide sequences of PCR products were determined with PCR primers by using an automated DNA sequencer (ABI Prism 377A; Perkin-Elmer Applied Biosystems, Foster City, CA, USA). The nucleotide sequences were analyzed, and the deduced amino acid sequences were aligned by using ClustalW (available from http://www.infobiogen.fr/). The resulted alignment was analyzed by the neighbor-joining method with the MEGA2 (Biodesign Institute, Arizona State University, Phoenix, AZ, USA) program for the construction of the phylogenetic tree.

<table>
<thead>
<tr>
<th>Virus</th>
<th>HPeV type</th>
<th>% nt/aa identities†</th>
<th>Neutralization assay‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harris</td>
<td>1</td>
<td>NA</td>
<td>+</td>
</tr>
<tr>
<td>Williamson</td>
<td>2</td>
<td>76.7/89.9</td>
<td>+</td>
</tr>
<tr>
<td>Can5451-85</td>
<td>1</td>
<td>76.8/89.9</td>
<td>+</td>
</tr>
<tr>
<td>Can5188-85</td>
<td>1</td>
<td>76.8/89.9</td>
<td>+</td>
</tr>
<tr>
<td>Can11750-87</td>
<td>1</td>
<td>76.8/89.9</td>
<td>+</td>
</tr>
<tr>
<td>Can11758-87</td>
<td>1</td>
<td>76.8/89.9</td>
<td>+</td>
</tr>
<tr>
<td>Can29218-90</td>
<td>1</td>
<td>76.4/89.2</td>
<td>+</td>
</tr>
<tr>
<td>Can29192-90</td>
<td>1</td>
<td>75.0/89.6</td>
<td>+</td>
</tr>
<tr>
<td>Can40057-93</td>
<td>1</td>
<td>76.8/89.6</td>
<td>+</td>
</tr>
<tr>
<td>Can41934-93</td>
<td>1</td>
<td>77.1/89.6</td>
<td>+</td>
</tr>
<tr>
<td>Can81165-97</td>
<td>1</td>
<td>77.0/89.9</td>
<td>+</td>
</tr>
<tr>
<td>Can82753-01</td>
<td>1</td>
<td>76.5/89.2</td>
<td>+</td>
</tr>
<tr>
<td>Can81805-01</td>
<td>1</td>
<td>85.1/97.5</td>
<td>+</td>
</tr>
<tr>
<td>Can87376-02</td>
<td>1</td>
<td>76.4/89.6</td>
<td>+</td>
</tr>
<tr>
<td>Can87639-02</td>
<td>1</td>
<td>76.4/89.6</td>
<td>+</td>
</tr>
<tr>
<td>Can88461-02</td>
<td>1</td>
<td>77.1/89.9</td>
<td>+</td>
</tr>
<tr>
<td>Can88770-02</td>
<td>1</td>
<td>76.3/89.2</td>
<td>+</td>
</tr>
<tr>
<td>Can95372-02</td>
<td>1</td>
<td>76.5/89.2</td>
<td>+</td>
</tr>
<tr>
<td>Can94436-02</td>
<td>1</td>
<td>76.9/89.6</td>
<td>+</td>
</tr>
<tr>
<td>Can101909-04</td>
<td>1</td>
<td>76.6/89.6</td>
<td>+</td>
</tr>
<tr>
<td>Can102318-04</td>
<td>1</td>
<td>76.6/89.6</td>
<td>+</td>
</tr>
<tr>
<td>Can100121-04</td>
<td>1</td>
<td>77.0/89.2</td>
<td>+</td>
</tr>
<tr>
<td>Can82047-01</td>
<td>2</td>
<td>81.1/96.4</td>
<td>+</td>
</tr>
<tr>
<td>Can95219-03</td>
<td>2</td>
<td>67.8/72.5</td>
<td>–</td>
</tr>
<tr>
<td>Can95224-03</td>
<td>2</td>
<td>67.8/72.5</td>
<td>–</td>
</tr>
<tr>
<td>Can91235-01</td>
<td>3</td>
<td>95.3/96.1</td>
<td>–</td>
</tr>
<tr>
<td>Can81554-01</td>
<td>3</td>
<td>95.0/95.7</td>
<td>–</td>
</tr>
<tr>
<td>Can82853-01</td>
<td>3</td>
<td>95.5/96.4</td>
<td>–</td>
</tr>
<tr>
<td>Can99190-04</td>
<td>3</td>
<td>95.0/96.1</td>
<td>–</td>
</tr>
<tr>
<td>Can97958-04</td>
<td>3</td>
<td>95.0/96.4</td>
<td>–</td>
</tr>
</tbody>
</table>

*HPeV, human parechovirus; nt, nucleotide; aa, amino acid; NA, not applicable.
†% identities were calculated by comparison with Harris (accession no. S45208), Williamson (accession no. AJ005569) and A30899 (accession no. AB004913) reference strains for HPeV-1, -2 and -3 isolates, respectively.
‡Neutralization assays were performed by using specific HPeV-1 and -2 (formerly echovirus 22 and 23, respectively) antisera (MA Bioproducts, Walkersville, MD, USA).
Clinical Data and Statistical Analysis

Demographic and clinical informations were retrospectively collected from clinical charts of hospitalized patients for whom a positive culture for HPeV was obtained in our laboratory in the past 20 years. The Mann-Whitney rank sum test was used to compare the mean age of patients infected with HPeV-1 versus HPeV-3; the Fisher exact test was used to compare HPeV-1 versus the 2 other HPeV types regarding the rate of underlying diseases and the nature of initial diagnosis.

Results

Virologic and Molecular Findings

Among the different cell lines used, HT-29 was found to be the most suitable for efficient isolation of HPeV-1 and -2. Both grew efficiently in this cell line with an evident CPE noted after a mean incubation time of 3.8 days (range 1–8 days). A presumptive distinction between HPeV- and HEV-induced CPE in this cell line was possible. Parechovirus-infected cells were large, regularly shaped spheres, whereas enterovirus-infected cells were rather small with an irregular shape (Figure 1A). On the other hand, HPeV-3 isolates only initially grew on LLC-MK2 cells after a mean incubation time of 16 days (range 14–17 days). On passage, however, these viruses grew rapidly (in ≈1–3 days) in the same cell line (Figure 1B) and in Vero cells. All tested HPeV-1 and only one third of HPeV-2 (Can82047-01) isolates were neutralized by specific antisera for HPEV-1 and -2 (Table).

All HPeV clinical isolates as well as the 2 HPeV-1 and -2 reference strains were efficiently amplified by our RT-PCR test, generating an amplicon of the expected size (≈1,000 bp). No PCR products were generated from enterovirus (coxsackievirus A4 and coxsackievirus B4) and rhinovirus (n = 2) clinical isolates. Conversely, our HPeV isolates were negative when tested by our HEV RT-PCR assay, which is based on the amplification of the 5′ noncoding region. Sequencing of HPeV PCR products confirmed the presence of the VP3 gene in our HPeV-1 (n = 20), HPeV-2 (n = 3) and HPeV-3 (n = 5) clinical isolates. Sequence analysis showed that HPeV-1 clinical isolates had 75.0% to 85.1% nt and 89.2% to 97.5% amino acid identities with the prototype Harris strain (accession no. S45208) (Table). HPeV-2 isolates had nucleotide and amino acid identities of 67.8% to 81.1% and 72.5% to 96.4%, respectively, with the prototype Williamson strain (accession no. AJ005695). Of note, Can95219-03 and Can95224-03 isolates had the same sequence and were more related to the Connecticut CT-80-6760 strain (accession no. AF055846) with which they had nucleotide and amino acid identities of 85.1% and 95.8%, respectively. HPeV-3 isolates had nucleotide and amino acid identities of 95.0% to 95.5% and 95.7% to 96.4%, respectively, with the Japanese A308/99 HPeV-3 isolate (accession no. AB084913).

Phylogenetic analysis confirmed the identities of HPeV isolates. The HPeV-1 isolate Can1805-01 was closely related to the reference Harris strain (lineage II), whereas the remaining 19 isolates from this study, as well as 3 other Japanese HPeV-1 isolates (A1087-99, A942-99, and A10987-00), were found to form a distinct cluster (lineage I) (Figure 2). The HPeV-2 isolate Can82047-01 was related to the reference Williamson strain (lineage I), whereas the other 2 HPeV-2 isolates, Can95219-01 and Can95224-01, were somewhat related to the Connecticut CT80-6760 strain (lineage II). Finally, all HPeV-3 isolates formed a separate cluster that also included other Japanese

The alignment of the predicted amino acid sequences of the partial VP0–VP3 region of Canadian HPeV-1, -2 and -3 isolates with the reference strains showed differences in the VP0/VP3 cleavage site, which was N/N in Can952219-03 and Can95224-01 (HPeV-2), N/S in Connecticut CT80-6760, T/A in Williamson and Can82047-01 (HPeV-2), and N/A in Harris and all Canadian HPeV-1 isolates, and N/G in all HPeV-3 isolates (Figure 3). The length of the N-terminal extension of the VP3 protein, which is a molecular feature of parechoviruses, was also shown to differ from 27 residues in HPeV-1 of lineage I to 34 residues in HPeV-2 of lineage II. HPeV-1 of lineage II and HPeV-2 of lineage I had an extension of 28 residues, whereas an extension of 30 residues was seen in all HPeV-3 isolates (Figure 3).

Clinical Manifestations of HPeV Infections

Twenty-eight HPeV isolates, recovered in the Quebec City area between 1985 and 2004, were available for this study (Table). This collection included 20 (71.4%) HPeV-1, 3 (10.7%) HPeV-2, and 5 (17.8%) HPeV-3. The viral isolates were recovered predominantly from NPAs (n = 16), but also from throat swab specimens (n = 2), endotracheal secretions (n = 2), stool samples (n = 7), and CSF (n = 1) (online Appendix Table). In addition, for 2 patients, a second concomitant HPeV isolate was recovered from another site (urine in patient 7 and NPA from patient 20). Complete clinical findings were obtained for 23 (82.1%) of the 28 patients, whereas partial information was available for the remaining 5 patients.

Twenty-seven (96.4%) of the 28 patients were children ≤4 years (mean 11.1 months, median 7.0 months, range 1 week to 4 years). Mean age was 14.6, 6.3, and 0.7 months for HPeV-1–, HPeV-2–, and HPeV-3–infected children, respectively (p<0.001 for comparison of HPeV-1 vs HPeV-3). The 78-year-old adult excreted HPeV-1 in her endotracheal secretions. The female-to-male ratio was 1.2 (54.2% vs. 45.8%). Seventy-five percent of all HPeV isolates were recovered during the typical enterovirus season, i.e., during summer (28.6%) and fall (46.4%). The epidemiology of the newly described HPeV-3 was similar to that of other HPeVs, with 80% of this viral serotype isolated during the summer-fall period.

Among patients for whom information was available, 33.3% (8/24) had an underlying disease, including 2 children with acute lymphoblastic leukemia (ALL) (online Appendix Table). Patients with underlying diseases represented 47.0% (8/17) of those who excreted HPeV-1 compared to none of the 7 HPeV-2– or HPeV-3–infected children, respectively (p<0.001 for comparison of HPeV-1 vs HPeV-3). The 78-year-old adult excreted HPeV-1 in her endotracheal secretions. The female-to-male ratio was 1.2 (54.2% vs. 45.8%). Seventy-five percent of all HPeV isolates were recovered during the typical enterovirus season, i.e., during summer (28.6%) and fall (46.4%). The epidemiology of the newly described HPeV-3 was similar to that of other HPeVs, with 80% of this viral serotype isolated during the summer-fall period.

Among patients for whom information was available, 33.3% (8/24) had an underlying disease, including 2 children with acute lymphoblastic leukemia (ALL) (online Appendix Table). Patients with underlying diseases represented 47.0% (8/17) of those who excreted HPeV-1 compared to none of the 7 HPeV-2– or HPeV-3–infected children, respectively (p<0.001 for comparison of HPeV-1 vs HPeV-3). Seventy-five percent of all HPeV isolates were recovered during the typical enterovirus season, i.e., during summer (28.6%) and fall (46.4%). The epidemiology of the newly described HPeV-3 was similar to that of other HPeVs, with 80% of this viral serotype isolated during the summer-fall period.

Among patients for whom information was available, 33.3% (8/24) had an underlying disease, including 2 children with acute lymphoblastic leukemia (ALL) (online Appendix Table). Patients with underlying diseases represented 47.0% (8/17) of those who excreted HPeV-1 compared to none of the 7 HPeV-2– or HPeV-3–infected children, respectively (p<0.001 for comparison of HPeV-1 vs HPeV-3). Seventy-five percent of all HPeV isolates were recovered during the typical enterovirus season, i.e., during summer (28.6%) and fall (46.4%). The epidemiology of the newly described HPeV-3 was similar to that of other HPeVs, with 80% of this viral serotype isolated during the summer-fall period.

Among patients for whom information was available, 33.3% (8/24) had an underlying disease, including 2 children with acute lymphoblastic leukemia (ALL) (online Appendix Table). Patients with underlying diseases represented 47.0% (8/17) of those who excreted HPeV-1 compared to none of the 7 HPeV-2– or HPeV-3–infected children, respectively (p<0.001 for comparison of HPeV-1 vs HPeV-3). Seventy-five percent of all HPeV isolates were recovered during the typical enterovirus season, i.e., during summer (28.6%) and fall (46.4%). The epidemiology of the newly described HPeV-3 was similar to that of other HPeVs, with 80% of this viral serotype isolated during the summer-fall period.

Among patients for whom information was available, 33.3% (8/24) had an underlying disease, including 2 children with acute lymphoblastic leukemia (ALL) (online Appendix Table). Patients with underlying diseases represented 47.0% (8/17) of those who excreted HPeV-1 compared to none of the 7 HPeV-2– or HPeV-3–infected children, respectively (p<0.001 for comparison of HPeV-1 vs HPeV-3). Seventy-five percent of all HPeV isolates were recovered during the typical enterovirus season, i.e., during summer (28.6%) and fall (46.4%). The epidemiology of the newly described HPeV-3 was similar to that of other HPeVs, with 80% of this viral serotype isolated during the summer-fall period.

Among patients for whom information was available, 33.3% (8/24) had an underlying disease, including 2 children with acute lymphoblastic leukemia (ALL) (online Appendix Table). Patients with underlying diseases represented 47.0% (8/17) of those who excreted HPeV-1 compared to none of the 7 HPeV-2– or HPeV-3–infected children, respectively (p<0.001 for comparison of HPeV-1 vs HPeV-3). Seventy-five percent of all HPeV isolates were recovered during the typical enterovirus season, i.e., during summer (28.6%) and fall (46.4%). The epidemiology of the newly described HPeV-3 was similar to that of other HPeVs, with 80% of this viral serotype isolated during the summer-fall period.
to 5 days, the following conditions developed: bilateral pneumonia, which required mechanical ventilation, hepatitis, and septic shock complicated by renal insufficiency, for which dialysis was necessary. He died of multiorgan failure while receiving treatment with amphotericin B, acyclovir, meropenem, and vancomycin; no autopsy was performed. Apart from isolation of HPeV-1 from a throat swab, no other microorganisms (bacteria, fungi, and viruses) were recovered from blood, urine, and endotracheal secretions. Also of interest are the clinical signs and symptoms of 1-month-old twins infected with HPeV-2, who were admitted to the hospital on the same day with high fever and irritability. In 1 case (patient 20), HPeV-2 was recovered from CSF and NPA samples, whereas the virus was only isolated in NPA from the other twin (patient 21). The viruses from the 2 children had identical VP3 gene sequences. Both infants received broad-spectrum antimicrobial drugs (ampicillin plus cefotaxime) for 3 days for suspected sepsis, and both had rapid clinical improvement. Patient 26 was the only adult infected with HPeV (type 1) in our study. This 78-year-old woman was admitted to the hospital for several fractures caused by a car accident. One month after admission, bilateral pneumonia developed. She eventually died of respiratory failure 43 days after admission. An endotracheal culture was positive for HPeV-1 12 days before her death; however, results of bacterial cultures were unavailable because part of her clinical chart was destroyed a few years after her death in 1987. No autopsy report was available.

Discussion

In this study, we retrospectively characterized 28 clinical HPeV isolates recovered during the last 2 decades in Quebec, Canada, using a new RT-PCR assay. To date, our study is the only one that analyzed virologic and clinical data from the 3 HPeV serotypes. The study clearly demonstrated the importance of these pathogens and highlighted some clinical differences between infection caused by the 3 serotypes.

Virus isolation, followed by neutralization assays, a procedure that has been generally used for identification of HEVs and HPeVs, is laborious, time-consuming, and may lack sensitivity. Because of substantial sequence differences between HEVs and HPeVs, even within the conserved 5’ noncoding region (20–22), most molecular techniques designed for detection of HEVs cannot detect HPeVs (13,14). We developed a RT-PCR test for specifically detecting all 3 types of HPeV by using primers selected from the C-terminal and N-terminal regions of VP0 and VP1 HPeV capsid proteins, respectively. These regions were found to be conserved in various HPeV-1, -2, and -3 genomic sequences (data not shown). The PCR product of ~1,000 bp encompasses the entire VP3 gene.

Figure 3. Comparison of the predicted partial VP0-VP3 capsid protein region of Canadian isolates with that of Harris (human parechovirus [HPeV]-1), Williamson and Connecticut (HPeV-2), and A308-99 (HPeV-3) strains. The aligned region contains 90 amino acids corresponding to residues 244 to 334 in the Harris polyprotein sequence (accession no. S45208). The VP3 N-terminal extension, which is specific to parechoviruses (21), is shaded. The cleavage site between VP0 and VP3 is underlined. Asterisks denote conserved residues. Boldface indicates HPeV reference sequences.
whose sequence differs substantially between the 3 HPeV types, allowing their discrimination. By the use of this test, we were able to identify HPeV-1 and -2 reference strains as well as 28 HPeV clinical isolates, in contrast to neutralization assays that failed to recognize 2 HPeV-2 isolates by using specific HPeV-1 and -2 antisera. This molecular test appears to be specific for HPeV since no amplifications were found with samples of related viruses, including enteroviruses and rhinoviruses.

By sequencing the PCR product, we could not only differentiate the 3 HPeV types but also make an intratypic discrimination. Our phylogenetic analysis demonstrated the existence of 2 clusters for HPeV-1 strains. The first contained a Can81805-01 isolate and was closely related to the Harris reference strain; the second cluster included the remaining 19 Canadian isolates as well as recent Japanese HPeV-1 isolates (Figure 2). A similar pattern was found in a VP1-based phylogenetic study of Dutch strains in which all HPeV-1 isolates formed a cluster that was distinct from that of the Harris reference strain (13). Thus, most recent European, Japanese, and Canadian HPeV-1 isolates appear to be, to a certain extent, genetically distinct from the only known HPeV-1 reference strain. Designs of molecular or serologic diagnostic tools should take this fact into consideration. Our molecular characterization also enabled us to detect and differentiate the 2 known HPeV-2 lineages with 1 isolate close to the Williamson reference strain and the other 2 isolates being more related to the Connecticut strain. On the other hand, our HPeV-3 were found to be rather genetically homogeneous and constituted a unique cluster, which also included the Japanese HPeV-3 strains. Since HPeVs are considered important nosocomial agents, differentiating viral strains for epidemiologic purposes may be relevant. Our molecular approach demonstrated the link between 2 HPeV-2 isolates recovered from twins (100% nt identity) and showed that all other HPeV-1 and -3 isolates were unrelated.

The HPeV-1 serotype was shown to be the most frequent, representing >70% of our HPeV isolates. The HPeV-2 serotype was the less frequent, with only 3 cases reported. A very limited number of HPeV-2 infections has also been reported by a Swedish group (8). In addition, in a recent Dutch study that reported 37 HPeV isolates recovered during the 2000–2005 period, no HPeV-2 isolates were recovered compared to 27 HPeV-1 and 10 HPeV-3 (13). The recently described HPeV-3 serotype, although less frequent than HPeV-1, appears to be more frequent than HPeV-2, both in our study and in the Dutch study (13).

HPeVs have been generally isolated from stool and NPA (6–8). Accordingly, our isolates were predominantly isolated from NPA (57%) and stool (25%) specimens; however, some isolates were also recovered from other types of samples, including throat swabs, endotracheal secretions, CSF, and urine, highlighting the need to collect multiple specimens for optimal detection of these viruses.

With the exception of one 78-year-old case-patient, all HPeV infections described in this retrospective study were in children <4 years, which confirms the particular importance of these pathogens in the pediatric population (3). However, only prospective evaluation will determine the true incidence of HPeV infections in both the pediatric and adult populations. Interestingly, all of our HPeV-3 cases involved neonates with a mean age of 0.7 month, whereas HPeV-1 infections occurred in significantly older children whose mean age was 14.6 months. A similar finding was reported in Dutch patients (13), and this situation could be related to the presence of variable proportions of maternal antibodies against these different viruses.

Our study showed that HPeVs seem to share with HEVs the same epidemiologic pattern, i.e., a peak during the summer-fall months. In addition, the epidemiology of HPeV-3 appears to be similar to that of the 2 other HPeV types in our study, whereas it was slightly different in the Dutch study (13). A better knowledge of the epidemiology of these viruses may have important consequences for diagnostic laboratories. A multiplex RT-PCR that allows the simultaneous detection of HEVs and HPeVs could be particularly useful during the summer-fall seasons if the epidemiologic pattern seen in our study is confirmed by others.

Most HPeV cases reported here were associated with hospitalizations (mean hospital stay 3.7 days). No differences were found between the 3 HPeV types in this aspect. Nevertheless, only HPeV-1 infections led to severe diseases, i.e., 3 patients were transferred to an intensive care unit. Our study also showed the high rate of underlying diseases in our infected patients, which were particularly frequent (=50%) in HPeV-1 cases. Also, substantial differences in clinical signs and symptoms were seen between the HPeV types. All 7 patients with HPeV-2 and -3 infections were admitted with a diagnosis of sepsislike illness in contrast to none of the 20 HPeV-1 patients (p = 0.001). Sepsislike illness seems to be a notable clinical feature of HPeV-3 infection, as first reported by us (11) and recently by a Dutch group (13). This clinical variation may be explained by the younger age of HPeV-2– and -3–infected children.

HPeV-1 has been reported to cause mainly gastrointestinal and respiratory diseases and fewer CNS symptoms (3,8,9,13). Accordingly, bronchiolitis, pneumonia, acute otitis media, and enteritis were frequently diagnosed in HPeV-1–infected children in our study, whereas this HPeV type was not involved in CNS infections. Of interest, bronchiolitis was seen only in HPeV-1–infected children, representing almost 50% of the cases. However, in 4 of...
Human Parechovirus Infections in Canada

these 8 cases, a paramyxovirus (HRSV or HPIV) was found as copathogen; thus, the relative contribution of HPeV-1 in cases of bronchiolitis needs to be further studied. Our study also suggested that HPeV-1 could be involved in severe infections, as shown by 2 cases of bilateral pneumonia, leading to death in a 4-year-old boy with ALL and in a 78-year-old woman. Since no autopsy was performed, the role of HPeV-1 in these fatal cases cannot be confirmed, although no other microorganisms could be recovered premortem.

In conclusion, this study confirms that all 3 HPeVs are pathogens that are particularly important in the pediatric setting, that is, responsible for hospitalizations and some severe infections. HPeV infections could encompass a variety of clinical syndromes with respiratory, gastrointestinal, cerebral, and sepsislike diseases. Molecular assays now allow for their specific detection and should contribute to increased knowledge regarding their incidence, epidemiologic features, and clinical manifestations.

Acknowledgments
We are grateful to Suzanne Tessier and Marthe Gauthier for their valuable technical assistance.

Dr Abed is a project leader at the Research Center in Infectious Diseases of Laval University. His research interests include influenza and emerging respiratory viruses.

Dr Boivin holds a Canada Research Chair on Emerging Viruses and Antiviral Resistance at Laval University. His specific research interests include respiratory viruses and herpesviruses.

References

Address for correspondence: Guy Boivin, CHUL, Room RC-709, 2705 Blvd Laurier Sainte-Foy, Quebec City G1V 4G2, Quebec, Canada; email: Guy.Boivin@crchul.ulaval.ca

Search past issues of EID at www.cdc.gov/eid

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 12, No. 6, June 2006 975
The term epidemic (from the Greek *epi* [on] plus *demos* [people]), first used by Homer, took its medical meaning when Hippocrates used it as the title of one of his famous treatises. At that time, epidemic was the name given to a collection of clinical syndromes, such as coughs or diarrheas, occurring and propagating in a given period at a given location. Over centuries, the form and meaning of the term have changed. Successive epidemics of plague in the Middle Ages contributed to the definition of an epidemic as the propagation of a single, well-defined disease. The meaning of the term continued to evolve in the 19th-century era of microbiology. Its most recent semantic evolution dates from the last quarter of the 20th century, and this evolution is likely to continue in the future.

At the start of the 21st century, epidemics of infectious diseases continue to be a threat to humanity. Severe acute respiratory syndrome, avian influenza, and HIV/AIDS have, in recent years, supported the reality of this threat. Civil wars and natural catastrophes are sometimes followed by epidemics. Climate change, tourism, the concentration of populations in refugee camps, the emergence of new human pathogens, and ecologic changes, which often accompany economic development, contribute to the emergence of infectious diseases and epidemics (1). Epidemics, however, have occurred throughout human history and have influenced that history. The term epidemic is ≈2,500 years old, but where does it come from?

Before Hippocrates

When works that put forward new ideas are translated, determining the original terminology (in Ancient Greek in this case) is not easy. In 430 BC, when Hippocrates was collecting the clinical observations he would publish in Epidemics, his treatise that forms the foundation of modern medicine, at least 3 terms were used in Ancient Greece to describe situations that resembled those described by Hippocrates: *nosos*, *phthoros*, and *loimos* (2). Nosos, meaning disease, was used by Plato in the 4th century BC and clearly had the same meaning 2 centuries earlier in the works of Homer and Aeschylus. Nosos encompasses disease of the mind, body, and soul: physical, including epilepsy, and moral (i.e., psychological and psychiatric). Phthoros or *phthoros* means ruin, destruction, deterioration, damage, unhappiness, and loss, after war for example. The word was frequently used by Aeschylus and Aristophanes, was known in the 8th century BC, and was later used by Plato and Thucydides. Its meaning has remained general. Bailly translates loimos as plague or contagious scourge. Used by Esiodus in the 7th century BC and later by Sophocles and Herodotus, this term is ancient. Its translation as plague should be interpreted in the sense of a scourge rather than as the disease plague. In the Septuagint, a translation of the Old Testament into Greek by 70 Greek Jews from Alexandria, this word is used in the book of Kings to describe the 10 plagues of Egypt.

But the term epidemic already existed in 430 BC. The Greek word *epidemios* is constructed by combining the preposition *epi* (on) with the noun *demos* (people), but demos originally meant “the country” (inhabited by its people) before taking the connotation “the people” in classical Greek. Indeed, the word epidemios was used by Homer, 2 centuries before Hippocrates, in the Odyssey (canto I, verses 194 and 230), where it was used to mean “who is back home” and “who is in his country” in contrast to a voyager who is not: δὴ γὰρ μὲν ἔφη βιοῦ ἐπὶ δῆμου εἶναι σὸν πατέρα, “because someone said that your father was back (home)” (canto I, verse 194). In this context, epidemios means indigenous or endemic. In the Iliad, Homer confirmed this meaning (canto XXIV, verse 262), by using
also polemos epidemios to mean civil war; “this one who ὃς πολέμω ἔραται ἐπιδημίου ὁκρωότοι liked passionately the frightening civil war” (canto IX, verse 64). Later, Plato and Xenophon (400 BC) used the word to describe a stay in a country or the arrival of a person: Περιος ὁ ἑτῷ ἕρθομεν ἐπιδημεύτων, “a Parian who, I learned, was in town” (Plato, Apology, chapter I, paragraph 38). The verb epidemeo was used by Thucydides (460 BC–395 BC) to mean “to stay in one’s own country,” in contrast to apodemeo, “to be absent from one’s country, to travel.” For Plato, epidemeo meant “to return home after a voyage, to be in town.” Later, the orators Demosthenes (384 BC–322 BC) and Eschines (390 BC–314 BC) used this word to refer to a stranger who came to a town with the intention of living there, and the verb epidemeo was used to mean “to reside.” Typical of Greek semantics, epidemeo takes its meaning from the result of the action, rather than from the action itself. It relates to something that has already happened, with the implication that it had previously happened elsewhere. Authors before Hippocrates used epidemios for almost everything (persons, rain, rumors, war), except diseases. Hippocrates was the first to adapt this word as a medical term.

Hippocrates and the Term Epidemic

Written in the 5th century BC, Hippocrates’ Corpus Hippocraticum contains 7 books, titled Epidemics (3). Hippocrates used the adjective epidemios (on the people) to mean “which circulates or propagates in a country” (4). This adjective gave rise to the noun in Greek, epidemia.

We do not know why Hippocrates chose epidemios to title his books instead of nosos, a well-established term meaning disease. Examining the meaning of the term before, during, and after his time may help us understand his choice. Schematically speaking, epidemios (or epidemeo) was used successively to mean “being at homeland” (Homer), “arriving in a country” or “going back to homeland” (Plato), and later “stranger coming in a city” (Demosthenes). Sophocles (495 BC–406 BC) used the adjective in Oedipus Tyrannos to refer to something (a rumor, noise, fame, or reputation) spreading in a country: Εἶμ’ Οὐδὶ τοῦ ἐπὶ τ’ ῤν ἐπὶδαμον ρ’ ὀτίν: “I shall go (to make war) to Oedipus, against his fame which spread (in the country)” (verse 494). Oedipus Tyrannos was written at approximately the same time as Corpus Hippocraticum; consequently, we can infer that during Hippocrates’ time, epidemios acquired a dynamic meaning, probably more adapted to describing a group of physical syndromes that circulate and propagate seasonally in a human population (i.e., on the people) than nosos, a term used to describe diseases at the individual level.

How epidemios, meaning “on the people,” became adapted to mean “that which circulates or propagates in a country” is a crucial question. This evolution occurred during the second half of the 5th century (450 BC–400 BC), a period of intense activity in Greek literature, particularly with the prolificacy of Sophocles. But while nosos or loimos were frequently used, epidemios was not. In the Perseus Digital Library (www.perseus.tufts.edu), a database that does not yet include Hippocrates’ works, the adjective epidemios was used only 9 times, including 4 times in Homer, in the 489 major referenced Greek texts (=4.8 millions words, 0.02 occurrences per 10,000 words). Its Doric variants epidamos and epidemos were used 3 times. In comparison, nosos (disease) was used 712 times in the Perseus database (1.47 occurrences per 10,000 words). The verb epidemeo was used 144 times, primarily during the 4th century and always meaning “to live in or return to one’s own country.” This lack of material makes accurately exploring the reasons for the semantic evolution across centuries difficult. In Oedipus Tyrannos, Sophocles qualified the sense of epidemios as it referred to reputation or fame; fame naturally spreads in a country. But Hippocrates described a series of syndromes: κατὰ γὰρ ἀλλὰ τὸ νοσήμα ἐπίδημον ἔργον, “It is a fact that the disease was propagating in the country” (Epidemics, book I, chapter 3). Although Sophocles used epidemios once in that new sense, Hippocrates established a medical meaning for the term.

In Epidemics, books I and III constitute lists of diseases describing clinical cases. Hippocrates compared these cases and grouped them to generate series of similar cases. He adopted a classification approach, initially seeking clinical similarities between cases, thereby discovering, in addition to the notion of epidemic, the more fundamental concepts of symptom and syndrome. However, Hippocrates believed that prognosis was a major aspect of medicine. This belief led him to consider disease a dynamic process with its own progression, a temporal dimension, that represents a first nosologic evolution: syndromic groupings become diseases. Another of the books written by the physician from Kos—Airs, Waters, and Places—deals with the relationships between diseases and the environment, focusing particularly on the habitat of the patients and the season in which disease occurs. Hippocrates tried to determine the effect of environmental factors on what could be described as the distribution of diseases. He was, thus, more concerned about grouping together winter diseases or autumn diseases or diseases that occurred in a particular place or in persons whose way of life had changed than in identifying a large number of cases of the same disease in winter or autumn, at a particular place, or in association with a particular way of life. For Hippocrates, whose nosologic approach already contained a major element of preoccupation with the environment, the first meaning of epidemic was groups of cases...
resembling each other clinically and the second meaning was groups of different diseases occurring at the same place or in the same season and sometimes spreading “on the people.” Thus, Hippocrates applied the word epidemios to groupings of syndromes or diseases, with reference to atmospheric characteristics, seasons or geography, and sometimes propagation of a given syndrome in the human population.

Semantic confusion caused the great Emile Littré, who translated Hippocrates’ works into French in the first half of the 19th century, to make a nosologic error. Hippocrates described what is known today, since the work of Littré, as the Cough of Perinthus. This account can be found in Epidemics book VI. Hippocrates described coughs that started toward the winter solstice and were accompanied by many symptoms: sore throat, leg paralysis, peripneumonia, problems with night vision, voice problems, difficulty swallowing, difficulty breathing, and aches. When Littré published his translation and commentaries on Epidemics in 1846, he mistakenly considered the Cough of Perinthus to be a single disease (5). This error made retrospectively diagnosing the diseases of Perinthus difficult, if not impossible. Moreover, as Littré saw this collection of illnesses as a single disease, he essentially turned it into an epidemic, probably because he had the modern sense of the term in mind and thought that Hippocrates had observed and described an epidemic illness unknown to modern medicine (5).

According to Grmek, “Littré took chapter VI, 7.1 as a general description of an epidemic in the sense of this word in the medical language of the 19th century rather than in the sense intrinsic to the works of Hippocrates. In the Corpus Hippocraticum, the noun ‘epidemic’ designates a collection of diseases observed at a given place, during a given period. A disease described as epidemic, such as epidemic cough, is a condition occurring from time to time in a given place, the appearance of which is closely linked to changes in season and climatic variations from year to year” (5).

Historians of medicine and philologists have over the years attributed the Cough of Perinthus to diphtheria, influenza, epidemic encephalitis, dengue fever, acute poliomyelitis, and many other diseases. However, a French physician named Chamseru, who practiced in the 18th century, almost a century before Littré, finally got to the bottom of what may be meant by the Cough of Perinthus, probably because the term epidemic had not yet taken on the meaning it had in Littré’s time. According to Chamseru, the Cough of Perinthus could have encompassed several diseases, among them diphtheria, influenza, and whooping cough (5).

Thucydides and the First Descriptions of Epidemics

Thucydides (460 BC–395 BC) interrupted his account of the Peloponnesian War to describe the famous Plague of Athens, which occurred at the start of the summer in 430 BC. This description was long considered among the first descriptions of an epidemic. Indeed, whereas Thucydides used nosos, the term plague, which is used by all the translators of his work, is used in the sense of the Latin term pestis, a term with no clear etymology (4), meaning contagious disease, epidemic, or scourge. The description of the Plague of Athens, like that of the Cough of Perinthus by Hippocrates, is an essential text in the philologic and semantic study of epidemics (5). We must therefore consider, as for Littré’s translation, the meaning that translators have assigned to the original description by Thucydides. Thucydides never used the term epidemic that Hippocrates was in the process of establishing. Under the term nosos, Thucydides described a series of clinical signs, which originated in the south of Ethiopia and propagated throughout Egypt, Libya, and then Greece. Thucydides used the words nosos, kakos (evil), ponos (pain), phthora (ruin, destruction), and loimos (scourge) to describe what his translators call plagues. In her translation of Thucydides’ works (6), published in 1991, in the chapter titled Second Invasion of Attica: the Plague of Athens (the original Greek work had no title), Jacqueline de Romilly translated nosos as disease or epidemic. Similarly, she translated loimos, kakos, and phthora as disease or epidemic and the list of clinical signs (the original Greek meant “following these things”) as symptoms. de Romilly rendered the text more elegant and accessible to 20th-century readers by this translation but gave the words used by Thucydides their 20th-century meaning rather than the meanings they had in the 5th century BC. Herein lies the principal problem of translation.

But was the Plague of Athens a true epidemic, in the modern sense? The death rate for the disease was extremely high, reaching up to 25% in 1 group of soldiers, and Pericles died of it. Historians have tried to understand the origin of this plague, and various diseases have been suggested, e.g., typhus, measles, smallpox, bubonic plague, ergotism, or an unknown disease. Thucydides wrote that all preexisting diseases were transformed into a plague and that persons in good health were affected in the absence of a predisposing cause (7). The large number of symptoms and of possible and probable causes rules out the possibility of an epidemic in the modern sense of the term. Instead, the Plague of Athens seems to have been the appearance of a large number of diseases that affected the population at the same time. Plague therefore has the same meaning here as epidemic in the works of Hippocrates. These 2 terms have been used in association or confused throughout
history. However, epidemic existed at this time, even if the notion of epidemic as we mean it in modern times had not yet emerged.

Evolution of the Term Epidemic

After the nonmedical use of the term epidemic by Homer, Sophocles, Plato, and Xenophon, Hippocrates gave it its medical meaning. However, the term has since undergone a long evolution. The adjective epidemios gave rise to the Greek noun *epidemia*. The Greek term *epidemia* in turn gave rise to the Latin term *epidemia* or *epidemia*. The term *ypidime* in Medieval French has its origins in these Latin words and went on to become *épydime* in the 14th century, *epidimie* in the 17th century, and then *епидемии* in the 18th century. Not until 22 centuries after Hippocrates, in the second half of the 19th century, were the terms *épidémiologie* (1855), *épidémiologique* (1878), and *épidémiologiste* (1896) coined in French and notions attached to them developed. Of course, at approximately the same time, corresponding terms appeared in the English language. The term epidemic and the terms linked to it therefore required an extremely long time to be constructed. This evolution is representative of the evolution of science and medicine over the centuries and reflects the semantic evolution of the term.

Semantic Evolution

In parallel with the evolution of the term epidemic itself, its meaning also changed over time. If we limit ourselves to the meaning that epidemic has acquired with respect to infectious diseases, we can identify 4 major steps in its semantic evolution in the medical sense. For Hippocrates, an epidemic meant a collection of syndromes occurring at a given place over a given period, e.g., winter coughs on the island of Kos or summer diarrheas on other islands. Much later, in the Middle Ages, the long and dramatic succession of waves of The Plague enabled physicians of the time to identify this disease with increasing precision and certainty; they began to recognize epidemics of the same, well-characterized disease. Then, with the historic contributions of Louis Pasteur and Robert Koch, epidemics of a characteristic disease could be attributed to the same microbe, which belonged to a given genus and species. The last stage in the semantic evolution of the term epidemic was the progressive acquisition of the notion that most epidemics were due to the expansion of a clone or clonal complex of bacteria or viruses known as the epidemic strain (8). More recently, microevolution of a clone of a bacterium (the epidemic strain) was shown to occur during an epidemic with person-to-person transmission (9). The Table summarizes these 4 major stages in the semantic evolution of the term epidemic.

In the second half of the 20th century, epidemic was also applied to noninfectious diseases, as in cancer epidemic or epidemic of obesity. The extension of the meaning to noninfectious causes refers to a disease that affects a large number of people, with a recent and substantial increase in the number of cases. This semantic extension of epidemic also concerns nonmedical events; the term is used by journalists to qualify anything that adversely affects a large number of persons or objects and propagates like a disease, such as crack cocaine or computer viruses.

What can we gain from investigating the origin and meaning of the word epidemic or from studying its semantic evolution? Beyond simply satisfying our curiosity, the slow evolution of the form and meaning of the term suggests that we still have much to learn about the concept of epidemic.

Acknowledgments

We thank Jean-Michel Alonso and Jean-Pierre Dedet for thorough reading and criticism of the manuscript.
Dr Martin is a bacteriologist and chef de laboratoire at the Pasteur Institute and director of the Pasteur Institute of New Caledonia. His research interests focus on epidemics.

Ms Martin-Granel is a professeur certifié de lettres classiques and teaches French literature, Latin, and Ancient Greek in secondary school in the south of France. She has recently translated a text by Petrarch into French.

References

Address for correspondence: Paul M.V. Martin, Institut Pasteur de Nouvelle Calédonie, BP 61 98845, Noumea CEDEX, New Caledonia; email: pmartin@pasteur.nc
VIM-1 Metallo-β-lactamase in Acinetobacter baumannii

Athanassios Tsakris,* Alexandros Ikonomidou,† Spyros Pournaras,† Leonidas S. Tzouvelekis,* Danai Sofianou,‡ Nicholas J. Legakis,* and Antonios N. Maniatis†

In 2004 and 2005, 5 metallo-β-lactamase (MBL)-positive Acinetobacter baumannii isolates were found in 2 Greek hospitals. Isolates were unrelated and carried blaVIM-1 in a class 1 integron; blaOXA-51-like, and blaOXA-58-like carbapenemase genes were also detected. VIM-1 MBL in Acinetobacter spp. causes concern, given the increasing resistance of this species.

In the last few years, resistance to antibacterial drugs has been increasing in Acinetobacter spp., which will likely become a substantial treatment challenge in the future (1). Carbenpens have potent activity against Acinetobacter spp. and are usually the drugs of choice against multidrug-resistant Acinetobacter baumannii isolates. Acinetobacter spp. may develop resistance to carbenpens through various mechanisms, including class B and D carbapenemase production, decreased permeability, altered penicillin-binding proteins, and rarely, overexpression of efflux pumps (2,3).

In Europe, carbenpenem resistance in A. baumannii has been sporadically attributed to the production of IMP-type metallo-β-lactamases (MBLs) and OXA-type carbapenemas (4). VIM-2—producing Acinetobacter spp. have been isolated in the Far East (4,5) and on 1 occasion in Germany (6). In this study, we report the appearance of the VIM-1 MBL determinant among A. baumannii in Greece.

The Study

We included in the study A. baumannii clinical isolates from tertiary care hospitals in 2 different Greek regions (Hippokration University Hospital, Thessaloniki, and University Hospital of Larissa, Thessalia) that were positive by the imipenem-EDTA double-disk synergy test (DDST) from March 2004 to March 2005. Bacteria were provisionally identified to the genus level by the Vitek 2 automated system (bioMérieux, Marcy l’ Étoile, France) and the ATB 32GN system (bioMérieux). Antimicrobial drug susceptibility testing of the DDST-positive isolates for β-lactams (aztreonam, ceftazidime, cefepime, imipenem, meropenem, and piperacillin), β-lactam/β-lactamase inhibitor combinations (ampicillin/sulbactam, piperacillin/tazobactam), aminoglycosides (amikacin, gentamicin, netilmicin, and tobramycin), fluoroquinolones (ciprofloxacin and ofloxacin), and colistin was performed by Etest and Etest MBL (Table). Imipenem MICs ranged from 4 to 2 µg/mL. The 5 MBL-positive isolates, and the banding patterns were compared by using criteria proposed by Tenover et al. (13). The potential for conjugational transfer of imipenem resistance was examined in filter matings by using Escherichia coli 20R764 (lac+ rif+) as the recipient. Donor and recipient were mixed in a 1:5 ratio, and transconjugants were selected on MacConkey agar plates containing 100 µg/mL rifampicin and imipenem at concentrations of 0.5 to 2 µg/mL or 2 µg/mL ceftazidime.

Five A. baumannii clinical isolates that were MBL producers on the basis of DDST were detected among collections of isolates from patients hospitalized during the study period. Two of the isolates were recovered from blood cultures, 1 from bronchial secretions, 1 from a urine specimen, and 1 from cerebrospinal fluid; 2 isolates that had reduced susceptibility to carbenpens were not positive by the Etest MBL (Table). Imipenem MICs ranged from 4 to >32 µg/mL, while meropenem MICs were 2–32 µg/mL. P. aeruginosa ATCC 27853 was consistently characterized as having imipenem MIC of 2 µg/mL and meropenem MIC of 0.5 µg/mL. The 5 A. baumannii isolates were multidrug resistant; they showed resistance to all other antimicrobial drugs tested, with the exception of colistin.

We did not detect blaIMP, blaSPM, blaOXA-23-like or blaOXA-24-like in any of the 5 isolates, whereas blaVIM was detected in all of them. In 2 isolates, blaOXA-51-like and blaOXA-58-like genes were also simultaneously present, while 2 more carried a blaOXA-51-like gene (Table). By sequencing both strands of the entire blaVIM amplicons (14), a blaVIM-1 sequence identical to that available in the database was identified. Sequencing blaOXA-51-like amplicons identified blaOXA-66 in all cases, while blaOXA-58-like alleles were classical blaOXA-58 in both cases. In 2 isolates, 1 from each region, PCR mapping of the integron that possibly carried blaVIM-1, with primers 5′ CS and a set of primers for genes...
aacA, dhfrI, aadA, qacEΔ1, and sul, showed a class 1 integron with a variable region including from 5′ to 3′ blaVIM-1, aacA7, dhfrI, and aadA1 gene cassettes. Sequencing of the overlapping PCR amplicons showed that this class 1 integron contained the intI1 gene with a strong P1 promoter, an inactivated (without a GGG insertion) P2 promoter, an attI1 site, and the blaVIM-1 gene cassette with its 59-base element identical to those reported previously in other gram-negative bacteria from Greece (15). PFGE showed that the 5 blaVIM-1-positive isolates did not form a genetically homogeneous group; they belonged to 4 distinct types. The 2 isolates from Thessaloniki were subtypes of the same clone (Table, Figure). In none of the 5 isolates was blaVIM-1 transferable to the susceptible E. coli host after repeated conjugal experiments with imipenem or cefazidime selection. The 5,387-bp nucleotide sequence of the integron structure reported in this study has been submitted to the EMBL/GenBank/DDBJ sequence databases and has been assigned accession no. DQ112355.

Conclusions

This is the first report of the VIM-1 determinant in A. baumannii in the world. Occurrence of VIM-2 MBL among A. baumannii and Acinetobacter genomospecies 3 isolates has previously been described among clinical isolates in Korea (4,5). In Europe, IMP-type enzymes had been reported in single A. baumannii isolates from some European regions (4) and VIM-2 from 1 German hospital (6), while MBLs have not been detected in A. baumannii from the United States despite carbapenem resistance there (1). Though anticipated because of the circulation of blaVIM genes in several other gram-negative species in Europe and the ability of Acinetobacter spp. to acquire foreign DNA, this evolution is worrisome.

Retention of moderate susceptibility to carbapenems by blaVIM-positive A. baumannii isolates in our study may seem unexpected, since MBLs hydrolyze these compounds. However, MBL production in gram-negative bacteria may not substantially increase carbapenem MICs without the simultaneous operation of other mechanisms, such as impaired permeability (2,4). Furthermore, 2 of the 4 strains carrying oxacillinase genes with carbapenemase properties had imipenem MICs not higher than the CLSI breakpoints for resistance. Recently, blaOXA-51-like genes have been shown to be possibly naturally occurring (12), while OXA-58 enzymes play a minor role in carbapenem resistance in A. baumannii, and strong promoter sequences are needed for higher levels of resistance to carbapenems (2).

During the last few years, A. baumannii has been increasingly isolated from severely ill patients, and its

![Figure](cid:image1)

Figure. Pulsed-field gel electrophoresis of Apal-restricted genomic DNA of the 5 blaVIM-1-positive Acinetobacter baumannii isolates. The index numbers of the isolates are those listed in the Table. Lane M, molecular mass marker (48.5 kb).
usual cross-resistance to most available antimicrobial drugs, including carbapenems, poses substantial problems worldwide and especially in the United States (1). In New York, approximately two thirds of isolates are carbapenem resistant (3). In our region, Acinetobacter spp. are frequent nosocomial pathogens and are commonly multidrug resistant, which leads to the extensive use of carbapenems and, lately, polymyxins. The presence of MBLs among carbapenem-resistant Acinetobacter spp. from different Greek regions emphasizes the need for restricted use of carbapenems and early recognition of strains producing these enzymes. Although Etest MBL was reliable to detect VIM-2-producing Acinetobacter spp. in Korea (5), the assay seems unable to identify MBL-positive isolates exhibiting relatively low carbapenem MICs. Therefore, our diagnostic laboratories should screen Acinetobacter spp. with imipenem-EDTA DDST or alternative DDSTs, such as those using 2-mercaptopropionic acid, which appears to be more sensitive for detecting MBLs among Acinetobacter spp. (4). Whether carbapenems might be appropriate to treat infections with low-level carbapenem-resistant or susceptible blavIM-bearing A. baumannii isolates has yet to be determined.

Dr Tsakris is associate professor of microbiology at the University of Athens, Greece. His research interests include the investigation of antimicrobial drug resistance mechanisms of gram-negative pathogens and the molecular epidemiology of hospital infections.

References

Address for correspondence: Athanassios Tsakris, Department of Microbiology, Medical School, University of Athens, 75 Mikras Asias St, 115 27 Athens, Greece; email: atsakris@med.uoa.gr
Acanthamoeba Encephalitis in Patient with Systemic Lupus, India

Charudatt G. Shirwadkar,* Rohini Samant,* Milind Sankhe,* Ramesh Deshpande,* Shigeo Yagi,† Frederick L. Schuster,† Rama Sriram,‡ and Govinda S. Visvesvara‡

We report a fatal case of encephalitis caused by Acanthamoeba in a 24-year-old woman from India with systemic lupus erythematosus. Diagnosis was made by identification of amebas in brain sections by immunofluorescence analysis and confirmed by demonstrating Acanthamoeba mitochondrial 16S rRNA gene DNA in brain tissue sections.

Acanthamoeba spp. are free-living amebae that cause granulomatous amebic encephalitis (GAE), most often in immunocompromised hosts, including HIV/AIDS and organ transplant patients and those receiving immunosuppressive medication (1). These organisms have also been associated with amebic keratitis, mainly in contact lens wearers, as well as with cutaneous, nasopharyngeal, and disseminated infections and amebic encephalitis.

Amebic encephalitis results from the hematogenous spread of the ameba from the initial portals of entry (skin, respiratory system) to the brain parenchyma. GAE is found worldwide (1); it develops as a subclinical infection and is difficult to diagnose because of vague symptoms. It is usually identified in a biopsy specimen of brain lesions or during postmortem examination.

Opportunistic infections are increasing because of HIV/AIDS, chemotherapeutic treatments, organ transplant procedures, and debilitating diseases. Although HIV/AIDS is under tenuous control in the industrialized world, it is a burgeoning public health crisis in the developing nations of Africa, Asia, and the Indian subcontinent. Amebic encephalitis cases likely are undetected in both industrialized and nonindustrialized nations. Acquainting clinicians with GAE is important so that they may include amebic encephalitis in differential diagnoses. We report a fatal case of Acanthamoeba encephalitis in a patient from India who was being treated for systemic lupus erythematosus with corticosteroids and methotrexate.

The Case

The patient was a 24-year-old woman with a 2-year history of systemic lupus erythematosus, a history of central nervous system (CNS) involvement in the recent past, and autoimmune hemolytic anemia. She was taking chloroquine, prednisolone, and methotrexate. A month before her admission to the hospital, low-grade fever, joint pains, facial rash, and mouth ulcers developed. A day before admission she had generalized tonic clonic convulsions that progressed to status epilepticus, followed by loss of consciousness. On admission, she had a temperature of 40°C, pulse 110/min, blood pressure 126/80 mm Hg, and neck stiffness. She was stuporous and withdrawing to pain. Her cerebrospinal fluid (CSF) levels were the following: protein 174 mg/dL, glucose 42 mg/dL, erythrocytes 1/mm³, and leukocytes 1/mm³. Gram-stained CSF smears showed no bacteria, and CSF cultures were negative for bacteria and fungi. She was treated with ceftriaxone, phenytoin, and pulse steroids. On her second day in the hospital she was intubated for airway control. By that evening her pupils became small, quadripareis, and she became deeply comatose.

Magnetic resonance imaging (MRI) showed multiple hypointense necrotic lesions of varying sizes on T2-weighted imaging. These lesions involved the supra- and infratentorial compartments, with the largest lesion in the left cerebellar hemisphere (Figure 1A). Ascending transtentorial herniation, significant mass effect, distortion of the brainstem and fourth ventricle, moderate supratentorial ventricular dilatation, and associated sulcal/meningeal enhancement occurred. Similar lesions of varying intensity and size were seen in bilateral cerebral hemispheres, left caudate head, right thalamus, and right half of the pons (Figure 1B). Three-dimensional multivoxel spectroscopy through the left basal ganglia and right thalamic lesion showed elevated lipid areas with increased lactate in the basal ganglia. Choline levels were normal or minimally increased.

Emergency posterior fossa craniectomy and foramen magnum decompression were performed. The left cerebellar lesion had poor demarcation from the adjacent normal cerebellar tissue and necrotic material in the cavity. The tissue was soft, discolored with gray-black spots, and hyperemic. An external ventricular drain was placed, and dexamethasone treatment was started. However, the patient’s condition continued to deteriorate and she died after 5 days.

Histopathologic analysis of CNS lesions showed foci of hemorrhagic necrosis. There was a modest chronic inflam-
matory exudate composed mainly of lymphocytes, monocytes, a few plasma cells, and occasionally a few polymorphonuclear leukocytes. Amoebic trophozoites were abundant, mainly around blood vessels, but few cysts were seen (Figure 1C). Amebae were identified by a nucleus containing a large central nucleolus (Figure 1C, inset). Formalin-fixed, paraffin-embedded sections were tested with rabbit antibodies to Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. Amebae were identified as Acanthamoeba on the basis of their reactivity in immunofluorescence testing using rabbit antibodies to Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. Amebae were identified as Acanthamoeba on the basis of their reactivity in immunofluorescence analysis (Figure 1D).

DNA was extracted for amplification and sequencing from formalin-fixed brain tissue sections mounted on slides. Sections were deparaffinized, scraped from slides, suspended in lysis buffer, and tested by polymerase chain reaction (PCR) as previously described (2).

The primer set Aca16Sf1010 (5′-TTATATTGACTTGTACAGGTTGCT-3′) and Aca16Sr1180 (5′-CATATTGACTTCTTCTCCTTCTCCT-3′), which was designed to give an amplimer of 161 bp, was used for detecting Acanthamoeba DNA (3). Testing for Balamuthia DNA was also included because this ameba can cause GAE (2). PCR results were positive for Acanthamoeba DNA (Figure 2, lanes 7–12) but negative for Balamuthia DNA (Figure 2, lanes 1–6).

Conclusions

Amebic encephalitis is caused by 3 different amebae: Acanthamoeba spp., B. mandrillaris, and N. fowleri. Since Acanthamoeba spp. and B. mandrillaris have similar forms and cause subacute, prolonged clinical courses, they have been misidentified in histopathologic examination of brain tissue (4). N. fowleri causes primary amebic meningoencephalitis, a fulminant disease often fatal within 7 to 10 days and usually associated with swimming or other water-related activities of otherwise immunocompetent persons, usually children or young adults (1). Acanthamoeba spp. are ubiquitous in soil and water and are found in the home environment, including water taps and sink drains, flowerpot soil, and aquariums. In healthcare settings, they have been isolated from hydrotherapy baths, dental irrigation equipment, humidifiers, cooling systems, ventilators, and intensive care units (1,5).

Encephalitis caused by Acanthamoeba is almost always fatal because of difficulty and delay in diagnosing the disease and lack of optimal antimicrobial therapy (5). The portal of entry of the ameba may be a break in the skin or the respiratory tract by inhalation of wind-blown cysts, with subsequent spread to the CNS through the circulatory system (1). In our patient, the portal of entry could not be determined.

Initial symptoms of GAE are vague and may mimic neurocysticercosis, tuberculoma, or brain tumor. Histopathologic analysis is the most common means of detecting amebeae, but their appearance is often unfamiliar to pathologists, and they may be overlooked or misidentified (1). Either electron microscopy or immunostaining of brain tissue is necessary to distinguish Acanthamoeba spp. from Balamuthia (1). Acanthamoeba in our patient was identified by immunofluorescence testing using rabbit antibodies to Acanthamoeba (1,5). PCR was also used to detect Acanthamoeba DNA in brain tissue.

In almost all cases, persons with Acanthamoeba infections are immunocompromised (1). Acanthamoeba infections in persons with lupus erythematosus who were being treated with corticosteroids have been reported (6–9). Corticosteroids, besides reducing inflammation, impair the immune response, facilitating infection and disease caused by Acanthamoeba (10). In fixed brain tissue, Acanthamoeba and B. mandrillaris are similar and both form cysts in tissues (4,5). PCR has been used to identify ameba DNA in brain tissue and CSF of persons suspected of having balanuthiasis (2) and in brain tissue of a patient with primary amebic meningoencephalitis caused by N. fowleri (11).

In conclusion, Acanthamoeba infection was demonstrated by hematoxylin and eosin and immunostaining of

Figure 1. A) Magnetic resonance imaging (MRI) of the patient’s brain showing a large lesion in the left cerebellar hemisphere. B) MRI in a different plane taken at the same time. Lesions are evident in the right thalamus and the right half of the pons. C) Blood vessel in brain parenchyma with large numbers of Acanthamoeba in the perivascular space (hematoxylin and eosin stained, magnification ×100). Inset, higher magnification (×1,000) showing nuclear morphology of the ameba. The dark-stained ameba nucleus with a central nucleolus is distinctive. D) Immunofluorescent staining of perivascular brain tissue showing many amebeae (magnification ×100).
brain tissue and PCR detection of ameba mitochondrial DNA in brain tissue. Treatment with corticosteroids and methotrexate likely facilitated development of amebic infection by compromising the patient’s immune system.

References

Address for correspondence: Govinda S. Visvesvara, Division of Parasitic Diseases, Centers for Disease Control and Prevention, Mailstop F36, Atlanta, GA 30333, USA; email: gsv1@cdc.gov

Dr Shirwadkar is a clinical assistant in the intensive care unit of P.D. Hinduja National Hospital, Mumbai, India. His primary research interests are critical care medicine related to tropical infections and sepsis.
Bordetella pertussis, Finland and France

Valérie Caro,* Annika Elomaa,† Delphine Brun,* Jussi Mertsola,‡ Qiushui He,† and Nicole Guiso*

We used pulsed-field gel electrophoresis analysis and genotyping to compare clinical isolates of Bordetella pertussis recovered since the early 1990s in Finland and France, 2 countries with similar histories of long-term mass vaccination with whole-cell pertussis vaccines. Isolates from both countries were similar genetically but varied temporally.

The introduction of whole-cell pertussis vaccines (wP) from the 1940s to the 1960s in many countries resulted in a dramatic decrease in illness and death from pertussis. However, pertussis remains a considerable public health problem worldwide. Indeed, the disease continues to be endemic in vaccinated populations in Europe, Australia, Canada, and the United States, with cyclic increases at 3- to 5-year intervals, despite high vaccination coverage (1,2). One of the major causes is waning of vaccine-induced immunity with time (1,3), but increased disease surveillance and use of biologic diagnosis are also implicated. However, changes in the agent of the disease, Bordetella pertussis, are of some concern. This bacterium expresses adhesins such as filamentous hemagglutinin, pertactin, fimbriae (FIM), and toxins such as pertussis toxin, and adenylyl cyclase-hemolysin (4). Recently, circulating isolates were found to differ from the strains used for the wP vaccines in the world (5–13). These observed changes might modify the properties of the isolates and affect the efficacy of pertussis vaccines.

In Europe, heterogeneity is high in epidemic situations with respect to wP vaccines used and vaccination history and strategy. However, Finland and France have implemented similar mass wP vaccination programs with high coverage for several decades. Since 1952, children in Finland have been vaccinated with combined diphtheria-tetanus wP vaccine (DTwP) at 3, 4, and 5 months and from 20 to 24 months of age. The wP vaccine contains 2 strains and has remained unchanged since 1976. Since 1959, children in France have been vaccinated with DTwP-inactivated polio vaccine at 3, 4, and 5 months and from 16 to 18 months of age. The vaccine calendar for primary vaccination was changed to 2, 3, and 4 months of age in 1995. The same wP vaccine, composed of 2 strains, has been used for >40 years. In both Finland and France, incidence of pertussis has increased and the disease has shifted to older age groups, especially adolescents and adults. The cycles of pertussis disease are observed every 3–5 years (5,13). The aim of this study was to analyze and compare the isolates circulating in the 2 European countries with long-term and intensive vaccination.

B. pertussis isolates were selected from collections of the Finnish Pertussis Reference Laboratory of the National Public Health Institute (Turku, Finland) and the French Pertussis National Center of Reference (Paris, France). Of the 503 Finnish isolates recovered from 1991 to 2004, 64 were selected either because they represent all available isolates from 1 community (Paimio) or they were recovered from a geographic area as wide as possible. In addition, 6 isolates from a school outbreak that occurred in Heinavesi (Finland) in 1982 were included to study the changes over time. Of the 1,049 French isolates recovered from 1991 to 2004, we selected 61 because they are representative of the French collection from a temporal and geographic viewpoint and they correlate with the different cycles of pertussis observed in France and Finland.

All Finnish and French isolates showed a high similarity with a minimum of 80.3% overall relatedness by using pulsed-field gel electrophoresis (PFGE) analysis after digestion of B. pertussis genomic DNA with XbaI restriction enzyme (14) (Appendix Figure, available online at http://www.cdc.gov/ncidod/EID/vol12no06/05-1283_app.htm). Most Finnish and French isolates fell into PFGE groups III, IV, and V (Appendix Figure and Figure, panel A) corresponding to the isolates circulating in Europe from 1999 to 2001 (14). A new PFGE group (VII) was identified among Finnish isolates recovered in 2004 (Appendix Figure and Figure, panel A). This new profile, with 97.3% level of relatedness (Appendix Figure), might represent an emerging group. The new profile was further confirmed with PFGE by using the second restriction endonuclease SpeI (data not shown), as previously recommended (3,14). We cannot say whether PFGE VII isolates are actually emerging or whether evidence for their emergence is anecdotal, as is the case with French PFGE VI isolates, which represent only 0.6% of French isolates (data not shown).

We previously showed that the major PFGE group circulating in Europe from 1999 to 2001 is group IV (14). In France and in Finland, the PFGE group IV was overrepresented from 1992 to 2004 with 85.3% level of relatedness, confirming the limited polymorphism of B. pertussis. PFGE group IV was subdivided into 3 subgroups, α, β, and γ, whose frequencies varied between countries (14). In our study, we show that, as in France (3) the PFGE groups of the isolates circulating in Finland vary temporally with...
the cycles of the disease (Appendix Figure and Figure, Panel A). However, the frequency of the isolate subgroups circulating in Finland and France was different. In fact, the major subgroup detected in Finland between 1992 and 1999 was IVγ; since 2000, subgroups IVα and IVβ have been found (Figure, Panel A). This circumstance is well illustrated among the isolates recovered in Paimio, where 99% of isolates with IVγ were circulating in 1992 whereas, in 2004, 42% of subgroup IVβ, 33% of subgroup IVα, 25% of the new group VII, and none of IVγ were circulating in Paimio. Subgroups IVα and β, absent from 1992 to 1994, are now circulating. However, subgroup IVα is not a new subgroup in Finland since the 6 isolates collected in Heinavesi in 1982 exhibit this profile (Appendix Figure).

The analysis also included genotyping of the genes encoding pertussis toxin S1 subunit (ptxA) and pertactin (prn) and serotyping of FIM, performed as described previously (5, 13). The sequence of ptxA is the same (ptxA allele type 1) for all Finnish and French isolates. The same types of prn alleles are also harbored by Finnish and French isolates (Appendix Figure). The emergence of isolates harboring ptxA1 and prn2 or prn3 alleles in both countries might be explained by the fact that the wP vaccine strains used in both countries harbor ptxA2 or A4 and prn1 alleles (13, 15). A similar hypothesis might be proposed for the expression of FIM. In fact, most of the Finnish isolates collected from 1991 to 2004 express FIM2, whereas in France most of the isolates express FIM3 (Figure, Panel B). The differences in the expression of FIM between Finnish and French isolates might reflect the difference in strains used for Finnish and French wP vaccines. The Finnish wP vaccine contains 2 strains expressing FIM2,3 and FIM3, whereas the French wP vaccine includes 2 strains expressing FIM2,3 and FIM2 (13, 15). A marked shift of predominant serotype from FIM2 to FIM3 has been observed in Finland since 1999, although the wP vaccine remained the same. The emergence of isolates with FIM3 and PFGE subgroup IVβ, a new subgroup found in Finland, might be due to the increase in the frequency of this subgroup in the neighboring countries and the increased mobility of people within the European Union in the last decades.

We show that the B. pertussis isolates circulating in 2 countries with a long history of wP vaccination are genetically close. In the 2 countries, similar PFGE groups and subgroups are present, but their frequencies were different in the 1990s. Further, the subgroup emerging according to the cycles of pertussis in each country varies. The difference observed in frequency of subgroups could be due to herd immunity or human density of the populations concerned. Does this herd immunity vary depending on the human genetic population concerned or are the vaccine strains used expressing similar factors but not at the same level (e.g., FIM2 vs. FIM3)? This question needs further investigation.

These 2 countries have started using acellular pertussis vaccines, France since 2002 and Finland since 2005. Continued monitoring of the circulating isolates will be important.

We thank the European Commission of Life Program (QLK2-CT-2001-01819, EUpertstrain), GlaxoSmithKline, and Sanofi-Pasteur laboratories for supporting this work financially. This work was also financially supported by Institut Pasteur Foundation and FRE-CNRS 2849 for France and the Special Governmental Fund for University Hospitals (EVO) for Finland.

Dr Caro is assistant director of the French National Center of Reference of Whooping Cough and Other Bordetelloses and
researcher in the Molecular Prevention and Therapy of Human Diseases Unit, Institut Pasteur, Paris, France. Her research interests focus on the molecular evolution of *Bordetella* in relation to clinical and public health problems, comparative genomic analysis, and new molecular diagnostic methods.

References

Address for correspondence: Valérie Caro, Institut Pasteur, Unité PTMMH, FRE-CNRS 2849, National Center of Reference of Whooping Cough and Other Bordetelloses, 25 Rue du Dr Roux, 75724 Paris CEDEX 15, France, email: vcaro@pasteur.fr

The opinions expressed by authors contributing to this journal do not necessarily reflect the opinions of the Centers for Disease Control and Prevention or the institutions with which the authors are affiliated.
Guillain-Barré Syndrome, Greater Paris Area

Valérie Sivadon-Tardy,* David Orlikowski,* Flore Rozenberg,† Christiane Caudie,‡ Tarek Sharshar,* Pierre Lebon,† Djillali Annane,* Jean-Claude Raphaël,* Raphaël Porcher,§ and Jean-Louis Gaillard*

We studied 263 cases of Guillain-Barré syndrome from 1996 to 2001, 40% of which were associated with a known causative agent, mainly Campylobacter jejuni (22%) or cytomegalovirus (15%). The cases with no known agent (60%) peaked in winter, and half were preceded by respiratory infection, influenzalike syndrome, or gastrointestinal illness.

Guillain-Barré syndrome (GBS) is a state of acute flaccid paralysis thought, in most cases, to result from an aberrant immune response triggered by microbial infections (1). Studies in Western countries have reported evidence of recent infection with Campylobacter jejuni in 15% to 40% of GBS cases and with cytomegalovirus (CMV) in 5% to 20% of cases (1–5). Recent infection with Epstein-Barr virus (EBV) or Mycoplasma pneumoniae was less frequent (1%–2% each) (1–5). No agent was identified in 60% to 70% of cases, although the patients often had a history of respiratory or gastrointestinal infection (1,2).

Previous studies have failed to identify any clear seasonal distribution of GBS cases in Europe and North America. It has been suggested that this failure to demonstrate seasonality in GBS is because most prevalent antecedent infections have inverse seasonal distributions (6). We tested this hypothesis to provide new insight into infectious agents associated with GBS in Western countries.

The Study

All GBS patients admitted to the medical intensive care unit of Raymond Poincaré Hospital in Garches, France, from January 1996 to December 2001 were included in the study. GBS was diagnosed according to the criteria of Asbury and Cornblath (7). The following data were collected at the time of hospital admission: time from onset of neurologic signs of GBS to admission; history of infections in the 2 months preceding the onset of neurologic signs; and time from the infectious event to onset of neurologic signs.

Serum samples were collected at hospital admission. Serum antibodies against C. jejuni and M. pneumoniae were assayed with complement fixation tests (Institut Virion, Würzburg, Germany); cutoff titers (C. jejuni 20; M. pneumoniae 80) were selected to give >95% specificity on the basis of data provided by the manufacturer. Serum samples were tested for immunoglobulin M (IgM) and IgG antibodies to CMV with the miniVIDAS system (bioMérieux, Marcy l’Etoile, France). IgG avidity was measured in samples positive for IgM by using the Enzygnost anti-CMV/IgG test (Dade Behring S.A., Paris la Défense, France) and 8 mol/L urea. Recent CMV infection was identified by detection of IgM with IgG avidity <35% (8). Serum antibodies against EBV were detected with commercial dot blot tests (ImmunoDOT EBV MONO M and G kits, GenBio, San Diego, CA, USA). Recent EBV infection was identified by detecting IgM antibodies to viral capsid antigen. IgM and IgG antibodies against gangliosides GM1 and GM2 were identified by an enzyme immunoassay (GanglioCombi, Bühlmann Laboratories AG, Schönchenbuch, Switzerland) and an immunodot blot assay (9).

Statistical analyses were performed with the R 2.0.1 statistical package (R Development Core Team, Vienna, Austria). Groups were compared in pairs, and the Hochberg method for multiple testing was used to correct p values (10). Categorical variables were compared by Fisher exact test, and continuous variables were compared by Student t test or Wilcoxon rank sum test. Seasonal trends for GBS cases were analyzed by using the method of Jones et al. (11). The number of harmonics (seasonality periods) was determined by using the Akaike information criterion. All tests were 2-tailed, and a p value <0.05 was considered significant.

During the study period, 279 consecutive patients with GBS were admitted to our center. Sixteen patients were excluded because of missing clinical data or serum samples; 263 were included in the study. On the basis of an annual incidence of 1.2 to 1.9 GBS cases per 100,000 persons (12) in a population of 10.952 million people (13), we estimated that 130–210 GBS cases occurred annually in the greater Paris area during the study period. Thus, this study included 20%–30% of all estimated GBS cases in this area.

We observed serologic evidence of recent infection with C. jejuni in 58 patients (21.9%), CMV in 40 (15.1%) patients, M. pneumoniae in 6 (2.3%) patients, and EBV in 3 (1.1%) patients. Recent infection with C. jejuni and CMV was observed in 1 patient. Thus, 106 cases (40%) had ≥1 known agent of GBS (known agent group), and 157 cases (60%) had no known agent (unknown agent group) (Table). Most patients in the C. jejuni group were male,
were >50 years of age, had a history of gastrointestinal illness (Figure 1), and exhibited a severe motor form of GBS with serum IgG antibodies against ganglioside GM1.

Patients in the CMV group were significantly younger (p<0.0001), more likely to have respiratory or influenzalike symptoms than gastrointestinal symptoms (p<0.0001) before the onset of GBS symptoms (Figure 1), and showed a longer time from first neurologic signs to hospital admission (p = 0.048). These patients rarely showed a pure motor form of GBS (p = 0.037) and frequently had IgM antibodies against GM2 but did not have IgG antibodies against GM1 (p<0.0001).

Patients in the unknown agent group were older than those in the CMV group (p<0.0001), less likely to have had a history of infectious events than patients in the C. jejuni group (p = 0.0048), and had a significantly different antiganglioside response than those in C. jejuni and CMV groups (p<0.0001 in each case) (Table). The unknown agent group had a higher proportion of patients with gastrointestinal illness than did the CMV group (p = 0.045) and a higher proportion of patients with respiratory tract or influenzalike symptoms than the C. jejuni group (p = 0.0024) (Figure 1).

No seasonal variation was found for all patients combined (data not shown). However, this apparent absence of variation masked a substantial seasonal difference for the known agent and unknown agent groups. In the known agent group, 60% of cases occurred in spring and summer; only 16% occurred in winter. In the unknown agent group, only 17% of cases occurred in summer; 37% occurred in winter.

We used the method of Jones et al. (11) to test the seasonality of incidence. No seasonality was detected for the groups all cases, known agent, and C. jejuni (Figure 2). For the unknown agent group, a model with 1 harmonic
(annual seasonality) gave a significantly better fit than a model without harmonics (p = 0.0089, by likelihood ratio test); additional harmonics did not improve the fit of the model. Since no significant linear trend was found (p = 0.49), this element was removed for model prediction. This best-fit, single-harmonic model indicated that incidence was highest at the beginning of February and lowest at the beginning of August (Figure 2).

Conclusions
This study provides new data about GBS patients not associated with known etiologic agents, which account for most patients in Western Europe (2,14). We have shown that GBS cases of unknown cause were more common in winter, with a peak incidence at the beginning of February. Moreover, in ≥50% of the patients, GBS symptoms were preceded by respiratory infection, influenzalike syndrome, or gastrointestinal illness. Together with the seasonality of cases, this finding suggests the involvement of winter infectious agents, probably respiratory or enteric viruses.

Acknowledgments
We thank Isabelle Sénégas for assistance and Marie-Hélène Canneson for technical assistance.

This work was supported by the Laboratoire Français du Fractionnement et des Biotechnologies.

Dr Sivadon-Tardy is a microbiologist at Raymond Poincaré Hospital in Garches, France. Her primary research interests are molecular epidemiology and emerging and reemerging infectious diseases.

References

Figure 2. Seasonal distribution of preceding infectious agents by month for the study period (1996–2001). For the unknown agent group, the solid line represents the seasonal model prediction and the dashed lines represent its pointwise 95% confidence interval (CI).

Address for correspondence: Valérie Sivadon-Tardy, Laboratoire de Microbiologie, Hôpital Raymond Poincaré, 104 Blvd Raymond Poincaré, CEDEX 92380, Garches, France; email: valerie.sivadon@rpc.ap-hop-paris.fr

Use of trade names is for identification only and does not imply endorsement by the Public Health Service or by the U.S. Department of Health and Human Services.
Francisella tularensis in Rodents, China

Fang Zhang,* Wei Liu,* May C. Chu,‡ Jun He,* Qing Duan,* Xiao-Ming Wu,* Pan-He Zhang,* Qiu-Min Zhao,* Hong Yang,* Zhong-Tao Xin,‡ and Wu-Chun Cao*

A total of 420 rodents in China were examined for Francisella tularensis by polymerase chain reaction. The infection rates were 4.76% in total, and 11.65%, 10.00%, 6.56%, 1.77%, and 0% in Jilin, Xinjiang, Heilongjiang, Inner Mongolia, and Zhejiang, respectively. Sequence analysis showed that all the detected agents belonged to F. tularensis subsp. holarctica.

Tularemia is a disease caused by Francisella tularensis, a gram-negative, facultative intracellular bacterium. F. tularensis is generally believed to be confined to the Northern Hemisphere and has been reported in many American and Eurasian countries, for example, the United States, Mexico, Canada, Japan, the former Soviet Union, Spain, Sweden, and Norway (1). Terrestrial and aquatic mammals such as ground squirrels, rabbits, hares, voles, and water rats are animal reservoirs for transmission of F. tularensis to humans (2).

In China, F. tularensis was isolated in Daurian ground squirrels (Spermophilus dauricus) from Tongliao, Inner Mongolia Autonomous Region, in 1957. An outbreak of tularemia caused by contact with infected hares was first reported in Heilongjiang Province in 1959 (3). Thereafter, 6 cases were diagnosed in Qinghai Province in 1965 (4). Epidemiologic investigation identified several natural foci of the disease in Tibet from 1962 to 1972 and in Xinjiang Autonomous Region in 1986 (5,6), where F. tularensis was isolated from patients, Ixodes liberelis and Dermacentor marginatus ticks, and woolly hares (Lepus oiostolos). The latest outbreak occurred in 1986 at a food-processing factory in Shandong Province, where 31 of 36 workers who slaughtered hares became ill (7). Since then, no cases of F. tularensis infection have been reported in either humans or animal hosts. Whether the foci have become quiescent or the disease is underreported is unclear because tularemia is not a reportable disease in China. The objectives of this study were to investigate the presence of F. tularensis in rodents and to determine the subspecies type of the agent in China.

The Study

During the spring and summer seasons of 2004 and 2005, rodents were captured with baited snap traps at 5 sites (Figure): Inner Mongolia Autonomous Region, Heilongjiang Province, Jilin Province, Xinjiang Autonomous Region, and Zhejiang Province. The first 3 sites are forested highlands in northeastern China. The study site in Xinjiang Autonomous Region is grassland in northwestern China. The study site in Zhejiang Province is wooded foothills in southern China.

After the species of the captured rodents was determined, a small piece of the spleen (500 mg) from each animal was used to extract DNA. Briefly, each spleen specimen was crushed with Trizol (Invitrogen, Carlsbad, CA, USA) to separate DNA from RNA after centrifugation, according to the manufacturer’s instructions. Nested polymerase chain reaction (PCR) that targeted the FopA gene of F. tularensis was first performed as described previously (8). To further identify the agents in the samples by nested PCR and determine their genotype, PCR using the primer pair of C1 and C4 was performed to amplify the ppI-helicase region of F. tularensis gene structure (9,10). Then the products were gel purified by using Qiaquick Gel Extraction Kit (Qiagen, Hilden, Germany) and sequenced with an automated DNA sequencer (ABI Prism 377, Perkin-Elmer, Foster City, CA, USA). To minimize contamination, DNA extraction, reagent setup, amplification, and agarose gel electrophoresis were performed in separate rooms.

Of 420 rodents tested by nested PCR, 20 were positive for the FopA gene of F. tularensis. The overall infection rate was 4.76% with a 95% confidence interval (CI) of 2.72%–6.78%. A total of 14 species of rodents were iden-
tified in the study. Seven species, including *Apodemus peninsulae*, *A. agrarius*, *Cricetus migratorius*, *C. triton*, *Eutamias sibiricus*, *Meriones lybicus*, and *Clethrionomys rufocanus*, were positive for *F. tularensis* (Table). Although *E. sibiricus* and *M. lybicus* were most likely to be infected, with positive rates of 25% and 22.2%, respectively, no significant difference in infection rate was found among the 7 positive rodent species ($\chi^2 = 11.82$, degrees of freedom [df] = 6, $p = 0.066$).

The prevalence of *F. tularensis* in rodents varied with the geographic origin (Table). The infection rate was highest in rodents in Jilin Province (11.65%), followed by Xinjiang Autonomous Region (10.00%), Heilongjiang Province (6.54%), and Inner Mongolia Autonomous Region (1.76%). No *F. tularensis* infection was found in rodents collected from Zhejiang Province. The geographic difference in infection rate was significant ($\chi^2 = 20.91$, $df = 4$, $p = 0.0003$). PCR assay, targeting the ppI-helicase region in combination with sequence analysis, identified *F. tularensis* in rodents in China as type B. The nucleotide sequences of the 20 positive specimens were identical to the published sequences of *F. tularensis* subsp. *holarctica* strain (GenBank accession no. AF247642.2).

Conclusions

This study is the first PCR-based study on *F. tularensis* infection in rodents in China. Heilongjiang Province, Inner Mongolia, and Xinjiang Autonomous Regions were recognized as the natural foci of tularemia ~40 years ago. The high prevalence of *F. tularensis* infection in rodents indicates that tularemia natural foci still exist in these areas. *F. tularensis* was detected for the first time in Jilin Province, which borders Heilongjiang Province and had similar landscape characteristics. Whether this newly described natural focus in Jilin Province is associated with human infection should be further investigated. In any case, this finding demonstrates that *F. tularensis* seems to be distributed more widely in China than expected. The extensive presence of *F. tularensis* indicates a potential threat to human health. The fact that rodents trapped from Zhejiang Province (southern China) were negative for the bacterium verifies our belief that *F. tularensis* is present only in northern China. The geographic variation in infection rate is likely attributable to the difference in biologic characteristics of each study site or a selection bias. Further studies are needed to clarify this question.

Rodents are efficient natural reservoirs for *F. tularensis* (2,11). In recent years, reports on human tularemia transmitted from small animals have been increasing (12). In this study, several rodent species were found to harbor *F. tularensis*, but which species are the main hosts in China is still unknown because no significant difference in infection rate was observed among rodents, regardless of their geographic origin. Systematic epidemiologic studies are required to investigate characteristics of natural foci and the role of both wild and domestic animals in transmission of *F. tularensis* to humans.

This work was supported by the National 973 Program of China (2002CB513201).

Dr. Zhang is an epidemiologist in the Department of Epidemiology, Beijing Institute of Microbiology and Epidemiology, People’s Republic of China. Her primary research interests are epidemiology and control of emerging and reemerging infectious diseases.

References

Address for correspondence: Wu-Chun Cao, Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogens and Biosecurity, 20 Dong-Da St, Fengtai District, Beijing 100071, People’s Republic of China; email: caowc@nic.bmi.ac.cn
Preventing Zoonotic Influenza Virus Infection

Alejandro Ramirez,*† Ana W. Capuano,* Debbie A. Wellman,* Kelly A. Lesher,* Sharon F. Setterquist,* and Gregory C. Gray*

We evaluated 49 swine industry workers and 79 nonexposed controls for antibodies to swine influenza viruses. Multivariate modeling showed that workers who seldom used gloves (odds ratio [OR] 30.3) or who smoked (OR 18.7) most frequently had evidence of previous H1N1 swine virus. These findings may be valuable in planning for pandemic influenza.

In the United States, influenza viruses are estimated to cause 36,000 human deaths and 200,000 hospitalizations annually (1–5). The current outbreaks of avian influenza in Asia and Eastern Europe remind us of the zoonotic potential of these viruses. Swine cells express sialic acids that can be receptors for swine, human, and avian influenza strains and facilitate cross-species influenza transmission and the genesis of novel influenza strains. Reported cases of human-to-swine and swine-to-human influenza transmission illustrate this potential (6, 7).

Persons who work in enclosed livestock buildings (confinement workers) have among the highest risk of becoming infected with swine influenza virus. Their work involves close contact with many swine, including sick ones. The purpose of this cross-sectional study was to learn if these workers had evidence of previous swine influenza virus infection and, if so, to determine factors that cause them to be at increased risk.

The Study

Iowa is the top swine-producing state in the United States and markets ≈25 million swine a year. From November 2004 to March 2005, we recruited confinement workers. Site selection was based on the authors’ community contacts and opportunities to invite workers to participate. Local veterinary clinics advertised the study and permitted enrollment at their facilities. This study was approved by the University of Iowa’s institutional review board.

Persons were eligible to participate in the study if they had worked in a swine confinement facility in the past 12 months. Participants completed a questionnaire and permitted blood sample collection on enrollment. The questionnaire captured demographic, medical, and occupational data including influenza immunization history, swine occupational exposures, and use of protective equipment (gloves and masks). Nonexposed controls were enrolled during a concurrent study of University of Iowa faculty, staff, and students (8).

Serum samples were studied by using a hemagglutination inhibition (HI) assay against 2 recently circulating swine strains, A/Swine/WI/238/97 (H1N1) and A/Swine/WI/R33F/01 (H1N2), and 1 human influenza virus strain, A/New Caledonia/20/99 (H1N1). The swine H1N1 strain represents a lineage of virus that has been circulating among US swine for 70 years. The swine H1N2 strain first appeared in US swine in 1999. HI titer results are reported as the reciprocal of the highest dilution of serum that inhibited virus-induced hemagglutination of a 0.65% solution of guinea pig erythrocytes for human influenza and 0.5% solution of turkey erythrocytes for swine influenza.

Specimen laboratory results were examined for their statistical association with demographic, immunization, occupational, and other behavioral risk factors. Confinement workers were queried about the nature of their work and whether they had used protective equipment. Because incidence of high titers was low or nonexistent in most groups, H1N1 titers >10 were grouped. The resulting categories were <10, 10, and >10. Wilcoxon rank sum and χ² statistic or 2-sided Fisher exact test were used to access bivariate risk factor associations. Depending on the nature of the data and modeling assumptions, proportional odds modeling or logistic regression was used to adjust for multiple risk factors. Final multivariate models were designed by using a saturated model and manual backwards elimination. Analyses were performed by using SAS version 9.1 (SAS Institute, Inc., Cary, NC, USA).

Questionnaires were made available in both English and Spanish. Site selections were based on personal contacts in 3 completely different areas.

Forty-nine confinement workers and 79 nonexposed controls were enrolled in the study. The distribution of ages was similar for the 2 groups, but the confinement workers were more likely to be male and Hispanic and less likely to have received influenza vaccination (Table 1).

Swine confinement workers were categorized by type of work, frequency of contact with swine, use of gloves, and use of masks. The question “When working with sick or diseased swine, how often do you wear gloves?” explained the most variation in swine H1N1 antibody titers and was included in the best fit model. Workers who sometimes or never used gloves were significantly more likely (odds ratio [OR] 30.3, 95% confidence interval [CI]...
3.8–243.5) to have elevated titers than the nonexposed controls (Table 2). These workers also were significantly more likely (OR 12.7, 95% CI 1.1–151.1) (data not shown) to have elevated titers than the other confinement workers who used gloves most of the time or always. Workers who reported smoking also had high OR (data not shown) for elevated titers.

Multivariate analysis also showed that persons who had received the 2003–04 influenza vaccine were significantly more likely to have elevated titers (≥10) against swine H1N1 virus (Table 2) as well as swine H1N2 (data not shown). Although cross-reaction with 1 of the viruses in the 2003–04 vaccine or a circulating influenza virus may explain this occurrence, higher titers would have been

Table 1. Characteristics of swine workers and controls, Iowa, 2004–2005

<table>
<thead>
<tr>
<th>Variable</th>
<th>Study sample, n (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Swine workers (n = 49)</td>
</tr>
<tr>
<td>Age group (y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><29</td>
<td>46</td>
<td>15 (30.6)</td>
</tr>
<tr>
<td>29–42</td>
<td>40</td>
<td>12 (24.5)</td>
</tr>
<tr>
<td>>42</td>
<td>42</td>
<td>22 (44.9)</td>
</tr>
<tr>
<td>Mean age (y)</td>
<td>40.3</td>
<td>35.3</td>
</tr>
<tr>
<td>Sex†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>63</td>
<td>37 (75.5)</td>
</tr>
<tr>
<td>Female</td>
<td>65</td>
<td>12 (24.5)</td>
</tr>
<tr>
<td>Race†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Indian/Alaska Native</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Asian</td>
<td>2</td>
<td>1 (2)</td>
</tr>
<tr>
<td>African American</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Native Hawaiian/Other Pacific Islander</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>White</td>
<td>105</td>
<td>48 (96)</td>
</tr>
<tr>
<td>Ethnicity†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>12</td>
<td>10 (21.7)</td>
</tr>
<tr>
<td>Non-Hispanic/Latino</td>
<td>113</td>
<td>36 (78.3)</td>
</tr>
<tr>
<td>Served in military</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>12</td>
<td>5 (10.4)</td>
</tr>
<tr>
<td>No</td>
<td>115</td>
<td>43 (89.6)</td>
</tr>
<tr>
<td>Take medications that weaken immune system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>3</td>
<td>2 (4.2)</td>
</tr>
<tr>
<td>No</td>
<td>122</td>
<td>44 (91.7)</td>
</tr>
<tr>
<td>Do not know</td>
<td>2</td>
<td>2 (4.2)</td>
</tr>
<tr>
<td>Have heart or vascular disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>3</td>
<td>2 (4.2)</td>
</tr>
<tr>
<td>No</td>
<td>124</td>
<td>46 (95.8)</td>
</tr>
<tr>
<td>Have any chronic lung problems such as asthma or emphysema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>5</td>
<td>2 (4.2)</td>
</tr>
<tr>
<td>No</td>
<td>122</td>
<td>46 (95.8)</td>
</tr>
<tr>
<td>Received the 2001–02 influenza vaccine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>37</td>
<td>6 (12.5)</td>
</tr>
<tr>
<td>No</td>
<td>90</td>
<td>42 (87.5)</td>
</tr>
<tr>
<td>Received the 2002–03 influenza vaccine†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>36</td>
<td>5 (10.4)</td>
</tr>
<tr>
<td>No</td>
<td>91</td>
<td>43 (89.6)</td>
</tr>
<tr>
<td>Received the 2003–04 influenza vaccine†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>43</td>
<td>8 (16.7)</td>
</tr>
<tr>
<td>No</td>
<td>84</td>
<td>40 (83.3)</td>
</tr>
<tr>
<td>Received the 1976–77 influenza vaccine†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>1 (2.1)</td>
</tr>
<tr>
<td>No</td>
<td>119</td>
<td>41 (85.4)</td>
</tr>
<tr>
<td>Do not know</td>
<td>6</td>
<td>6 (12.5)</td>
</tr>
<tr>
<td>Smoked ≥5 packs of cigarettes in past year†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>14</td>
<td>9 (18.4)</td>
</tr>
<tr>
<td>No</td>
<td>114</td>
<td>40 (81.6)</td>
</tr>
</tbody>
</table>

*Not exposed to swine.
†Significantly different than controls at α = 0.05.
expected for all vaccinated persons (including controls), but such higher titers were not observed (Figure). We suggest that this result represents other behavior or health-related confounders not identified in the questionnaire for this study.

Conclusions

These data suggest, like previous studies (8–10), that swine confinement workers are at increased risk for zoonotic influenza infection. However, our data are among the first to evaluate swine confinement workers, our sample size was small (not likely representative of all swine workers), and exposure data were self-reported. Confinement workers, in contrast to other swine occupations, are difficult to reach because of language barriers, on-farm policies regarding visitors (biosecurity protocols), and lack of trust in the public health sector.

Several studies have documented smoking as a risk factor for human influenza virus infection (11–13). However, we believe our data are the first evidence that smoking also increases the risk for swine influenza infections. We believe that this increased risk may be because the workers’ oral mucosa are exposed to swine influenza virus after handling pigs.

This study’s chief unique contribution is the evidence that use of gloves during swine confinement work noticeably decreases the risk for swine influenza virus infection. Thus, a simple personal protective measure might do much to reduce swine-to-human virus transmission. Future larger studies of swine confinement workers are needed to validate our findings and to better quantify risk factors for this population.

Individual behavior strongly influences influenza virus transmission (5). The national strategy for pandemic influenza highlights worker education and emphasizes individual responsibilities in preventing the spread of infection (14). Should a virulent, novel zoonotic influenza virus enter swine confinement facilities and spread among concentrated swine populations, the impact would be grave. Surveillance for zoonotic influenza virus therefore must be routinely conducted among agricultural workers. Also, use of personal protective equipment, frequent hand
washing, and restrictions on smoking in or around swine facilities should be encouraged. Further, such workers should be included in state and federal pandemic plans as a high-risk group designated to receive annual influenza vaccines and antiviral drugs during pandemics.

Acknowledgments

We thank the veterinarians and staff from Valley Veterinary Center and the Winthrop Veterinary Clinic for use of their facilities for this project; James Miller and Hector Hernandez for their assistance in recruiting study subjects; the phlebotomists who volunteered to help with this project, especially Amy Kapanka and Carrie Ducommun; Kendall Myers for her assistance with study data; Christopher Olsen for providing swine viruses; Alexander Klimov for providing human viruses; and James Roth and the staff at the Center for Food Security and Public Health for their support.

This work was funded by the University of Iowa’s Center for Emerging Infectious Diseases. Serologic assay work was funded in part by a grant from the National Institutes of Allergy and Infectious Diseases (NIAID-R21 AI059214-01).

Dr Ramirez is a veterinary specialist in the swine production medicine group in the Department of Veterinary Diagnostic and Production Animal Medicine at Iowa State University’s College of Veterinary Medicine. This research project served to partially meet the academic requirements for his master’s degree in public health.

References

Address for correspondence: Alejandro Ramirez, Iowa State University College of Veterinary Medicine, Veterinary Diagnostic and Production Animal Medicine, 1710 College of Veterinary Medicine, Ames, IA 50011, USA; email: ramirez@iastate.edu

www.cdc.gov/eid

To receive tables of contents of new issues send an email to listserv@cdc.gov with subscribe eid-toc in the body of your message.
Antiretroviral Drug Resistance and Routine Therapy, Cameroon

Christian Laurent,* Charles Kouanfack,† Laurence Vergne,* Michèle Tardy,† Léopold Zekeng,‡§ Nathalie Noumsi,† Christelle Butel,* Anke Bourgeois,* Eitel Mpoudi-Ngolé,¶ Sinata Koulla-Shiro,† Martine Peeters,* and Eric Delaporte*

Among 128 patients routinely receiving highly active antiretroviral therapy in an HIV/AIDS outpatient clinic in Cameroon, 16.4% had drug resistance after a median of 10 months. Of these, 12.5% had resistance to nucleoside reverse transcriptase inhibitors (NRTIs), 10.2% to non-NRTIs, and 2.3% to protease inhibitors.

Human immunodeficiency virus (HIV) drug resistance is a major threat to the scaling up of antiretroviral therapy (ART) in developing countries (the World Health Organization/United Nations Programme on HIV/AIDS “3 by 5” Initiative) (1), especially in Africa (2). Inadequate clinical and biological follow-up has been linked to high rates of drug resistance (>50% after 8 to 20 months) in Gabon (3), Côte d’Ivoire (4), and Uganda (5). In a recent study in public and private health care clinics in Douala, the economic capital of Cameroon, we found that the clinical and biological follow-up and drug supply were irregular and that many patients interrupted their treatment (6). Data on drug resistance in the routine care setting are urgently required to design large, effective ART programs. We describe the frequency and nature of major genotypic mutations conferring resistance to antiretroviral drugs among patients treated in a routine HIV/AIDS outpatient clinic in Yaoundé, the political capital of Cameroon.

The Study

We conducted a cross-sectional survey from January 2002 to January 2004 among HIV-1–infected patients managed at the Central Hospital. The patients had to pay for their drugs (US $23–$100 monthly) and laboratory tests (US $58–$85 per viral load assay and $19–$27 per CD4 cell count). Consequently, follow-up was often irregular. All patients who were given ART for at least 3 months were eligible for the study. Approximately 15%–20% of eligible patients refused or were not asked (physicians forgot) to participate. Blood samples were not available for 9 other patients. The Cameroon national ethics committee approved the study protocol, and patients gave their informed consent. Basic demographic and medical data were recorded on a standard questionnaire.

HIV was typed in each patient (HIV-1 group M, N, or O, or HIV-2) with an in-house enzyme-linked immunosorbent assay (ELISA) based on V3 loop peptides (7). Genotypic resistance to antiretroviral drugs was studied by sequencing the protease and reverse transcriptase genes with group M- or O-specific primers, depending on the serotyping results (8); samples that could not be typed with ELISA were tested with both group M and O primers. Briefly, viral RNA was extracted from plasma with the QIAamp Viral RNA minikit (Qiagen, Courtaboeuf, France) and reverse transcribed to cDNA by using Expand RT (Boehringer, Mannheim, Germany) and a reverse primer. An 1800-bp fragment encompassing the protease and reverse transcriptase genes was amplified by nested polymerase chain reaction and directly sequenced with an ABI PrISM Big Dye Terminator cycle sequencing ready reaction kit (Perkin-Elmer, Roissy, France). Genetic subtypes were determined by phylogenetic tree analysis with the Clustal W program (8). The deduced amino acid sequences were compared with a reference sequence to detect mutations associated with resistance. Mutations were classified as minor or major, by using the September 2004 version of the French National Agency for Research on AIDS consensus statements on antiretroviral drug resistance (http://www.hivfrenchresistance.org). A susceptible strain based on absence of major drug resistance mutations by genotyping or a strain that could not be amplified for genotyping was considered nonresistant.

One hundred twenty-eight HIV-1–infected patients received ART for a median of 10 months (interquartile range [IQR] 7–18). Median age was 39 years (IQR 33–46); 70 (54.7%) of the patients were women. In addition to nucleoside reverse transcriptase inhibitors (NRTIs), 94 patients (73.4%) had received non-NRTIs (59 patients received only efavirenz, 30 received only nevirapine, and 5 received both) and 53 patients (41.4%) had received protease inhibitors (PIs, 50 patients received only indinavir, 2 received only nelfinavir, and 1 received both); 19 patients had received both non-NRTIs and PIs. Two patients (1.6%) initially received only 2 NRTIs (lamivudine and didanosine for 7 months in 1 case; stavudine and didanosine for 14 months in the other). Samples from 113 patients (88.3%) reacted with group M peptides, 3 samples (2.3%) reacted with group O peptides, and 2 other samples (1.6%)
reacted with both group M and O peptides. Ten samples did not react with group M, N, or O or HIV-2 peptides. Thirty-five samples could be amplified, and all were characterized in the pol gene. The circulating recombinant form (CRF) 02-AG strain predominated (22 patients, 62.9%); the other 13 patients had subtype A (1), D (2) or F2 (3), or CRF01-AE (2), CRF02-AF/G (2), CRF11-cpx (2), or CRF13-cpx (1).

Major genotypic mutations associated with antiretroviral drugs resistance were detected in 21 patients (16.4%, 95% confidence interval 10.5–24.0). The characteristics of these patients are shown in the Table. Sixteen patients (12.5%) had resistance to NRTIs (Figure) due to the mutations M184V (15 patients), M184I (1), T215Y (1), T215F (3), K65R (2), and Q151M (1); thymidine analog mutations M41L (2), D67N (2), K70R (3), K219Q (1), and K219E (1) were also detected. Thirteen patients (10.2%) had resistance to non-NRTIs due to the mutations K103N (11), K101E (1), Y181C (1), Y188L (2), G190E (1), and P225H (2). Three patients (2.3%) had resistance to PIs due to the mutations V82A (2 patients) and N88D (1). The 2 patients treated for a time with only 2 NRTIs (patients 2-59 and 2-84, Table) had several major genotypic mutations but had received ART for 52 and 48 months, respectively.

Conclusions

This observational study showed that 16.4% of patients receiving ART in a routine care setting in Cameroon had drug resistance after a median of 10 months. The rate of resistance was lower than that observed in earlier studies in Côte d’Ivoire (4), Gabon (3), and Uganda (5). Several factors could explain this finding. First, a history of suboptimal therapy was rare: only 2 patients had received a 2-drug regimen, and none had received single-agent therapy. Second, 90% of our patients began receiving ART after a national consensus conference held in June 2000 had standardized the drugs supply, drugs regimen, and clinical and biological follow-up. Third, the physicians were trained and experienced in ART use. Fourth, the cost of drugs and laboratory tests has fallen in recent years in Cameroon, a

| Table. Antiretroviral drug resistance in 21 patients receiving multiple ART in a routine care setting in Cameroon* |
|----------------|----------------|----------------|----------------|----------------|
| Patient no. | Age | Sex | Antiretroviral drugs received | Months from start of ART | Drug resistance | Major genotypic mutations | Subtype pol |
| 1 | 46 | F | 3TC, ZDV, EFV | 33 | 3TC, FTC, EFV, NVP | M184V, K103N, P225H | CRF02-AG |
| 2 | 49 | F | 3TC, ZDV, EFV | 10 | 3TC, FTC, EFV, NVP | M184V, (K70R), K103N, Y188L | CRF02-AG |
| 3 | 42 | M | 3TC, ZDV, IDV | 10 | 3TC, FTC | M184V | CRF02-AG |
| 4 | 36 | F | 3TC, ZDV, EFV, IDV | 52 | 3TC, ZDV, d4T, FTC, EFV, NVP | M184V, T215F, (M41L), K103N | CRF02-AG |
| 5 | 36 | M | 3TC, ZDV, d4T, ddi, EFV | 21 | 3TC, FTC, EFV, NVP | M184V, K103N | CRF02-AG |
| 6 | 30 | M | d4T, ddi, EFV | 6 | EFV, NVP | K103N | CRF02-AG/F |
| 7 | 37 | F | 3TC, d4T, IDV | 9 | 3TC, FTC | M184V | A |
| 8 | 34 | M | 3TC, d4T, IDV | 10 | 3TC, ZDV, d4T, FTC, EFV, NVP | M184V, T215Y, K103N | F2 |
| 9 | 51 | M | 3TC, ZDV, d4T, ddi, NVP | 48 | NRTIs, NFV | K65R, M184V, Q151M, N88D | D |
| 10 | 44 | M | 3TC, d4T, EFV, IDV | 6 | EFV, NVP | G190E | CRF02-AG/F |
| 11 | 32 | F | d4T, ddi, IDV | 31 | 3TC, FTC, EFV, NVP | M184I, (M41L), K101E, K103N | CRF02-AG |
| 12 | 42 | M | 3TC, ZDV, EFV, d4T, ddi, EFV | 18 | 3TC, FTC | M184V | CRF02-AG |
| 13 | 43 | F | 3TC, ZDV, IDV | 14 | 3TC, FTC, EFV, NVP | M184I, (M41L), K101E, K103N | CRF02-AG |
| 14 | 51 | M | 3TC, ZDV, EFV, d4T, ddi, IDV | 31 | 3TC, FTC, EFV, NVP | M184V, K103N, P225H | CRF11-cpx |
| 15 | 30 | F | 3TC, ZDV, EFV, IDV | 18 | 3TC, FTC | M184V | CRF02-AG |
| 16 | 42 | M | 3TC, d4T, IDV | 8 | 3TC, FTC | M184V | CRF02-AG |
| 17 | 41 | F | 3TC, ZDV, IDV | 18 | 3TC, FTC | M184V | CRF02-AG |
| 18 | 58 | M | 3TC, ZDV, IDV | 17 | 3TC, FTC, EFV, NVP | M184V, T215F, (D67N, K70R, K219Q), K103N, Y188L | CRF02-AG |
| 19 | 48 | F | 3TC, ZDV, EFV, IDV | 45 | 3TC, ZDV, d4T, FTC, EFV, NVP | K65R, M184V, Y181C | CRF01-AE |
| 20 | 32 | M | 3TC, d4T, NVP | 6 | 3TC, FTC, TDF, (ABC, ddi), EFV, NVP | M184V, T215F, (D67N, K70R, K219E), K103N | CRF02-AG |
| 21 | 53 | M | 3TC, ZDV, EFV | 7 | 3TC, FTC, NVP | K103N | CRF02-AG |
| 22 | 50 | F | 3TC, ZDV, d4T, ddi, IDV | 29 | 3TC, FTC, EFV, NVP | M184V, T215F, (D67N, K70R, K219E), K103N | CRF02-AG |

*ART, antiretroviral therapy; 3TC, lamivudine; ZDV, zidovudine; EFV, efavirenz; FTC, emtricitabine; NVP, nevirapine; IDV, indinavir; d4T, stavudine; ddi, didanosine; NFV, nelfinavir; NRTIs, nucleoside reverse transcriptase inhibitors; ATV, atazanavir; RTV, ritonavir; TDF, tenofovir; SQV, saquinavir; ABC, abacavir. Resistances in parentheses indicate possible resistances. Mutations in parentheses indicate thymidine analogue mutations.
fact that favors adherence to therapy. Our methods could also account for the difference: our median follow-up period was substantially less than that in the studies in Gabon and Uganda, so that our patients had less time for resistance to develop, and our assumption that nonamplification was equivalent to nonresistance could have led to an undercount of resistant strains. Lower rates of resistance were achieved in pilot studies in Cameroon (9) and Senegal (10,11), thanks to measures favoring adherence to therapy, such as provision of drugs and laboratory follow-up at no cost (or for a limited charge), and psychosocial support (counseling, access to discussion groups, and active search for patients who did not attend scheduled clinical visits, biological examinations, or drug dispensing sessions).

Resistance most often involved lamivudine (12.5%; and emtricitabine, due to mutation M184V/I related to lamivudine pressure [emtricitabine was not used in Cameroon]), efavirenz, and nevirapine (10.2%). These drugs are widely used in Cameroon in either individual formulations or fixed-dose combinations (lamivudine/zidovudine, lamivudine/stavudine, lamivudine/stavudine/nevirapine, and lamivudine/zidovudine/nevirapine). The fixed-dose combination of lamivudine/stavudine/nevirapine is now the most frequently prescribed drug in Cameroon and other African countries (12). In our study, 19 patients (14.8%) had resistance to ≥1 component on this fixed-dose combination, and high rates of resistance could compromise the use of this inexpensive (US $4.5 monthly) and convenient drug. Frequent resistance to nevirapine could also compromise the use of this drug for preventing mother-child transmission (most such programs in Africa, including in Cameroon, are based on nevirapine).

Our study showed a relatively low level of resistance after a median duration of 10 months’ treatment in a routine care setting, but we could not evaluate the association of resistance with adherence, support, or prescribing practices. The differences in methods among the African cross-sectional studies of resistance, including our own and the others referenced, make comparisons among countries difficult, although some differences are likely due to prescribing practices, drug availability, support for adherence, and follow-up. More extensive prospective studies that use standardized methods could provide comparable estimates of resistance seen at specific times (e.g., 6, 12, and 24 months after ART begins) in different countries and delineate ART program factors associated with a low prevalence of resistance.

Acknowledgments
We thank all the patients and staff who participated in the study.

This study was supported by a grant from the French National Agency for Research on AIDS (ANRS 1257) and the Institut de Recherche pour le Développement.

Dr Laurent is an epidemiologist at the Institut de Recherche pour le Développement, Montpellier, France. His major interests include epidemiology and clinical research on human immunodeficiency virus infection in Africa.

References

Address for correspondence: Christian Laurent, Institut de Recherche pour le Développement – UMR 145, 911 Ave Agropolis, BP 64501, 34394 Montpellier CEDEX 5, France; email: Christian.Laurent@mpl.ird.fr
Cowpox Virus Transmission from Rats to Monkeys, the Netherlands

Byron E.E. Martina,* Gerard van Doornum,* Gerry M. Dorresteijn,† Hubert G.M. Niesters,* Koert J. Stittelaar,* Marno A.B.I. Wolters,‡ Hester G.H. van Bolhuis,* and Albert D.M.E. Osterhaus*

We report an outbreak of cowpox virus among monkeys at a sanctuary for exotic animals. Serologic analysis and polymerase chain reaction were performed on blood and swab samples from different rodent species trapped at the sanctuary during the outbreak. Sequence comparison and serologic results showed that brown rats (Rattus norvegicus) transmitted the virus to monkeys.

Cowpox virus (CPXV) is a member of the genus Orthopoxvirus, family Poxviridae, and is antigenically and genetically related to variola virus, vaccinia virus, and monkeypox virus (MPXV). With the eradication of smallpox, routine vaccination with vaccinia virus ceased, which created a niche for animal poxviruses to infect humans. However, cowpox is a rare zoonosis, and infection of immunocompetent persons usually results in localized lesions mainly on fingers, hands, or face. However, in immunocompromised patients, severe generalized infections have been documented (1,2).

The reservoir hosts of CPXV are wild rodents; cows, domestic cats, and humans are incidental hosts. In Europe, bank voles (Clethrionomys glareolus) and wood mice (Apodemus sylvaticus) constitute the main reservoirs (3), whereas CPXV was sporadically detected in rats (Rattus norvegicus) (4,5). Domestic cats play a role in transmission of CPXV to humans (6,7). Direct transmission of CPXV from rodents to humans has also been documented (3,5). In the United States, prairie dogs (Cynomys ludovicius) have been suggested as a potential reservoir for MPXV and are susceptible to CPXV infection by wild rodents (8). We report an outbreak of CPXV in nonhuman primates through contact with infected brown rats.

The Study

In September 2003, three Barbary macaques (Macaca sylvanus) at a sanctuary for exotic animals in Almere, the Netherlands, showed multifocal gingival, buccal, and lingual lesions. Typical intranuclear inclusions were found by histologic analysis, and poxlike particles were found by transmission electron microscopy of 6 biopsy specimens from buccal lesions of the same animals. Because of concerns that these macaques were infected with MPXV, additional biopsy specimens of poxlike lesions were obtained for virus isolation and polymerase chain reaction (PCR) studies.

Vero cells were infected with homogenized biopsy samples from the 3 macaques, and cells were monitored daily for appearance of cytopathic changes. Three days after infection, cells showed cytopathic effects characterized by plaques of rounded cells with prominent cytoplasmic bridging and syncytia formation. To confirm the isolation of a poxvirus, an immunofluorescence test was conducted with human antivaccinia serum (diluted 1:1,000) and goat antihuman immunoglobulin G (IgG) (diluted 1:500, Dako, Roskilde, Denmark). Diffuse cytoplasmic fluorescence confirmed an orthopoxvirus.

Isolates were further characterized by PCR and sequence analysis with primers for the hemagglutinin gene (9). Melting curve and sequence analyses confirmed the presence of an orthopoxvirus, most likely CPXV (Figure). Because this PCR assay was designed to differentiate variola virus from other orthopoxviruses but not among nonvariola orthopoxviruses, we developed a CPXV-specific PCR by using nested primer sets within the A-type inclusion protein (ATI) gene. PCR was conducted by using external primers (ATIF1) 5′-GAACTTAAATGTTTCGATA-3′ (forward primer) and (ATIR1) 5′-CAGTAACGTGGACGATGGAGG-3′ (reverse primer) with nested forward primer ATIF2 5′-GAGGAAGTTAAGAGATTGCCTGTC-3′ and reverse primer ATIR1. The nucleotide sequences are available from GenBank. Nucleotide sequencing confirmed that the virus isolated from Barbary macaques was a CPXV.

Since all macaques were in the center before disease manifested and they had not been in contact with other animals, other monkeys were tested for CPXV infection by serologic analysis. Serum samples from 16 Barbary macaques (Macaca sylvanus), 2 pig-tailed macaques (M. nemestrina), 2 squirrel monkeys (Saimiri sciureus), 2 Japanese macaques (M. fuscata), 6 cynomolgus macaques (M. fascicularis), 2 Hamadryas baboons (Papio hamadryas), 4 rhesus macaques (M. mulatta), and 1 vervet (Cercopithecus aethiops) were tested with a virus neutralization test (VNT) using a CPXV strain isolated in this study (CPXVmac). Neutralizing titers were determined after 5 days on the basis of complete reduction of a cytopathic effect. At the end of the outbreak, neutralizing serum antibodies were detected in 9 Barbary macaques,
2 pig-tailed macaques, 1 Japanese macaque, 3 cynomolgus macaques, and 1 rhesus monkey. This finding suggested that all of these animals had been exposed to CPXV. Retrospective serosurveillance showed that only 1 Barbary macaque was seropositive at the start of the outbreak. No swab samples from the animals were available for culture or PCR analysis.

To identify the possible reservoir of the CPXV infection, animals known to be susceptible to CPXV and housed at the sanctuary at the time of the outbreak were tested. These included 4 domestic cats (*Felis catus*), 2 red squirrels (*Sciurus vulgaris*), and 6 prairie dogs (*C. ludovicianus*). In addition, 32 wood mice (*A. sylvaticus*) and 34 rats (*R. norvegicus*) trapped in the area of the sanctuary were tested by serologic analysis and PCR. Only 1 of the tested cats had neutralizing serum antibodies (titer 20) to CPXV. Throat swabs of all 4 cats obtained during the outbreak were negative by both PCRs. These results suggest that cats were not infected by CPXV at the time of the outbreak. Prairie dogs housed at the sanctuary at the time of the outbreak were not infected, as shown by negative PCR results on throat swabs and the absence of orthopoxvirus-specific antibodies.

In contrast, PCR and virus culture showed that 56% of rats tested were infected with CPXV (Table). Sequence comparison of the hemagglutinin and ATI genes of 19 CPXV rat isolates with the Barbary macaque isolates showed identical sequences, which indicated that rats were the most probable source of infection. No significant differences were observed between the genes of CPXVs isolated during this outbreak and previous isolates (Figure).

Since serum samples collected from trapped dead rats could not be tested by VNT, we developed an indirect enzyme-linked immunosorbent assay (ELISA) based on vaccinia virus, which was validated with sera of monkeys infected with vaccinia virus. Briefly, vaccinia virus was treated with 2% Triton X-100, and 100 ng was added to wells of high-binding plates (Costar, Corning Inc., Corning, NY, USA). Two-fold dilutions of sera starting at 1:20 were added to the plates, and antibodies were detected with horseradish peroxidase–labeled protein A (1:1,000 dilution, Zymed Laboratories, South San Francisco, CA, USA). Titers were expressed as the reciprocal of the highest serum dilution for which an optical density at 450 nm (OD$_{450}$) was $>3\times$ the OD$_{450}$ of the negative control. Of 19 rats that tested positive by PCR, only 3 were seropositive, which suggested that CPXV was spreading actively in the rat population. Swabs of all mice tested were negative by both PCRs, and only 2 of 32 mice tested were seropositive by ELISA, indicating that mice were not the source of infection.

Conclusions

This is the first report describing CPXV infection in captive monkeys. Wild brown rats captured at the sanctuary...
were infected with CPXV and assumed to be the most probable source of infection. Whether multiple contacts of infected rats with the monkeys contributed to the outbreak or monkey-to-monkey transmission occurred efficiently is not clear. Furthermore, whether monkeys were infected by rats through direct contact or infected excreta is unclear (10). Longitudinal field studies are required to clarify if rats could be the principal reservoirs for CPXV. Circulation of CPXV in wild and captive animals, together with decreased immunity against orthopoxviruses in the community, may put animal trappers and handlers at risk for CPXV infection. Our findings show the threat of orthopoxviruses that can cross species barriers, which indicates the importance of developing new vaccines and antiviral drugs against orthopoxvirus infection of humans.

Acknowledgments

We thank Thijs Kuiken for critical comments on the manuscript, Edwin Fries and Penelope Koraka for technical assistance, and Herman Meyer for confirming the PCR results.

Dr Martina is a virologist in the department of virology at Erasmus Medical Center Rotterdam. His research interests include epidemiology of emerging viruses, pathogenesis, and vaccinology of flaviviruses.

References

Address for correspondence: Albert D.M.E. Osterhaus, Institute of Virology, Erasmus University Rotterdam, PO Box, 1738, 3000 DR Rotterdam, the Netherlands; email: a.osterhaus@erasmusmc.nl
Pasture Types and Echinococcus multilocularis, Tibetan Communities

Qian Wang,* Dominique A. Vuitton,† Yongfu Xiao,* Christine M. Budke,‡ Maiza Campos-Ponce,§ Peter M. Schantz,¶ Francis Raoul,† Wen Yang,* Philip S. Craig,# and Patrick Giraudoux†

Our study showed that open pastures had more small mammal burrows than fenced pastures in Tibetan pastoralist communities in 2003. This characteristic was linked to a higher prevalence of *Echinococcus multilocularis* in dogs and indicates that pasture type may affect *E. multilocularis* transmission.

Human alveolar echinococcosis (AE) is an infection caused by *Echinococcus multilocularis*, a highly pathogenic cestode. Foxes are frequently definitive hosts (adult stage), and small mammals are intermediate hosts (larval stage or metacestode). Human AE, albeit restricted to localized endemic areas, is a public health concern in central Europe (1). In western China (2,3), dogs are definitive hosts of AE and have transmitted infection to humans more often than was realized historically (4). Recent mass ultrasound screenings in Tibetan pastoral communities of Sichuan Province, People’s Republic of China, documented an average AE prevalence of 2% (5) and a maximum prevalence of 14.3% (6) in humans.

Since the 1980s, partial fencing of pastures around Tibetan pastoral winter settlements has become common because of changes in land property regulations (7). In a previous study, we showed that partial fencing promoted AE transmission in these communities (8). This increased disease prevalence is likely due to the greater population of small mammal intermediate hosts of the parasite on the Tibetan plateau and leads to more infection in community dogs (8). When yak, sheep, and horse grazing lowers the height of vegetation, *Ochotona curzoniae*, a very susceptible host for *E. multilocularis*, may be found at greater densities than on natural meadows (9). This study was designed to investigate the effect of partial fencing on the general abundance of small mammals in the Tibetan pastoralist winter settlements and its potential consequences for contamination pressure. The study was approved by the ethical committees of Sichuan Institute of Parasitic Diseases and all collaborating investigators.

Based on documented high prevalence of AE and observed fencing practices in the area (8), Qiwu, Yiniu, and Xiaxha townships in Shiqu County of Ganzi Tibetan Autonomous Prefecture, located at a mean elevation of 4,200 m in northwest Sichuan Province, were selected as study sites to carry out investigations in spring and autumn 2003. For the 3 townships, the populations were 2,238, 2,515, and 2,471 and the areas 1,046 km², 955 km², and 834 km², respectively. Thirty kilometers of transect over 30 settlements in the 3 townships (18 villages), which were randomly selected according to landscape patterns, i.e., valley, valley entrance, piedmont, and flat land, were surveyed. Small mammal populations were monitored by using index methods. These methods are based on detecting surface indicators of small mammals, i.e., holes and feces, and are used to link small mammals and their habitats on large areas (10–12). Sampling was performed by 2 investigators walking along a 1-km transect drawn across each settlement, according to a standardized protocol. Along each transect, 50 areas were sampled for small mammal burrows; each area was 200 m². Areas of fenced pastures were measured in 22 settlements by using a global positioning system (GPS) (GPS 12, Garmin International Inc., Olathe, KS, USA). In 15 settlements in which dog feces samplings were conducted in Yiniu and Xiaxha townships, feces specimens were collected from dogs after purging with arecoline, according to the recommendations of World Animal Health Organization/World Health Organization (13), and droppings were collected from the ground when accessible (4). Helminths found in the feces were removed, counted, and placed in 10% formal saline or 85% ethanol. Copro-polymerase chain reaction testing was conducted by using species-specific primers for *E. multilocularis* DNA amplification according to Dinkel et al. (14) as modified by van der Giessen et al. (15).

The distribution of small mammal burrows was highly skewed. Kolmogorov-Smirnov test indicated that the data did not fit a normal distribution (*p*<0.001 in both cases) either inside or outside fenced pastures. Normality was not obtained after Box-Cox transformations. Thus, the burrow density of small mammals was compared between open and fenced pastures by using nonparametric tests that considered landscape factor. Spearman correlation tests were used to quantify the relationship between the burrow
density of small mammals on open pastures and the surface of fenced pastures in settlements in which the fenced areas were all measured, controlling for the landscape factor. A multiple logistic regression model was used to relate median burrow density of small mammals to dog infection in the settlements. The dependent variable was a presence/absence vector (0/1) (dog was negative or positive for *E. multilocularis*). Independent variables included dog's age and sex, droppings collected versus purged fecal samples, and median density of small mammal burrows. All these analyses used SPSS release 10 (SPSS, Chicago, IL, USA).

Landscape type influenced the abundance of small mammal burrows (p<0.001). Post hoc Tukey multiple comparison test on ranks confirmed that the densities of small mammal burrows were different among different landscape types (p<0.05), except for the comparison between flatland and piedmont. The burrow densities of small mammals on open pastures were significantly higher than those on fenced pastures in 3 of 4 landscapes (Table 1).

The Spearman correlations showed larger fenced areas associated with higher density of small mammal burrows in the open pastures in all landscape types (Table 2). The relationships between the area of fenced pastures and the burrow density of small mammals inside the fenced pastures in the 4 landscapes were not significant (valley \(r_s = -0.08, p = 0.32\), flatland \(r_s = -0.46, p = 0.02\), piedmont [statistics not applicable because of 3 observations only], and valley entrance \(r_s = 0.08, p = 0.736\)], except for flatland.

Feces samples, of which 159 (63.1%) were purged, were obtained from 252 dogs (mean age 4.4 years; 183 males). *E. multilocularis* infection rate was 16.7% (42/252); the infection rate was 18.2% (29/159) for purged samples and 14.0% (13/93) for sampled droppings. Multiple logistic regressions showed that the median density of small mammal burrows in the open pastures was significantly positively related to dog infection (p = 0.003, odds ratio 1.05, 95% confidence interval 1.02–1.08). No correlation to dog age (p = 0.52), sex (p = 0.78), or sample collection method was seen (p = 0.380).

The higher median burrow density of small mammals was linked to a higher prevalence of *E. multilocularis* in dogs in these Tibetan pastoralist communities. Thus, partial fencing increases populations of potentially susceptible small mammal species in open pastures and consequently higher contamination pressure by dogs.

In a previous study, we showed that partial fencing around Tibetan settlements in winter pasture was significantly and independently associated with the risk for human AE in surveyed villages (8). We assumed that the underlying reason might be overgrazing, exacerbated by reducing communal pastures near the settlements because of introduction of partial fencing around group tenure pastures acquired by Tibetan pastoralist families. Overgrazing may have promoted population outbreaks of small mammal intermediate hosts of the parasite and increased the density of the small mammal intermediate host, especially *O. curzoniae*. This increase consequently favored higher dog *E. multilocularis* infection and, thus, transmission to humans (8). This study supports this hypothesis.

This study was supported by the Sichuan Provincial Health Department, China, and the US National Institutes of Health/National Science Foundation (Ecology of Infectious Diseases program, grant #1565). Q.W. was supported by a PhD grant from the French Embassy in Beijing.

Dr Wang is an associate fellow at the Division for Disease Control Coordination, Sichuan Provincial Center for Disease Control and Prevention.
Control and Prevention, Chengdu, Sichuan, People’s Republic of China. His research interests include application of socioeconomics to epidemiologic research.

References

Address for correspondence: Qian Wang, Sichuan Provincial Center for Diseases Control and Prevention, 10 University Rd, Chengdu, Sichuan 610041, People’s Republic of China; email: wangqian67@yahoo.com.cn
Class 1 Integrons in Resistant Escherichia coli and Klebsiella spp., US Hospitals

Aarati N. Rao,*1 Miriam Barlow,*2 Leigh Ann Clark,† John R. Boring, III,* Fred C. Tenover,† and John E. McGowan, Jr†

We examined Escherichia coli and Klebsiella spp. from US hospitals for class 1 integrons. Of 320 isolates, 181 (57%) were positive; association of integrons with resistance varied by drug and organism. Thus, determining integron epidemiology will improve understanding of how antibacterial resistance determinants spread in the United States.

Integrons are genetic elements, located on the bacterial chromosome or a plasmid, that often carry genetic determinants for antimicrobial drug resistance (1). The need for systematic epidemiologic studies of the role of integrons in antimicrobial drug resistance in bacteria has recently been emphasized (2). The prevalence of integrons is high among gram-negative isolates from patients in Europe (3,4), and some carry multiple integrons (3). Reports from Asian countries also have noted a high prevalence of class I integrons in gram-negative clinical isolates (5). Most of the resistance integrons found to date in clinical isolates of Enterobacteriaceae are class 1 integrons, which are highly associated with resistance to antimicrobial agents (2).

These data suggest that integrons are relatively common, especially among the Enterobacteriaceae, and that they contribute to the spread of antimicrobial drug resistance in healthcare settings. However, few studies from the United States have assessed the association between integron carriage and antimicrobial susceptibility patterns.

This study analyzes the association between class 1 integrons and resistance to selected antimicrobial agents in a convenience sample of Escherichia coli and Klebsiella isolates. Multivariate analysis was used to determine whether apparent associations were affected by interactions between variables. Isolates were submitted from hospitals participating in Project ICARE (Intensive Care Antimicrobial Resistance Epidemiology) (6). The protocol has been approved as exempt by the institutional review board at Emory University.

The Study

Clinical isolates of E. coli, Klebsiella pneumoniae, and K. oxytoca were obtained from 19 US hospitals during phase IV (2002–2004) of Project ICARE, which focused on nonoutbreak isolates of Enterobacteriaceae with decreased susceptibility to extended-spectrum cephalosporins, fluoroquinolones, or carbapenems. The 19 hospitals were located in 13 states throughout the country and had an approximately equal mix of teaching and nonteaching medical centers. Duplicate isolates from the same patient were excluded.

Isolates were tested for susceptibility to the antimicrobial drugs listed in Table 1 by using the broth microdilution reference method (BMD) described by the Clinical and Laboratory Standards Institute (7). Isolates were stored at −70°C and were subcultured to trypticase soy agar plates containing 5% defibrinated sheep blood (BD Biosciences, Sparks, MD, USA) ≥2 times before testing. For each organism, BMD tests were inoculated by using a cell suspension equivalent to a 0.5 McFarland standard. Enterobacteriaceae isolate identifications provided by participating laboratories were confirmed by colony shape, spot tests (8), and Vitek GN+ cards (bioMérieux, Durham, NC, USA). Differences were resolved by using reference biochemical tests (9).

Isolates were analyzed by polymerase chain reaction (PCR) amplification techniques to determine whether a class 1 integron was present. Integrons were detected by PCR amplification of a class 1 integrase–specific fragment of the IntI1 gene as previously described (1). The primer sequences used were IntI1-F: 5′-TCT CGG GTA ACA TCA AGG-3′ and IntI1-R: 5′-AGG AGA TCC GAA GAC CTC-3′.

Amplifications were performed in 10 µL of Taq PCR Master Mix (Qiagen, Valencia, CA, USA), 1.5 mmol/L MgCl2, 5 pmol/L each primer, and 1 µg template DNA (1). DNA was extracted with a Genelite Bacterial Genomic DNA Kit (Sigma, Saint Louis, MO, USA). Amplification specifications were as follows: 5 min at 94°C followed by 35 cycles of 1 min at 94°C, 1 min at 55°C, and 30 s at 72°C. PCR products were analyzed by gel electrophoresis with 1.5% agarose gels. All PCRs included positive and negative controls.

A statistical comparison of the frequencies of integron presence in E. coli and Klebsiella spp. was conducted by using odds ratios and 95% confidence intervals. Intermediate and resistant isolates were pooled as nonsusceptible for analysis. Multivariate logistic regression analysis was conducted with 1 representative from each
major class of drugs tested. Data validation and analysis were performed by SAS statistical software version 9.1 (SAS Institute, Cary, NC, USA). Fit of the data to this model was evaluated by the Hosmer-Lemeshow χ² test.

A positive test result for class 1 integrons was found for 181 (57%) of the 320 bacterial isolates screened, including 103 (49%) of 209 *E. coli* isolates and 78 (70%) of 111 *Klebsiella* spp. isolates. A positive test result in *E. coli* isolates was significantly associated with nonsusceptibility to gentamicin, tobramycin, ciprofloxacin, chloramphenicol, and trimethoprim-sulfamethoxazole (Table 1). A positive test result in *Klebsiella* isolates was significantly associated with nonsusceptibility to gentamicin, tobramycin, cefepoxide, ceftazidime, and trimethoprim-sulfamethoxazole.

Multivariate analysis showed that the only drug variables associated with a positive test result for class 1 integrons in *E. coli* were nonsusceptibility to gentamicin and trimethoprim-sulfamethoxazole (with a strong interaction between the 2 variables), while an inverse association was present between a positive integron test result and nonsusceptibility to cefepime (Table 2). For *Klebsiella* spp., a positive association existed between a positive integron test result and nonsusceptibility to gentamicin and trimethoprim-sulfamethoxazole, as well as an inverse association between a positive integron test result and nonsusceptibility to aztreonam.

Conclusions

More than half of the selected isolates from US hospitals that we tested were positive for class 1 integrons. The prevalence of class 1 integrons in *E. coli* was 49% in selected non-outbreak isolates from hospitalized patients from 2002 to 2004 in our study, 52% in consecutive urinary tract isolates in 2001 in Sweden (10), and 15% in isolates from blood in hospitals in Sweden in 1998 and 1999 (11). The prevalence of integrons was 70% in *Klebsiella* isolates from hospitalized patients in our study and 73% in extended-spectrum β-lactamase (ESBL)–producing *Klebsiella* spp. collected from 3 hospitals in Australia from 1989 to 1999 (12). These data cannot be directly compared because of differences in selection criteria and testing procedures, but as a whole they suggest that prevalence of integrons in these bacteria in the United States is high, as it is in other areas of the world. Carbapenem resistance was infrequent in the isolates we tested, so we could not address the association of integron carriage and metallo-β-lactamases that has been observed in other parts of the world (2).

Our study found an inverse association between integron presence and nonsusceptibility to cefepime in *E. coli* and to aztreonam in *Klebsiella* spp., which indicates that resistance determinants for these drugs are not frequently carried by integrons. One possible reason for the lack of an association between nonsusceptibility to cefepime and integron carriage is the relatively recent approval of cefepime for use in the United States. CTX-M-type β-lactamases are the most common resistance determinants in cefepime-resistant isolates worldwide, but these enzymes are just beginning to appear in the United States (13).

In phase IV of Project ICARE, participating sites were asked to submit isolates that showed decreased susceptibility to fluoroquinolones, extended-spectrum cephalosporins, or carbapenems. We did not track whether isolates

Table 1. Crude association between nonsusceptibility to various antimicrobial drugs and positive test result for class 1 integron in *Escherichia coli* and *Klebsiella* spp. (*Klebsiella pneumoniae* and *K. oxytoca*)

<table>
<thead>
<tr>
<th>Aminoglycosides</th>
<th>E. coli (n = 209), OR (95% CI)*</th>
<th>Klebsiella spp. (n = 111), OR (95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amikacin</td>
<td>3.15 (0.32–30.79)</td>
<td>4.0 (0.86–18.51)</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>5.04 (2.69–9.47)</td>
<td>4.49 (1.80–11.22)</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>5.55 (3.01–10.23)</td>
<td>5.0 (2.0–12.52)</td>
</tr>
<tr>
<td>Fluoroquinolone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>3.00 (1.40–6.42)</td>
<td>1.33 (0.59–3.04)</td>
</tr>
<tr>
<td>3rd-generation cephalosporin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceftoxime</td>
<td>1.14 (0.63–2.07)</td>
<td>2.26 (0.99–5.19)</td>
</tr>
<tr>
<td>Cefpodoxime</td>
<td>1.02 (0.59–1.75)</td>
<td>2.61 (1.05–6.52)</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>1.30 (0.73–2.31)</td>
<td>2.54 (1.10–5.88)</td>
</tr>
<tr>
<td>4th-generation cephalosporin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefepime</td>
<td>0.35 (0.11–1.13)</td>
<td>1.87 (0.57–6.10)</td>
</tr>
<tr>
<td>Monobactam</td>
<td>1.58 (0.87–2.89)</td>
<td>1.10 (0.48–2.53)</td>
</tr>
<tr>
<td>β-Lactamase inhibitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piperacillin-tazobactam</td>
<td>1.40 (0.75–2.62)</td>
<td>1.82 (0.80–4.14)</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>2.33 (1.30–4.17)</td>
<td>2.29 (0.97–5.42)</td>
</tr>
<tr>
<td>Minocycline</td>
<td>1.57 (0.90–2.76)</td>
<td>1.20 (0.53–2.71)</td>
</tr>
<tr>
<td>Trimethoprim-sulfamethoxazole</td>
<td>12.24 (6.28–23.86)</td>
<td>3.68 (1.57–8.62)</td>
</tr>
</tbody>
</table>

*OR, odds ratio; CI, confidence interval. Variables with p values <0.05, in boldface, are considered significant.
were from patients in intensive care units or not. Thus, our isolates made up a convenience sample strongly associated with drug resistance mechanisms carried as integron gene cassettes and otherwise, and they are not necessarily representative of isolates from the United States in general. We did not examine carriage of >1 integron, as documented in earlier studies (10).

In these selected isolates, the crude association between a positive test result for class 1 integrons and nonsusceptibility to a fluoroquinolone (ciprofloxacin) in *E. coli* and nonsusceptibility to a β-lactam (ceftazidime) in *Klebsiella* spp. failed to remain as independent variables in the multivariate model. This finding suggests that the mechanisms of resistance to fluoroquinolones and β-lactams are associated with mechanisms of resistance to the drugs that remained independently associated with class 1 integrons (aminoglycosides and trimethoprim-sulfamethoxazole), but for reasons unrelated to integron carriage. A previous study also found that ciprofloxacin resistance no longer predicted integron presence in *Enterobacteriaceae* (15).

In our study, both crude and multivariate associations between integron positivity and nonsusceptibility varied for the *E. coli* and *Klebsiella* groups. This finding emphasizes that studies of this type must assess whether analysis should combine results for organisms of different genus and species into larger groups (*e.g.*, *Enterobacteriaceae*).

When determinants encoding resistance to a variety of antimicrobial classes are contained within an integron, use of any of these agents may select for and enhance expression of the other determinants (2). Thus, in the example of our studied isolates, use of aminoglycosides may lead to spread of a multidrug-resistant bacterial strain such as *K. pneumoniae*. The differential association of class 1 integrons with resistance in the isolates we studied suggests that integrons facilitate the spread of antimicrobial drug resistance in the United States.

Acknowledgments

We thank the microbiology personnel at participating hospitals for sending the isolates included in this study.

Table 2. Association of nonsusceptibility to various antimicrobial agents and presence of integrons in *Escherichia coli* and *Klebsiella* spp. (Klebsiella pneumoniae and *K. oxytoca*)

<table>
<thead>
<tr>
<th>Antimicrobial drug</th>
<th>Estimate</th>
<th>OR (95% CI)</th>
<th>p value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicin‡</td>
<td>1.16</td>
<td>3.19 (1.40–7.30)</td>
<td>0.006</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0.31</td>
<td>1.37 (0.46–4.03)</td>
<td>0.573</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>–0.81</td>
<td>0.45 (0.14–1.45)</td>
<td>0.180</td>
</tr>
<tr>
<td>Cefepime</td>
<td>–1.77</td>
<td>0.17 (0.04–0.82)</td>
<td>0.027</td>
</tr>
<tr>
<td>Pipercillin-tazobactam</td>
<td>–0.38</td>
<td>0.68 (0.28–1.66)</td>
<td>0.407</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>1.19</td>
<td>3.29 (0.90–12.0)</td>
<td>0.071</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>0.29</td>
<td>1.34 (0.60–2.99)</td>
<td>0.476</td>
</tr>
<tr>
<td>Minocycline</td>
<td>–0.11</td>
<td>0.89 (0.39–2.06)</td>
<td>0.791</td>
</tr>
<tr>
<td>Trimethoprim-sulfamethoxazole‡</td>
<td>2.56</td>
<td>12.9 (5.73–29.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Source§</td>
<td>1.10</td>
<td>3.02 (1.23–7.45)</td>
<td>0.02</td>
</tr>
<tr>
<td>Intercept</td>
<td>–2.43</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Klebsiella spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicin</td>
<td>1.44</td>
<td>4.23 (1.48–12.03)</td>
<td>0.007</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0.34</td>
<td>1.40 (0.43–4.56)</td>
<td>0.578</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>0.92</td>
<td>2.51 (0.49–12.80)</td>
<td>0.270</td>
</tr>
<tr>
<td>Cefepime</td>
<td>0.05</td>
<td>1.05 (0.27–4.14)</td>
<td>0.942</td>
</tr>
<tr>
<td>Pipercillin-tazobactam</td>
<td>0.02</td>
<td>1.02 (0.26–4.07)</td>
<td>0.979</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>–1.64</td>
<td>0.19 (0.04–0.99)</td>
<td>0.048</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>–0.57</td>
<td>0.57 (0.13–2.44)</td>
<td>0.447</td>
</tr>
<tr>
<td>Minocycline</td>
<td>0.13</td>
<td>1.14 (0.35–3.73)</td>
<td>0.835</td>
</tr>
<tr>
<td>Trimethoprim-sulfamethoxazole</td>
<td>1.52</td>
<td>4.61 (1.39–15.29)</td>
<td>0.012</td>
</tr>
<tr>
<td>Source§</td>
<td>0.56</td>
<td>1.75 (0.64–4.78)</td>
<td>0.275</td>
</tr>
<tr>
<td>Intercept</td>
<td>–0.28</td>
<td>0.591</td>
<td></td>
</tr>
</tbody>
</table>

*Multivariate logistic regression with variables included for 1 drug of each major class that was tested. Hosmer and Lemeshow goodness-of-fit test statistic: *E. coli* total $\chi^2 = 10.852, df = 8, p = 0.21; *Klebsiella* spp. total $\chi^2 = 4.538, df = 8, and p = 0.81. OR, odds ratio; CI, confidence interval.

†By χ^2 approximation.

‡Significant interaction between these 2 variables (p<0.001).

§Nonurine source vs. urine source (reference).
Phase 5 of Project ICARE is supported in part by unrestricted grants to the Rollins School of Public Health of Emory University by Astra-Zeneca Pharmaceuticals, bioMérieux Incorporated, Elan Pharmaceuticals, and Pfizer Incorporated.

Ms Rao is a clinical pharmacy student at Midwestern University in Glendale, Arizona. Her research interests include the relationship of antimicrobial drug use and resistance in healthcare-associated bacteria.

References

Address for correspondence: John E. McGowan, Jr, Rollins School of Public Health, Emory University, 1518 Clifton Rd (Room 442), Atlanta, GA 30322, USA; email jmcmgowa@sphe.emory.edu
Hantaviruses in Serbia and Montenegro

Anna Papa,* Bojana Bojovic,† and Antonis Antoniadis*

Hantaviruses are endemic in the Balkan Peninsula. An outbreak of hemorrhagic fever with renal syndrome occurred in 2002 in Serbia and Montenegro. The epidemiologic characteristics and genetic relatedness of Dobrava/Belgrade virus strains responsible for most cases are described.

Hantaviruses (Bunyaviridae) are enveloped, single-stranded, negative-sense RNA viruses with a tripartite genome consisting of a small (S), a medium (M), and a large (L) segment, which encode the nucleocapsid protein, the glycoprotein precursor and the putative RNA polymerase, respectively (1). Hantaviruses are transmitted to humans through aerosols of excreta from small mammals, mainly rodents, that have had silent lifelong-infections. More than 30 different hantaviruses have been distinguished so far, at least half are related to disease in humans. These viruses cause hemorrhagic fever with renal syndrome (HFRS) in Asia and Europe and hantavirus pulmonary syndrome (HPS) in America. HFRS is caused by Hantaan (HTNV), Dobrava/Belgrade (DOBV), Seoul (SEOV), and Puumala (PUUV) hantaviruses, while HPS is caused by Sin Nombre (SNV) and related viruses. Each hantavirus is associated with a specific primary rodent reservoir of the Muridae family; these relationships have coevolved over a long period, probably >50 million years (1).

HFRS is endemic in the Balkan Peninsula, where sporadic cases or outbreaks have been reported. The disease is seen during the summer and affects mainly adults (2,3), although infections in children, some fatal (4), have been reported. Hantaviruses associated with disease in humans in Balkans are DOBV, carried by the yellow-necked mouse (Apodemus flavicollis), which causes severe HFRS with a fatality rate up to 10%, and PUUV, carried by the red bank vole (Clethrionomys glareolus). PUUV causes nephropathia epidemica, a milder form of HFRS, with a fatality rate <1% (3,5–8). Recently, A. agrarius was found to be an additional host of DOBV, causing a milder disease than that associated with A. flavicollis (9). Additionally, Tula virus RNA was amplified from lung tissues of a European pine vole (Pitymys subterraneus) in Serbia (10).

The first probable HFRS case was reported in former Yugoslavia in 1952 (11,12); the first identified epidemic of HFRS occurred in 1961 (13). Some years (namely, 1961, 1967, 1979, 1986, 1989, and 1995 [2]) are characterized by increased HFRS cases. Different factors, such as weather and food abundance, could influence the dynamics of rodent populations.

The more recent large epidemic in Serbia and Montenegro occurred in 2002 with 128 laboratory-confirmed cases. The number of confirmed cases was lower in the following years. In 2003, 16 cases occurred in Serbia and 18 in Montenegro (1 fatal). In 2004, 20 cases (1 fatal) occurred in Serbia and 11 in Montenegro.

During 2002, a total of 376 serum samples from patients with suspected HFRS cases were tested in Torlak Institute, Belgrade, by indirect immunofluorescent assay (IFA) for the presence of hantavirus antibodies. IFA was performed on spot slides containing Vero E6 cells infected with HTNV, SEOV, PUUV, and DOBV. For 128 cases (77 from Serbia, 51 from Montenegro), a laboratory diagnosis of HFRS was made. Most patients (77.3%) were infected with DOBV-like viruses; the rest were infected with PUUV-like viruses. Briefly, 53 (69%) of 77 samples from Serbia and 46 (90%) of 51 from Montenegro had higher antibody titers to HTNV and DOBV than to PUUV; the other samples had higher titers to PUUV. Two Serbian patients who lived in Leskovac died. Most DOBV-like infections from Serbia occurred in the south (Leskovac, Vranje, Nis, Surdulica, Vlasina), while the PUUV-like infections occurred in the north (Vojvodina and area near the River Drina) (map of Serbia and Montenegro available from http://www.un.org/Depts/Cartographic/map/profile/yugoslav.pdf).

Thirty-one serum samples from the IFA-positive patients were sent to Aristotle University for additional testing. Samples were taken from 21 HFRS patients with a mean age of 40.3 years (21–68 years); 1 sample was obtained from a 5-month-old male infant, whose mother had HFRS at the time of delivery. Two of 21 patients died. Enzyme-linked immunosorbent assay (ELISA) to detect immunoglobulin G (IgG) and IgM antibodies to HTNV and PUUV was performed with kits by Progen (Biotechnik GmbH, Heidelberg, Germany). IgM antibodies to HTNV were detected in 18 of 21 patients; 9 also carried IgM antibodies to PUUV. Although in lower titers than to HTNV (Table 1). IgG antibodies to HTNV were present in 17 of 21 patients; in 3 patients low titers of IgM antibodies to PUUV were also detected. The infant had IgG antibodies to HTNV. In 1 sample (DR) no antibodies to HTNV or

*World Health Organization Collaborating Center for Reference and Research on Arboviruses and Haemorrhagic Fever Viruses at Aristotle University of Thessaloniki, Thessaloniki, Greece; and †Torlak Institute of Immunology and Virology, Belgrade, Serbia and Montenegro
PUUV were detected, although it was positive by IFA. ELISA results suggested that all 21 patients had an HTNV-like infection.

Viral RNA was extracted from IgM-positive samples (a sample from the neonate was also included) by using the viral RNA extraction kit (Qiagen GmbH, Hilden, Germany). Reverse transcription and nested amplification were performed with primers previously designed to detect partial S and M segment sequences from hantaviruses associated with rodents of the Murinae and Arvicolinae subfamilies (14,15). Three samples (M.D., T.V., P.V.) gave a PCR product of the expected size of 599 bp, when primers specific for the S segment of hantaviruses associated with Murinae rodents were used; 1 sample (MD) gave a product of 317 bp with the primers for the M segment of the same hantaviruses. No product was obtained when primers specific for the S segment of hantaviruses associated with Arvicolinae rodents were used. Nucleotide sequences were aligned with respective hantavirus sequences retrieved from GenBank; genetic distances were measured by the neighbor-joining method, and phylogenetic trees were constructed by using PHYLIP (Phylogeny Inference Package by J. Felsenstein [http://evolution.genetics.washington.edu/phylip.html]). The nucleotide sequences were assigned the accession numbers DQ305279-DQ305282.

Two phylogenetic trees were constructed, one for the S segment (Figure 1) and another for the M segment (Figure 2). In both trees, hantavirus strains from Serbia and Montenegro cluster with other DOBV sequences and were associated with the rodent A. flavicollis. In the S segment tree, sequences of this study comprise the Serbian clade in the DOBV–A. flavicollis cluster. In the same cluster are the Slovenian, Slovakian, and Greek clades. Sequences of this study differ by 0.3%–2.6% at the nucleotide level, with identical deduced amino acid sequences. Genetic distances with other DOBV sequences are seen in Table 2. Concerning the M segment, a fragment of the G1-coding region of patient MD differed by 5.7% at the nucleotide level from the Slovenian DOBV strain isolated from A. flavicollis.
flavicollis, with identical deduced amino acid sequences. The differences from DOBV strains from northwestern Greece were 8.5%–9.4% and 1% at nucleotide and amino acid levels, respectively.

Patient TV was a 38-year-old woman who lived in Vranje. Patient PV was a 29-year-old woman who lived in Leskovac. Both of these locations are in southeastern Serbia. PV died on day 6 of illness. Patient MD was living in Beograd. However, his sequences were similar to those of patients TV and PV. His travel history showed that 18 days before the onset of illness, he was on vacation in Kolasin Mountain in Montenegro, where he was probably infected. Thus, all sequences of this study were from the southern region of the country and clustered with other DOBV strains associated with A. flavicollis rodents.

Table 2. Genetic distances (%) in partial S segment fragment (364–963 nucleotides) of hantaviruses associated with Murinae rodents among Yugoslavian DOBV strains and representative DOBV strains related with different Apodemus spp. rodents

<table>
<thead>
<tr>
<th>Yugoslavian DOBV strains</th>
<th>A. flavicollis related</th>
<th>A. agrarius related</th>
<th>A. sylvaticus related</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain</td>
<td>7937/02 (PV)</td>
<td>5157/02 (TV)</td>
<td>9744/02 (MD)</td>
</tr>
<tr>
<td>PV</td>
<td>–</td>
<td>0.3</td>
<td>2.6</td>
</tr>
<tr>
<td>TV</td>
<td>–</td>
<td>2.2</td>
<td>4.5</td>
</tr>
<tr>
<td>MD</td>
<td>–</td>
<td>4.5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

*DOBV, Dobrava/Belgrade virus; –, 0.0.
However, the involvement of other hantaviruses in the outbreak cannot be excluded.

Although the number of samples tested was limited, this study gives the first genetic information on DOBV strains circulating in Serbia and Montenegro. Further studies of both patients and small mammals in the region are needed to find out the exact epidemiology of HFRS in the country.

Acknowledgments

We thank Vassiliki Pavlidou and Panagiota Papadopoulou for excellent technical assistance.

Dr Papa is assistant professor of medicine and head of the molecular diagnostics and special pathogens laboratory at the Department of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Greece. Her major interest is the molecular epidemiology of hantaviruses and nairoviruses.

References

Address for correspondence: Anna Papa, A Department. of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54006, Thessaloniki, Greece; email: annap@med.auth.gr

All material published in Emerging Infectious Diseases is in the public domain and may be used and reprinted without special permission; proper citation, however, is required.
Raccoons and Skunks as Sentinels for Enzootic Tularemia

Zenda L. Berrada,*† Heidi K. Goethert,*† and Sam R. Telford III*†

We analyzed sera from diverse mammals of Martha’s Vineyard, Massachusetts, for evidence of Francisella tularensis exposure. Skunks and raccoons were frequently seroreactive, whereas white-footed mice, cottontail rabbits, deer, rats, and dogs were not. Tularemia surveillance may be facilitated by focusing on skunks and raccoons.

Martha’s Vineyard, an island located off the coast of Cape Cod, Massachusetts, has been the location of the only 2 outbreaks of primary pneumonic tularemia reported in the United States (1). The first outbreak occurred in 1978, with 15 tularemia cases reported, 12 of which were considered pneumonic. The cases were believed to be linked to a common source, and exposure was presumed to be inhalational because of the absence of ulcers or lymphadenopathy associated with vector bites (2). The second outbreak, which began in 2000, has yielded 50 confirmed or probable cases by 2005, of which more than half have resulted from pneumonic exposure. Landscaping activities were identified as a risk factor (3), but fomites remain undescribed. As the first step in identifying the biologic basis for risk as a function of landscaping activities, we determined whether a tularemia epizootic had occurred on Martha’s Vineyard.

Common mammals were collected during Lyme disease surveillance and specifically for the purposes of this study. White-footed mice (Peromyscus leucopus fuscus) were trapped from Chilmark and Edgartown sites during 1994–2004. Skunks (Mephitis mephitis), raccoons (Procyon lotor), and squirrels (Sciurus carolinensis) were live-trapped during 2001–2004 from sites in Chilmark, West Tisbury, and Edgartown, where landscapers had indicated that they had worked intensively. Rabbits (Oryctolagus cuniculus), dogs, and deer were considered reactive. None of these animals were reactive for Brucella agglutinins, except for 1 skunk sample, which was positive at a titer of 1,024. This sample had an extremely high F. tularensis MAT titer of 8,192. Skunks and raccoons appear to have been frequently exposed to F. tularensis; few rats, dogs, or deer had been; and no other rodents or lagomorphs apparently had been exposed. Accordingly, of the diverse animals that we sampled, only skunks and raccoons were commonly exposed.

Thirty skunks (including 3 pups) were MAT negative, demonstrating that the great seroprevalence that we observed is not attributable to a nonspecific agglutinin inherently associated with serum from this host. In addition, 9 adult raccoon and 2 adult skunk samples from nearby Great Island (South Yarmouth, MA) collected in 1988 were nonreactive, despite being trapped from a site where dog ticks, rabbits, and deer flies are as common as they are on Martha’s Vineyard (unpub. data). Of 72 deer serum specimens sampled from mainland Massachusetts sites, none were reactive. The reactivity that we have observed thus reflects exposure and not innate nonspecific reactivity.

The great seroprevalence in skunks and raccoons trapped from Martha’s Vineyard demonstrates an ongoing tularemia epizootic. In other sites, F. tularensis seroreactivity in skunks or raccoons ranged from 3.2% to 25.7% (5); a seropositive raccoon was found among the few animals surveyed during investigation of the Martha’s Vineyard outbreak by the Centers for Disease Control and Prevention (1). We suggest that skunks and raccoons may serve as sensitive indicators for enzootic tularemia activity: both animals are scavengers and may prey on infected...
animals that are sick or dying of tularemia. In addition, both are definitive hosts for dog ticks (*Dermacentor variabilis*), a known tularemia vector (6, 7). Of the raccoons and skunks sampled during tick season for which tick infestations were determined, all were infested with a range of 6 to 102 dog ticks per animal (mean 43.4 ± 26.8 SD, n = 31). Whether the serologic evidence implies reservoir capacity is not clear. None of the skunks or raccoons appeared to be actively infected based on polymerase chain reaction (PCR) of whole blood samples (unpub. data). Larval and nymphal dog ticks do not feed on medium-sized mammals, and thus skunks and raccoons would not contribute to producing infected adult dog ticks. Skunks and raccoons might facilitate transovarial transmission of *F. tularensis* (8) by infecting adult female dog ticks that will eventually oviposit. Dog ticks removed from them, however, were not more frequently infected than those from vegetation (7), but this analysis may have missed finding sparse bacteria that had been ingested and remained within the tick gut.

Skunks and raccoons on Martha’s Vineyard are frequently seropositive, whereas other animals that we examined were not. This finding may reflect differential survival of hosts that are infected by *F. tularensis*. Rodents and rabbits generally die rapidly after exposure (9), likely before they mount an antibody response. Indeed, of the 21 rabbits that were examined, 3 were moribund and yielded evidence of active infection by *F. tularensis* (by PCR, direct fluorescent antibody test, or isolation), but none were seroreactive. Thus, serosurveys of healthy rodents and rabbits may comprise only those that were never exposed or at most were only recently exposed; dead rodents or rabbits, of course, would not be captured (but see [10]).

The seroreactivity of 1 rat suggests that these animals should be examined more carefully as potential sentinels; rats are known to be relatively resistant to challenge with virulent type A organisms (11). That a deer was seroreactive is puzzling. Dog ticks do not feed on deer, and deer ticks sampled from Martha’s Vineyard sites have not been found to be infected (6). Possibly, tabanid flies, which may feed on deer, are involved in perpetuating *F. tularensis* on Martha’s Vineyard as they are in the western United States (12). Dogs, on the other hand, are well-described as sensitive sentinels for tickborne infections such as Lyme disease (13) and may be good candidates for detecting tularemia activity as well.

The peridomestic behavior of skunks and raccoons implies the possibility of direct risk of human exposure. Indeed, human infection has been associated with skinning skunks (9). If exposed skunks and raccoons foraging around people’s homes leave infectious excreta, these may serve as the fomites for the presumably aerogenic tularemia outbreak. Testing such a hypothesis requires detecting viable *F. tularensis* in skunk or raccoon feces collected from sites of active transmission. Regardless of whether raccoons or skunks may serve as reservoirs, focusing serosurveys on these hosts as opposed to other species such as mice may quickly demonstrate tularemia transmission within American sites. In addition, raccoon and skunk sentinel surveillance could potentially assist in discriminating between natural transmission to humans and illegitimate introduction events.

Acknowledgments

We thank the residents and agencies of Martha’s Vineyard who have provided invaluable assistance to our work, particularly John Varkonda, William Searle, Cathy and William Glover; and Connie and Walter Ashley. Bela Matyas kept us updated on the ongoing outbreak, reviewed early versions of the manuscript, and made helpful suggestions.

Our work is supported by grants from the National Institutes of Health (R21 AI 053411, NO1 AI30050, and RO1 AI 39002).

Ms Berrada is a doctoral candidate in the comparative microbial pathogenesis program at the Cummings School of Veterinary Medicine. Her research interests include microbial ecology and the epidemiology of zoonotic infections.

References

Address for correspondence: Sam R. Telford III, Division of Infectious Diseases, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd, North Grafton, MA 01536, USA; email sam.telford@tufts.edu
West Nile Virus Infection in Humans and Horses, Cuba

Maritza Pupo,* Maria Guadalupe Guzmán,* Roberto Fernández,* Alina Llop,* Félix Orlando Dickinson,* Daniel Pérez,* Raúl Cruz,† Tayri González,† Gonzalo Estévez,† Hiram González,‡ Paulino Santos,§ Gustavo Kourí,* Maya Andonova,¶ Robbin Lindsay,¶ Harvey Artsob,¶ and Michael Drebot¶

A surveillance system to detect West Nile virus (WNV) was established in Cuba in 2002. WNV infection was confirmed by serologic assays in 4 asymptomatic horses and 3 humans with encephalitis in 2003 and 2004. These results are the first reported evidence of WNV activity in Cuba.

West Nile virus was first detected in the Western Hemisphere during an outbreak of encephalitis in New York State in 1999 (1). Genetic analyses showed that the virus responsible for the 1999 outbreak was nearly identical to a WNV strain circulating in Israel in 1998 (2). Recent outbreaks of WNV disease in the United States and Canada have been accompanied by a high proportion of deaths in birds (3,4), substantial illness in equines (4,5), and thousands of cases of severe neurologic disease in humans (6). The range of WNV has rapidly expanded across the continental United States and Canada (7). WNV infection in humans, equines, and birds in Mexico (8), the Caribbean (9), and South and Central America (10,11) shows southward movement of the virus. Because Cuba is close to areas of the United States where WNV is endemic and because of recent evidence that suggests spread of WNV into the Caribbean, surveillance was established to monitor for WNV in Cuba. Beginning in 2002, the Medical Services and Ministry of Agriculture and Veterinarian Services of Cuba established a national surveillance program by using birds, horses, and humans to detect WNV activity. In this report, we summarize the key findings of surveillance activities.

The Study

The Ministry of Agriculture and Veterinarian Services coordinated the collection of dead birds. A total of 1,217 dead birds were shipped at 4°C to the Tropical Medicine Institute “Pedro Kouri” and identified by ornithology experts. Brain, heart, and kidneys were removed and tested for WNV by using reverse transcription–polymerase chain reaction (RT-PCR) (12). Briefly, RNA was extracted by using the QIAmp viral RNA kit (Qiagen, Inc., Valencia, CA, USA). Primers WN212 (5′-TTGTGTTG-GCTCTTTTGGCGTTTT-3′) and WN619c (5′-CAGCGACAGCAGCTGACATCATA-3′) were used to detect viral RNA. A second RT-PCR with primers WN9483 (5′-CACCTACGGCCCTAAACACTTTCC-3′) and WN9794 (5′-GGAACCTGCTGCAATCATCATA-3′) was performed on the same RNA preparation.

Serum specimens from horses in Havana and Havana Province were tested for antibodies to WNV by using a competitive enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies 3.1112G and 6B6C-1 as described by Blitvich et al. (13). We tested 210 serum specimens from horses collected as part of an infectious anemia study. The immunoglobulin M (IgM) test was not performed because horses were never suspected of having WNV and did not have any history of suspected viral encephalitis or other illness or symptoms. An inhibition value >50% was used as the diagnostic criterion to identify flavivirus antibody (Table 1).

The Cuban Health Ministry and Medical Services division conducted surveillance for encephalitis of unknown origin in patients >30 years of age. Serum and cerebrospinal fluid specimens were shipped at 4°C to the Tropical Medicine Institute “Pedro Kouri.” Human sera were screened for WNV IgM and IgG by using commercial IgM and IgG ELISA kits (Focus Technologies, Cypress, CA, USA) according to manufacturer’s instructions. Hemagglutination-inhibition (HI) tests were also undertaken with WNV and Saint Louis encephalitis virus (SLEV) antigen (14).

Reactive serum samples were further tested by a plaque reduction neutralization test (PRNT) with WNV (NY99, Ontario, Canada, 2001 isolate), SLEV (Parton strain, American Type Culture Collection catalog no. VR-1265), and dengue virus (dengue 2, NG-C strain). PRNT was performed to confirm WNV-specific antibody and was carried out as described previously (15) by using a neutral red double-overlay procedure. Horses or human patients were considered seropositive for a particular flavivirus if the 90% PRNT titer for that virus was ≥4-fold greater than the neutralization titers determined for other viruses used in the assay. Endpoint titrations were defined as the highest dilution of serum that reduced plaque formation by ≥90%.

Most (58%) of the 1,217 birds tested were resident
species of Cuba, primarily chestnut manakins (*Lonchura malaccas*), blue jays (*Cyanocitta cristata*), herring gulls (*Larus argentatus*), yellow-faced grassquits/olive finches (*Tiaris olivacea*), and northern parulas (*Parula americana*). None of the birds were positive for WNV RNA by RT-PCR. We attempted to isolate WNV from most samples, but virus was not cultured. Most dead birds were received in good condition for testing.

Nineteen (9.0%) of the 210 horses had serum specimens with antibodies to flaviviruses (Table 1). Four and 8 animals had WNV- and SLEV-specific antibodies, respectively, in the PRNT. Two horses seropositive for WNV came from Havana City, and 2 others came from Havana Province. Seven serum samples had antibodies to undetermined flaviviruses on the basis of results of neutralization assays, and further virus characterization was not performed. None of the horses, including those that were positive for flavivirus antibodies, showed any signs of illness at the time of serum collection.

Serum specimens from 13 patients with encephalitis were tested for possible WNV infection. Two of these patients (M.M. and K.R.) were identified as part of WNV surveillance in 2003. Both acute-phase and convalescent-phase serum specimens from these patients were positive for flavivirus antibody by IgM and IgG ELISAs (Table 2). Cerebrospinal fluid from patient K.R. was also positive for IgM by WNV ELISA. Acute-phase and convalescent-phase serum samples from M.M. and K.R. were also positive by HI assay and showed seroconversion to WNV. Convalescent-phase serum samples were tested for WNV-specific antibody by PRNT, and the neutralization titers were 320 and 160, respectively. Neutralizing antibodies

Table 1. Summary of horse sera tested for evidence of WNV infection by ELISA and PRNT*

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>% inhibition (ELISA)</th>
<th>90% PRNT titer</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anti-WNV</td>
<td>Antiflavivirus</td>
<td>WNV</td>
</tr>
<tr>
<td>C-7</td>
<td>65.3</td>
<td>65.2</td>
<td>160</td>
</tr>
<tr>
<td>C-13</td>
<td>58.9</td>
<td>60.4</td>
<td>320</td>
</tr>
<tr>
<td>C-19</td>
<td>63.2</td>
<td>63.3</td>
<td>320</td>
</tr>
<tr>
<td>C-20</td>
<td>74.6</td>
<td>62.2</td>
<td>640</td>
</tr>
<tr>
<td>C-2</td>
<td>44.4</td>
<td>60.4</td>
<td>–</td>
</tr>
<tr>
<td>C-4</td>
<td>11.6</td>
<td>40.1</td>
<td>–</td>
</tr>
<tr>
<td>C-5</td>
<td>67.5</td>
<td>67.6</td>
<td>–</td>
</tr>
<tr>
<td>C-11</td>
<td>10.5</td>
<td>26.7</td>
<td>–</td>
</tr>
<tr>
<td>C-12</td>
<td>32.2</td>
<td>68.0</td>
<td>–</td>
</tr>
<tr>
<td>C-15</td>
<td>27.4</td>
<td>68.9</td>
<td>–</td>
</tr>
<tr>
<td>C-16</td>
<td>64.6</td>
<td>65.7</td>
<td>–</td>
</tr>
<tr>
<td>C-18</td>
<td>59.1</td>
<td>68.2</td>
<td>–</td>
</tr>
<tr>
<td>C-10</td>
<td>62.7</td>
<td>66.3</td>
<td>80</td>
</tr>
<tr>
<td>C-1</td>
<td>22.3</td>
<td>74.4</td>
<td>–</td>
</tr>
<tr>
<td>C-3</td>
<td>40.5</td>
<td>54.1</td>
<td>–</td>
</tr>
<tr>
<td>C-6</td>
<td>28.5</td>
<td>74.8</td>
<td>–</td>
</tr>
<tr>
<td>C-9</td>
<td>40.9</td>
<td>73.6</td>
<td>–</td>
</tr>
<tr>
<td>C-14</td>
<td>34.8</td>
<td>41.0</td>
<td>–</td>
</tr>
<tr>
<td>C-21</td>
<td>9.9</td>
<td>68.4</td>
<td>–</td>
</tr>
</tbody>
</table>

WNV, West Nile virus; ELISA, enzyme-linked immunosorbent assay; PRNT, plaque reduction neutralization test; SLEV, Saint Louis encephalitis virus.

Table 2. Summary of humar sera tested for evidence of WNV infection by ELISA and PRNT*

<table>
<thead>
<tr>
<th>Patient code</th>
<th>ELISA result†</th>
<th>HI titer†</th>
<th>90% PRNT titers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IgM</td>
<td>IgG</td>
<td>WNV</td>
</tr>
<tr>
<td>M.M.</td>
<td>+/+</td>
<td>+/+</td>
<td>40/160</td>
</tr>
<tr>
<td>K.R.</td>
<td>+/+</td>
<td>+/+</td>
<td>20/80</td>
</tr>
<tr>
<td>O.G.</td>
<td>–/–</td>
<td>+/+</td>
<td>20/20</td>
</tr>
<tr>
<td>M.L.</td>
<td>–/–</td>
<td>+/+</td>
<td>20/20</td>
</tr>
<tr>
<td>A.M.L.</td>
<td>–/–</td>
<td>+/+</td>
<td>20/40</td>
</tr>
<tr>
<td>R.A.</td>
<td>ND/–</td>
<td>ND/+</td>
<td>1,280</td>
</tr>
<tr>
<td>P.Y.</td>
<td>ND/–</td>
<td>ND/+</td>
<td><20</td>
</tr>
<tr>
<td>M.V.</td>
<td>–/–</td>
<td>+/+</td>
<td>20/40</td>
</tr>
<tr>
<td>J.A.R.</td>
<td>–/–</td>
<td>+/+</td>
<td>20/40</td>
</tr>
<tr>
<td>R.C.</td>
<td>–/–</td>
<td>+/+</td>
<td>20/20</td>
</tr>
<tr>
<td>A.P.</td>
<td>–/–</td>
<td>+/+</td>
<td>20/20</td>
</tr>
<tr>
<td>L.V.</td>
<td>–/–</td>
<td>+/+</td>
<td>20/40</td>
</tr>
<tr>
<td>D.B.</td>
<td>ND/–</td>
<td>ND/+</td>
<td>ND</td>
</tr>
</tbody>
</table>

*WNV, West Nile virus; ELISA, enzyme-linked immunosorbent assay; PRNT, plaque reduction neutralization test; Ig, immunoglobulin; HI, hemagglutination inhibition; SLEV, Saint Louis encephalitis virus; DENV, dengue virus; ND, not done;†Acute-phase/convalescent-phase serum samples.
against SLEV or dengue virus were not detected in the serum specimens of either patient. These persons are the first to have confirmed cases of WNV-associated illness in Cuba. Both patients had histories of febrile illness, muscle weakness, and encephalitis, and both were hospitalized. These persons had jobs that required them to spend large amounts of time outdoors, and they lived in communities in Santi Spiritus and Villa Clara in central Cuba. Another person (O.G., Table 2), who also resided in Santi Spiritus, had a low WNV titer by HI assay but had neutralizing antibodies to WNV, which suggests a past WNV infection. This patient was identified during surveillance in 2004 but may have been exposed to WNV in 2003.

Serum specimens from the 10 remaining patients were negative for WNV IgM but were positive for flavivirus IgG by ELISA; most of these were also positive by HI assay (Table 2). One person appeared to have been exposed to dengue virus, and 4 had antibodies to unidentified flaviviruses. Five patients had serum with SLEV-specific antibodies. Seroconversions were not demonstrated in any of these persons, so we cannot say whether their illnesses were associated with SLEV or dengue virus infections.

Conclusions

We report the first evidence of antibodies to WNV in horses and humans in Cuba. The fact that human and horse infections have been detected strongly suggests that a local amplification cycle has been established in Cuba. The mode of entry of the virus into Cuba is unknown.

In North America, avian death from WNV infection has been well documented (3–5). However, none of the dead birds collected during this study showed evidence of viral infection. Although 1,217 animals were tested, a more intensive dead bird surveillance program may be needed to identify animals that die from WNV infection. Resident bird species in Cuba may be less susceptible to WNV infection, and death rates among birds in the Caribbean may be lower than those observed in Canada and the United States.

This study also provides evidence that suggests WNV and SLEV may co-circulate in Cuba. Further studies are required to confirm these observations and to characterize the transmission cycles involved. Finally, expansion of existing mosquito control programs in Cuba, which currently focus on *Aedes aegypti* and dengue prevention, may be required to respond to this new public health threat.

Acknowledgments

We thank staff of the Hygiene and Epidemiology Province Centers for collecting sera from patients; Adriana Sánchez, Sheila Cabezas, Lester Gonzalez, Mayling Alvarez, Odyaysa Valdés, and Yaine Vázquez for technical assistance; Susana Vázquez for her comments; Ernie Gould, Thomas Briese, Ian Lipkin, Ildefonso Salas, and J.F. Contreras for materials they donated to this study; and Susan Shead and Antonia Dibernardo for expert technical assistance.

Dr Pupo is a specialist of the Pan American Health Organization/World Health Organization collaborating centers for viral diseases and studies of dengue virus and its vector. She is also the head of the biosafety level 2+ laboratory and West Nile virus surveillance laboratory at the Tropical Medicine Institute “Pedro Kouri,” Havana, Cuba.

References

Address for correspondence: Maritza Pupo, “Pedro Kouri” Institute, Autopista Novia del Mediodia, Km 6 1/2, La Lisa, PO Box 601, Marianao 13, Ciudad de la Habana, Cuba; email: mpupo@ipk.sld.cu
Mixed Cryptosporidium Infections and HIV

Vitaliano Cama,*† Robert H. Gilman,‡‡ Aldo Vivar,§ Eduardo Ticona,¶ Ynes Ortega,# Caryn Bern,* and Lihua Xiao*

Mixed Cryptosporidium infections were detected in 7 of 21 patients with a diagnosis of rare Cryptosporidium canis or C. felis infections; 6 patients were infected with 2 Cryptosporidium spp. and 1 patient with 3 species. Mixed infections may occur more frequently than previously believed and should be considered when assessing cryptosporidiosis.

Cryptosporidium spp. infect humans and other vertebrate animals. Persons with compromised immune systems can suffer life-threatening chronic diarrhea, especially when their CD4+ lymphocyte counts fall <200 cells/µL. At least 7 Cryptosporidium spp. have been detected in immunocompromised patients (1). Nonetheless, the role of concurrent or mixed infections in the pathogenesis and transmission of Cryptosporidium spp. is unclear. Mixed infections of Cryptosporidium hominis and C. parvum have been reported in several patients from Switzerland and England (2,3). Additional studies from the United Kingdom reported simultaneous infections with these 2 species: 4 cases in 2 waterborne outbreaks and 2 cases of sporadic infections from 1995 to 1999 (4). In a more recent study, 12% of 135 clinical specimens from Aberdeen, Scotland, had concurrent C. parvum and C. hominis infections (5). Mixed C. hominis–C. parvum infections were also seen in 2 of 38 archived human specimens in a study conducted in the United States (6). These observations suggest that mixed Cryptosporidium infections are not uncommon.

Mixed infections may not be readily identified by commonly used molecular diagnostic tools because of preferential polymerase chain reaction (PCR) amplification of the predominant genotypes or the specificity of molecular tools (6). For example, PCR–restriction fragment length polymorphism (RFLP) tools based on the small subunit (SSU) rRNA gene are frequently used in genotyping Cryptosporidium spp. because they have higher sensitivity and detect more species than PCR-RFLP tools based on other genes (7).

Two previous studies in Peru used an SSU-rRNA–based PCR-RFLP tool to genotype Cryptosporidium specimens from children (8) and AIDS patients (1). A variety of Cryptosporidium spp. were found in both patient populations; C. hominis was the predominant species, followed by C. parvum, C. meleagris, C. canis, and C. felis, but mixed infections were rarely detected (1,8). However, a recent study of some of the specimens that used PCR tools that selectively amplify DNA of C. parvum and closely related species identified concurrent infections of C. hominis in specimens previously diagnosed as having only C. canis, C. muris, or C. suis (7). Another recent study has shown that an SSU rRNA–based PCR-RFLP tool had only a 31%–74% success rate in detecting concurrent infections with C. parvum and C. hominis (9).

The Study

We addressed the question of whether Peruvian HIV-positive patients infected with the usual C. canis or C. felis parasites were co-infected with C. hominis, C. parvum, or C. meleagris (7). One tool was based on the dihydrofolate reductase (DHFR) gene (10) and the other on the Cryptosporidium oocyst wall protein (COWP) gene (11). Fifty-six stool specimens from 21 HIV-infected persons with previous diagnoses of C. canis or C. felis with an SSU rRNA–based PCR-RFLP tool were re-analyzed with these 2 molecular tools. DNA was extracted by using the QIAamp stool DNA extraction kit (Qiagen Inc., Valencia, CA, USA), and 1 µL DNA was used in nested PCR analyses of the DHFR and COWP genes. Secondary PCR products positive for Cryptosporidium were digested with restriction enzymes BpuA I for the DHFR tool or Rsa I for the COWP tool (10,11). Results of RFLP diagnosis were confirmed by DNA sequence analysis. All secondary PCR products were sequenced with a 3100 ABI Prism Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). The sequences obtained were aligned with reference sequences from GenBank by using BioEdit version 7.0.5 (Isis Pharmaceuticals, Carlsbad, CA, USA).

The PCR analysis of both DHFR and COWP genes showed that 17 specimens from 7 patients yielded products of the expected size for Cryptosporidium spp. (Figure, panel A, and Table). Restriction analysis of DHFR products with BpuA I showed that 4 patients had banding patterns indicative of C. hominis, 1 patient had the pattern of C. parvum, 1 patient had the pattern of C. meleagris, and

*Centers for Disease Control and Prevention, Atlanta, Georgia, USA; †Johns Hopkins University, Baltimore, Maryland, USA; ‡Asociación Benéfica Proyectos en Informática, Salud, Medicina y Agricultura, Lima, Peru; §Hospital Arzobispo Loayza, Lima, Peru; ¶Hospital Dos de Mayo, Lima, Peru; and #University of Georgia, Griffin, Georgia, USA
1 patient had the patterns of *C. hominis* and *C. meleagridis* (Figure panel B). Likewise, RFLP analysis of the COWP PCR products digested with *Rsa* I showed 3 banding patterns that were in complete agreement with the results obtained for the DHFR PCR-RFLP tool (Figure panel C). Therefore, 2 of the 12 *C. canis*-infected patients had *C. hominis*, 1 had *C. parvum* and 1 had both *C. hominis* and *C. meleagridis*; of the 9 *C. felis*-infected patients, 2 had *C. hominis* and 1 had *C. meleagridis* (Table).

All DHFR and COWP PCR products were sequenced, which confirmed the results of the RFLP diagnosis. Altogether, 8, 2, and 3 DHFR sequences were obtained for *C. hominis*, *C. parvum*, and *C. meleagridis*, respectively. The *C. hominis* and *C. meleagridis* DHFR sequences were identical to XM_660774 and AY391725, respectively. The *C. parvum* DHFR sequences were homologous to XM_625460, with an insertion at position 37 and 4 bp substitutions at positions 66, 69, 364, and 367. Likewise, 10, 2, and 3 COWP sequences were obtained for *C. hominis*, *C. parvum*, and *C. meleagridis*, respectively, and were identical to AF481960, AF266273, and AY166840, respectively, in GenBank. The *C. parvum* DHFR nucleotide sequence obtained from this study is deposited in GenBank under accession no. DQ352814.

To confirm the original diagnosis of *C. canis* and *C. felis* infection, we reanalyzed all DNA preparations of these specimens with the SSU rRNA genotyping tool (7). Results were in complete agreement with those obtained previously (7): 19 specimens from 12 patients had *C. canis*, 15 specimens from 9 patients had *C. felis*, and no specimens had mixed *Cryptosporidium* spp., as indicated by RFLP patterns (Table and Figure panel D).

Data on diarrhea at study enrollment were available for 4 of the 7 patients with mixed infections and all 14 patients without mixed infections. Among persons with mixed infections, 1 did not have diarrhea, 2 had diarrhea lasting <30 days, and 1 had diarrhea ≥5 months. Seven of 14 patients without mixed infections had diarrhea: 5 had acute diarrhea lasting <30 days, and 2 had chronic diarrhea lasting >5 months (difference in prevalence of diarrhea for mixed versus single infections was not significant by the Fisher exact test). The average CD4+ lymphocyte count among the patients with mixed infections was 130 cells/µL. Of the 7 patients with mixed infections, 3 had specimens collected >30 days after the first detection, and mixed infections with the same species were still identified. The persistence of 2 species for >1 month is in contrast to a report that 1 *Cryptosporidium* genotype rapidly displaces the other during experimental infections of animals (6).

Conclusions

Concurrent infection with multiple *Cryptosporidium* spp. may affect clinical manifestations since *C. hominis*
Table. Results of multilocus genotyping of Cryptosporidium specimens originally diagnosed as Cryptosporidium canis and C. felis by an SSU rRNA–based PCR-RFLP tool

<table>
<thead>
<tr>
<th>Participant</th>
<th>No. specimens tested</th>
<th>No. days between first and last specimen</th>
<th>Cryptosporidium genotype by locus (no. specimens)</th>
<th>Mixed infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>0043D</td>
<td>7</td>
<td>29</td>
<td>C. canis</td>
<td>No</td>
</tr>
<tr>
<td>0214D</td>
<td>2</td>
<td>5</td>
<td>C. canis</td>
<td>No</td>
</tr>
<tr>
<td>0448D</td>
<td>4</td>
<td>45</td>
<td>C. canis and C. hominis (1) and C. meleagris (2)</td>
<td>Yes</td>
</tr>
<tr>
<td>1083D</td>
<td>1</td>
<td>–</td>
<td>C. canis</td>
<td>No</td>
</tr>
<tr>
<td>1322D</td>
<td>2</td>
<td>2</td>
<td>C. canis</td>
<td>No</td>
</tr>
<tr>
<td>0002D</td>
<td>1</td>
<td>–</td>
<td>C. canis</td>
<td>No</td>
</tr>
<tr>
<td>0034D</td>
<td>7</td>
<td>56</td>
<td>C. canis and C. parvum (2) and C. parvum (2)</td>
<td>Yes</td>
</tr>
<tr>
<td>0482D</td>
<td>1</td>
<td>–</td>
<td>C. canis and C. hominis (1) and C. hominis (1)</td>
<td>Yes</td>
</tr>
<tr>
<td>0500D</td>
<td>1</td>
<td>–</td>
<td>C. canis</td>
<td>No</td>
</tr>
<tr>
<td>0533D</td>
<td>3</td>
<td>3</td>
<td>C. canis</td>
<td>No</td>
</tr>
<tr>
<td>0670D</td>
<td>4</td>
<td>414†</td>
<td>C. canis and C. hominis (4) and C. hominis (2)</td>
<td>Yes</td>
</tr>
<tr>
<td>0725D</td>
<td>1</td>
<td>–</td>
<td>C. canis</td>
<td>No</td>
</tr>
<tr>
<td>0044A</td>
<td>1</td>
<td>–</td>
<td>C. felis and C. meleagris (1) and C. meleagris (1)</td>
<td>Yes</td>
</tr>
<tr>
<td>0076A</td>
<td>4</td>
<td>31</td>
<td>C. felis and C. hominis (3) and C. hominis (1)</td>
<td>Yes</td>
</tr>
<tr>
<td>0668A</td>
<td>3</td>
<td>3</td>
<td>C. felis</td>
<td>Yes</td>
</tr>
<tr>
<td>0673A</td>
<td>5</td>
<td>31</td>
<td>C. felis</td>
<td>No</td>
</tr>
<tr>
<td>0817A</td>
<td>2</td>
<td>2</td>
<td>C. felis</td>
<td>No</td>
</tr>
<tr>
<td>0891A</td>
<td>1</td>
<td>–</td>
<td>C. felis</td>
<td>No</td>
</tr>
<tr>
<td>1344A</td>
<td>3</td>
<td>3</td>
<td>C. felis</td>
<td>No</td>
</tr>
<tr>
<td>0569D</td>
<td>2</td>
<td>2</td>
<td>C. felis</td>
<td>No</td>
</tr>
<tr>
<td>0776D</td>
<td>1</td>
<td>–</td>
<td>C. felis</td>
<td>No</td>
</tr>
</tbody>
</table>

*PCR-RFLP, polymerase chain reaction–restriction fragment length polymorphism; SSU, small subunit; COWP, Cryptosporidium oocyst wall protein; DHFR, dihydrofolate reductase gene.
†Specimens correspond to 2 visits 14 months apart.

and C. parvum induce different sequelae in humans (12). The frequent finding of C. hominis in C. canis– and C. felis–infected persons also raises the question of infection sources. Although these 2 species are traditionally associated with animals, anthropotonic transmission may play a role in their acquisition in humans. Recent analyses demonstrate that a large proportion of human infections with C. parvum, another traditional zoonotic species, are actually due to anthropotonic transmission (13,14).

Our results also suggest that although the SSU rRNA–based PCR-RFLP tool or similar PCR techniques can detect and differentiate a wide range of Cryptosporidium species or genotypes, their usefulness in detecting mixed infections was compromised by preferential PCR amplification of the dominant species or genotype in specimens. This problem is likely inherited with most PCR tools. Thus, the use of PCR tools with broad specificity in combination with species-specific tools is needed to address the issue of mixed Cryptosporidium infections.

Our findings demonstrate that mixed infections are more frequent and persist longer in HIV-infected patients than previously believed. The clinical importance of these findings is not clear because of the study’s cross-sectional nature. Future studies should employ tools that can detect mixed Cryptosporidium infections in longitudinal studies, evaluate the frequency of mixed infections of C. hominis and C. parvum, and assess their clinical and epidemiologic implications in both immunocompetent and immunocompromised persons.

This work was supported in part by funds from the Opportunistic Infections Working Group of the Centers for Disease Control and Prevention. Dr Gilman is supported by National Institutes of Health–National Institute of Allergy and Infectious Diseases grants Peru-TMRC 5P01AI051976-04 and R21 AI 059661-01.

Dr Cama is a researcher at the Centers for Disease Control and Prevention and an associate at Johns Hopkins University, Bloomberg School of Public Health. His current research interests include studies on the molecular epidemiology of enteric parasites that affect humans and have zoonotic potential.

References

Address for correspondence: Lihua Xiao, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop F12, Atlanta, Georgia 30333, USA; email: lxiao@cdc.gov

The opinions expressed by authors contributing to this journal do not necessarily reflect the opinions of the Centers for Disease Control and Prevention or the institutions with which the authors are affiliated.
Outbreaks of severe acute respiratory syndrome (SARS) have resulted in increased discussion about community-based infection control measures, including voluntary quarantine. In the 2003 SARS outbreak in Toronto, Canada, at least 23,000 persons participated in voluntary quarantine in their homes because of possible exposure (1). Quarantined persons were told to remain at home, not allow anyone to visit, wear a mask when in the same room as other members of the household, and sleep in a separate room (2). These protocols were developed to decrease the risk of transmitting the SARS coronavirus to persons in the household. This situation highlights 1 aspect of community-based quarantine that has been overlooked: the potential role of household pets in disease transmission.

When SARS was first identified, potential host animal species were unknown, as was the risk of transmission between animals and humans. Despite the severity of SARS, the lack of information on the potential for interspecies transmission, and the potential implications of animals acting as reservoirs of infection, we are unaware of quarantine protocols that consider household pets. No specific data are available on pet ownership by quarantined persons; however, based on the prevalence of pet ownership in Canada, we assume that thousands of quarantined persons had household pets. Whether any precautions were taken to reduce the risk of SARS transmission to pets is unclear. Presumably, household pets had prolonged close contact with many quarantined persons. Additionally, many of these pets may have had close contact with other persons, both inside and outside the home, and contact with other animals. We now know that domestic cats and ferrets are susceptible to experimental infection by the SARS coronavirus and that they can transmit this virus to other cats and ferrets (3). What would have happened if cats were naturally infected in households and could transmit infection to humans or other animals? Were measures in place to reduce the risk for this transmission and detect it had it occurred? If SARS had established itself in the feral cat population in affected cities, would it have been controllable?

Although SARS is the most recent example of an emerging disease for which quarantine was implemented, the potential for household transmission through pets should be considered in any new disease when information is incomplete regarding potential hosts and the risk for interspecies transmission. If one considers that an estimated 75% of transmissible emerging diseases are zoonoses (4), the relevance becomes clear.

While most of the discussion of zoonoses has focused on food-producing animals and wildlife, companion animals require closer scrutiny because of the number of persons exposed to pets and the nature of human-animal interaction. Pets are present in ≈58.3% of households in the United States; the pet population includes ≈62 million dogs, ≈69 million cats, ≈10 million birds, and ≈3 million reptiles (5). Also included are smaller numbers of ferrets, rabbits, rats, hamsters, hedgehogs, and other small mammals and exotic species. Many, if not most, owners of household pets likely have more prolonged and close contact with their pets than with most other persons. Ample reports exist regarding transmission of bacterial, viral, and fungal pathogens between humans and pets (in both directions) in the household (6–11). In addition to SARS, some pathogens that have recently been identified as of concern include methicillin-resistant Staphylococcus aureus (12), monkeypox (6), and H5N1 influenza (13). Although transmission of pathogens from domestic pets often focuses on the household, many other persons also have regular or sporadic contact with household pets owned by friends or family or through animal visitation programs.

Development of community-based quarantine protocols that consider the role of domestic animals in transmission of disease remains a gap in current preparedness planning activities. We believe that the potential role of household pets should be considered in transmission of all

*University of Guelph, Guelph, Ontario, Canada
emerging infectious diseases. This would include promptly and thoroughly evaluating the susceptibility of pets of various species to clinical disease and subclinical infection and assessing the possibility of transmission of pathogens between humans and pets, in both directions. Community-based quarantine measures may need to address contingency protocols for placing household pets in quarantine as well as human family members. Among the factors that need to be evaluated are the following: when pets should be quarantined, what type of unprotected animal-human contact should be allowed, what types of outdoor access by pets should be allowed (if any), what infection control measures should be implemented in the household to decrease the risk of pathogen transmission, how pet fecal material should be handled in the household and outdoors and in community settings, and what measures should be taken when and if veterinary care is required. Additionally, clinical and epidemiologic studies involving household pets may be indicated during the emergence of infectious diseases to evaluate the potential role of pets in disease transmission, to help manage disease in pets, and to determine whether pets may act as sentinel species.

We recommend that a coordinated effort between the human and veterinary medical fields and public health authorities be undertaken to address these issues. Relevant groups would involve national or regional regulatory bodies, public health agencies, infection control specialists in the human and veterinary fields, veterinary organizations, primary care veterinarians, laboratory animal veterinarians, comparative medicine specialists, and humane society personnel. Because of the number of groups that should be included and the potential complexity of the situation, proactive planning is needed.

Dr Weese is associate professor in the Department of Clinical Studies, Ontario Veterinary College, University of Guelph. His research interests include multidrug-resistant bacteria and veterinary infection control.

Dr Kruth is professor in the Department of Clinical Studies, Ontario Veterinary College, University of Guelph. His research interests include multidrug-resistant bacteria and canine models of stem cells in regenerative medicine.

References

Address for correspondence: J. Scott Weese, Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada; email: jsweese@uoguelph.ca
The even mead, that erst brought sweetly forth
The freckled cowslip, burnet, and green clover,
Wanting the scythe, all uncorrected, rank,
Conceives by idleness, and nothing teems
But hateful docks, rough thistles, kecksies, burs,
Losing both beauty and utility.

– William Shakespeare
Henry V

Sometimes in the spring, when I’m on my hands and knees among the azaleas, pulling out purslane and dandelion, I think how wonderful gardening would be if only it weren’t for weeds. Most of the time I dislike weeding, especially when I see it as a battle. Given the natural guile of the enemy, I become pessimistic, thinking that the weeds will always be one step ahead of me, that I can never defeat them. I can create huge mounds of compost from the honeysuckle vine, chickweed, and pokeberry that I remove from my woodland garden beds and still hundreds of malignant survivors will have escaped my surveillance. When my frustration grows past endurance, my war escalates to chemical weapons. I don’t spray herbicides very often, though, for I’m not proud of resorting to excessive force. Weeds, it seems, are truly like troubles: prodigious, vexing, and capable of bringing out the worst in people. But like troubles, they can also coax out the best.

Sometimes, when I’m weeding, the simple action of plunging the fork into the earth, uprooting the plant, and shaking loose the soil that clings to its roots is very soothing. Plunge, pull, shake—repeated over and over, just like a mantra. On these occasions, my thoughts turn philosophical. Maybe the strong smell of the earth loosens memories from an earlier, less careworn time. Or maybe this contemplative sensibility is a byproduct of repetitious action. In either case, when this mood takes over, I lose the notion that the weeds are my enemy, that their leaves and roots are acting malevolently. The weeds, I realize, are neither good nor bad; they simply exist. Gardens do not grow without weeds, and life does not unfold without misfortune. And then I think about the way my life has been touched by AIDS.

I can still remember the first time I came across a description of an unusual immune disorder in a medical journal—long before the disease even had a name. Because of my training in pathology, I was curious about this mysterious new disease. I remember feeling a ghoulish interest in an illness that could cause such tremendous, irreparable damage. Even then, before any of us knew its pathogenesis, its destructive potential was clear, and I felt, perhaps, much the same as the physicists who first glimpsed the horrendous possibilities of the atomic bomb. My scientific detachment didn’t live long; AIDS soon became more than a medical curiosity for me. It began to take people I knew, friends who I had hoped would surround me all my life. Sources of comfort and understanding dried up. I started feeling like an uprooted, disenfranchised farmer of Dust Bowl days, driven from once green and fertile land and forced to migrate to unknown places.

Over that first horrible decade of its debut, AIDS managed to dissolve my sense of permanence and distort my perception of time. Before AIDS, I didn’t know much about misfortune. I thought about the future primarily in terms of its potential to bring me more gratification and greater achievements. After AIDS, I understood that the future also has the power to disappoint. That knowledge has made me supremely impatient. Now it seems that nothing is quick enough for me; everything takes too long. I feel as if my internal clock has been wound so tightly that

*Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Dr Valdiserri is Deputy Director of the National Center for HIV, STD, and TB Prevention (NCHSTP) at CDC. He is currently working on a text addressing health disparities among gay and bisexual men.
at any moment the hands might go spinning clean off the face, so rapidly are they going around and around.

AIDS changed my professional life as well. I had been content to study disease from a distance, behind a microscope. As a pathologist I thought about illness primarily as a disruption in normal physiology, and I was satisfied with the contributions I could make to patient care by diagnosing unusual tumors and peculiar lesions. But after the epidemic took hold, my interest in abnormal physiology waned. The accurate diagnosis of diseases, including AIDS, though it is an essential step in patient care, had become too passive for me, seemed to imply acceptance of the inevitability of illness. No longer satisfied with identifying disease, I wanted to learn how to prevent it from occurring. I was determined to join those who were already trying to stop the spread of the epidemic. And so, after I finished my public health degree, I left my job as a university-based pathologist to work full-time on AIDS prevention at the Centers for Disease Control and Prevention.

It would be easy to assume that the AIDS epidemic, so often associated with loss, generates nothing but sorrow in those it touches, that the personal adjustments we make are all negative. I find, on the contrary, that AIDS has helped me to clarify just what does and does not matter during our brief time in the world. The epidemic has not taken hope away from me, but it has taught me the inadequacy of looking toward the future as a means of rescue from the present. AIDS has shown me that hope is strongest in us when we seek our fulfillment in the circumstances of the present, when we refuse to defer our dreams or to accept defeat.

Sometimes when I’m working in my garden, I think about the invasiveness of weeds and disease, how they appear in the garden, in the human population, uninvited, unwelcome, capable of causing tremendous destruction if left unattended. Yes, it would be wonderful if some spectacular act of God or nature would banish AIDS from our existence. Gardeners dream that they’ll awake some morning to find that the crabgrass has magically departed from the perennial beds. Weeds, though, whether real or metaphorical, will not be banished. Pain and loss are intrinsic to our existence in the temporal world. The best way to keep weeds from engulfing the garden is not to rail at the injustice of fate but to get down on our hands and knees and begin clearing them away.

Author’s Note

I wrote “Weeds” in the early 1990s; the essay appeared in a collection on AIDS, Gardening in Clay (1). Part memoir, part social commentary, the book sprung from my desire to honor and eventually memorialize my twin brother Edwin—who sickened and died of AIDS during the course of my writing the book.

In 1992, the year Edwin died, tennis great Arthur Ashe announced he had AIDS; the Centers for Disease Control and Prevention estimated 140,000–168,000 persons were living with AIDS in the United States (2); the International AIDS Society moved its 8th International Conference from Boston to Amsterdam in protest of US policy on HIV-infected travelers; and the Food and Drug Administration was some 3 years off approving the first protease inhibitor, saquinavir.

How far we’ve come in the 25 years since the first AIDS cases were reported in the United States is difficult to ignore (3). Gone is the bleak pessimism that accompanied diagnosis of infection with human T-cell lymphotropic virus type III or lymphadenopathy-associated virus, as the virus was formerly known (4). Today, persons who learn they are infected with HIV can enjoy longer and healthier lives as a result of highly active combination antiretroviral therapy. Gone, too, are the urgency and importance Americans once placed on AIDS, despite its continued and substantial national toll, especially in communities of color (5).

As “Weeds” suggests, in the continuing chronicles of humans versus retroviruses, we are far from ridding our garden of weeds.

References

Address for correspondence: Ronald O. Valdiserri, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop E07, Atlanta, GA 30333, USA; email: rov1@cdc.gov
Simple Respiratory Mask

To the Editor: The US Department of Labor recommends air-purifying respirators (e.g., N95, N99, or N100) as part of a comprehensive respiratory protection program for workers directly involved with avian influenza–infected birds or patients (1). N95 respirators have 2 advantages over simple cloth or surgical masks; they are ≥95% efficient at filtering 0.3-µm particles (smaller than the 5-µm size of large droplets—created during talking, coughing, and sneezing—which usually transmit influenza) and are fit tested to ensure that infectious droplets and particles do not leak around the mask (2–4). Even if N95 filtration is unnecessary for avian influenza, N95 fit offers advantages over a loose-fitting surgical mask by eliminating leakage around the mask.

The World Health Organization recommends protective equipment including masks (if they not available, a cloth to cover the mouth is recommended) for persons who must handle dead or ill chickens in regions affected by H5N1 (5). Quality commercial masks are not always accessible, but anecdotal evidence has showed that handmade masks of cotton gauze were protective in military barracks and in healthcare workers during the Manchurian epidemic (6,7). A simple, locally made, washable mask may be a solution if commercial masks are not available. We describe the test results of 1 homemade, reusable, cotton mask.

For material, we choose heavy-weight T-shirts similar to the 2-ply battle dress uniform T-shirts used for protective masks against ricin and saxitoxin in mouse experiments (8). Designs and T-shirts were initially screened with a short version of a qualitative Bitrex fit test (9) (Allegro Industries, Garden Grove, CA, USA). The best were tested by using a standard quantitative fit test, the Portacount Plus Respirator Fit Tester with N95-Companion (TSI, Shoreview, MN, USA) (10). Poor results from the initial quantitative fit testing on early prototypes resulted in the addition of 4 layers of material to the simplest mask design. This mask is referred to as the prototype mask (Figure).

A commercially available N95 respirator requires a fit factor of 100 to be considered adequate in the workplace. The prototype mask achieved a fit factor of 67 for 1 author with a Los Alamos National Laboratory (LANL) panel face size of 4, a common size. Although insufficient for the workplace, this mask offered substantial protection from the challenge aerosol and showed good fit with minimal leakage. The other 2 authors with LANL panel face size 10, the largest size, achieved fit factors of 13 and 17 by making the prototype mask inner layers slightly larger (22 cm²).

We do not advocate use of this respirator in place of a properly fitted commercial respirator. Although subjectively we did not find the work of breathing required with the prototype mask to be different from that required with a standard N95 filtering facepiece, persons with respiratory compromise of any type should not use this mask. While testers wore the mask for an hour without difficulty, we cannot comment on its utility during strenuous work or adverse environmental conditions.

We showed that a hand-fashioned mask can provide a good fit and a measurable level of protection from a challenge aerosol. Problems remain. When made by naive users, this mask may be less effective because of variations in material, assembly, facial structure, cultural practices, and

[Figure. Prototype mask: A) Side view, B) Face side. This mask consisted of 1 outer layer (~37 cm × 72 cm) rolled and cut as in panel B with 8 inner layers (~18 cm²) placed inside (against the face). The nose slit was first placed over the bridge of the nose, and the roll was tied below the back of the neck. The area around the nose was adjusted to eliminate any leakage. If the seal was not tight, it was adjusted by adding extra material under the roll between the cheek and nose and/or pushing the rolled fabric above or below the cheekbone. Tie b was tied behind the head. A cloth extension was added if tie b was too short. Finally tie c was tied behind the head. The mask was then fit tested.]
handling. No easy, definitive, and affordable test can demonstrate effectiveness before each use. Wearers may find the mask uncomfortable.

We encourage innovation to improve respiratory protection options. Future studies must be conducted to determine levels of protection achieved when naive users, following instructions, produce a similar mask from identical or similar raw materials. Research is needed to determine the minimal level of protection needed when resources are not available for N95 air-purifying respirators since the pandemic threat from H5N1 and other possible influenza strains will exist for the foreseeable future.

Virginia M. Dato,* David Hostler,* and Michael E. Hahn*

*University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Linguatuliasis in Germany

To the Editor: Pentastomids or tongue worms are a unique group of vermiform parasites, phylogenetically related to arthropods (1). Of the many pentastomid species, only a few, including Linguatula serrata, infect humans. The adult parasites are long, flat, or annulated and have 4 hooks surrounding a central mouth. Adult L. serrata inhabit the nasal passages and paranasal sinuses of wild and domestic canids, which serve as definitive hosts. Infective eggs containing larvae are discharged into the environment by nasopharyngeal secretions and are ingested by herbivores, the natural intermediate hosts. Humans can become dead-end intermediate hosts; visceral linguatuliasis then develops (2) if infective eggs are ingested. The liver is the organ most often involved (3–5), but the lung (4, 6, 7) or other organs (4, 8) may be affected. Parasites may also be found in lymph nodes. In the viscosa, the primary 4-legged larva molts several times and eventually forms the legless nymph. Lesions due to Linguatula may be confused with malignancy, particularly in the lung (6).

We describe a recent infection with L. serrata in Germany in a patient who had pulmonary symptoms and in whom malignancy was suspected. The patient was a 39-year-old man of Russian origin who had been living in Germany since 1999. He was admitted to the hospital with weight loss, night sweats, chest pain, and coughing. He had been a smoker for 20 years, and his past medical history included pneumonia and sinusitis in 1989 during his military service at Lake Baikal, Russia. The patient had been living in a farmhouse in Karaganda, Kazakhstan, until he immigrated to Germany.

A chest radiograph and computed tomographic scan showed multiple, small lesions in both lungs. Malignancy was suspected, and a bronchoscopy was performed. Numerous granulomatous nodules were discovered. Thoracotomy was performed, and stringlike nodules on the pleural surface were resected. Except for a mild eosinophilia (7%, 500 cells/µL), the leukocyte count was normal. All other parameters, including C-reactive protein levels, angiotensin-converting enzyme, and tumor markers were normal. Histologic examination of the nodules showed a targetoid appearance with a sharp demarcation from the surrounding lung tissue by a thick fibrocollagenous capsule. In the center of the nodules, a transverse section (Figure, right inset) and a longitudinal section (Figure, main panel) of a parasite were visible. The parasite had a chitinous cuticle 2.5 µm thick and cuticular

References

Address for correspondence: Virginia M. Dato, Center for Public Health Practice, Forbes Allies Center, 3109 Forbes Ave, Ste 210, Pittsburgh, PA 15260, USA; email: vdato@pitt.edu
spines 20–30 μm long. The spines and the serrated aspect are characteristic for *L. serrata*, a pentastome. Ringlike structures in the body wall were interpreted as sclerotized openings, a key feature of pentastomes. In close contact to host tissue, a shed cuticle was visible and assigned to the previous instar larva. The biometric data of the parasite were comparable to those measured by others (6,9). Hooks, typical for the oral armature of pentastomes, were found by serial sectioning (Figure, left inset). Except for some subcuticular glands, the parasite’s inner organs were no longer distinguishable. The patient was initially treated with albendazole before the histologic diagnosis of linguatuliasis was established. Findings from magnetic resonance imaging of the abdomen were unremarkable, and no further lesions appeared during 12 months of followup. Intermittent cough and chest pain remained, possibly due to scar tissue and the remains of the nymphs.

At the beginning of the last century, visceral linguatuliasis of humans occurred frequently in Germany. In 1904 and 1905, among 400 autopsies in Berlin, 47 (11.8%) remains were infected with *L. serrata* (7). In contrast, reports of human infections are now rare. Our report is the first recent case description in Germany. Where the patient acquired the infection is unknown. *L. serrata* has a worldwide distribution. Recent cases have been reported from China (4) and Italy (6). An increasing number of infections can be suspected in the Western Hemisphere because of incremental travel to linguatuliasis-endemic areas. Humans are usually tolerant to nymphal pentastomid infections, and most patients are asymptomatic (4). The living nymph provokes little inflammation, whereas the death of the parasite leads to a prominent host response (2). Most findings of visceral linguatuliasis are made at autopsy (4,6), and the parasites are mainly located in the liver (3–5). Infection of the lung is rare (6,7). The nymphs in human granulomas are typically degenerated at the time of examination (3,6,9), but the cuticle with its associated structures remains visible for some time (2).

Histopathologic diagnosis is guided by the presence of remnants of the cuticle with sclerotized openings and by calcified hooks. Among pentastomids observed in humans, only *L. serrata* has prominent spines (2–4). In contrast to trematodes, the spines protrude from the cuticle and do not end in the body wall of the parasite. Diagnosis should be made etiopathologically, subetiopathologically, or presumptively on the basis of whether entire nymphs, cuticle-associated structures, or pearly lesions (“Linguatula nodules” [10]) with targetoid appearance are found (4). The differential diagnosis includes malignancies and tuberculosis because of the radiologic coinlike appearance. On histologic examination, one must distinguish between tissue-inhabiting diptera larvae, infections with metacestodes, trematodes, tissue filariids, and gnathostomiasis. Once diagnosis is established, no treatment is necessary (3) for the parasites will degenerate after some time, and no effective antiparasitic therapy exists. Avoiding contact with canine saliva and drinking water used by dogs or wild canids prevents this infection.

Dennis Tappe,* Ralf Winzer,* Dietrich W. Büttner,† Philipp Ströbel,* August Stich,‡ Hartwig Klinker,* and Matthias Frosch*

*University of Würzburg, Würzburg, Germany; †Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany; and ‡Medical Mission Hospital, Würzburg, Germany

References

LETTERS

Epidemic Clostridium difficile Strain in Hospital Visitation Dog

To the Editor: Rates of illness and death from *Clostridium difficile*–associated disease (CDAD) and reports of CDAD in persons without traditional risk factors (1) have been increasing. One particular strain of *C. difficile* has been implicated in outbreaks of highly virulent CDAD around the world. According to the infection control practitioner at the hospital the dog visited, CDAD cases were occurring at increased frequency in the facility around the time the dog’s fecal specimen was collected. However, patient diagnosis was made solely through fecal toxin testing, and strains were not characterized. The facility has reported only sporadic cases of CDAD in the past few years.

This is the first report of this human, epidemic strain of *C. difficile* in a dog. Many *C. difficile* strains isolated from animals, including dogs, are indistinguishable from strains associated with disease in humans (9). To date, no study, including this one, has shown that interspecies transmission occurs; however, that possibility exists, as is becoming apparent with other pathogens, such as methicillin-resistant *Staphylococcus aureus*. The recurrent exposure of this dog to human healthcare settings suggests that the animal acquired this strain during visits to the hospital or long-term care facility, either from the healthcare environment or contaminated hands of human contacts. We recommend that future studies evaluating the dissemination of this strain and investigations of the movement of *C. difficile* into the community consider the role of animals.

Acknowledgments

We thank Joyce Rousseau for her assistance with culturing and identifying strains of *C. difficile*.

This work was supported by the Pet Trust Foundation of the Ontario Veterinary College.

Sandra L. Lefebvre,

Luis G. Arroyo,

and *J. Scott Weese*

*University of Guelph, Guelph, Ontario, Canada

References

Streptobacillus moniliformis Endocarditis

To the Editor: Streptobacillus moniliformis is a facultatively anaerobic, pleomorphic, gram-variable bacillus often seen in chains and as long unbranched filaments. It is found in the nasopharynx and oropharynx of wild and laboratory rats. Human infections result either from rodent bites (rat bite fever) or contaminated milk or other foods (Haverhill fever). The most common manifestations of infection are arthralgia, fever, and rash; endocarditis occurs as a rare complication (1). We report a case of S. moniliformis endocarditis in India in a patient with congenital heart disease.

An 18-year-old man was admitted to the Department of Cardiology at the Government General Hospital in Chennai, India, in November 2005, with a fever of 2 months’ duration with cough, epistaxis, palpitations, and persistent joint pain. His medical history indicated congenital heart disease with a ventricular septal defect. On physical examination, his blood pressure was 100/70 mm Hg, pulse rate was 100 beats/min, and temperature was 38.5°C. Laboratory tests showed a leukocyte count of 7,600/µL, a platelet count of 127,000/µL, and an erythrocyte sedimentation rate of 70 mm/h. An electrocardiogram showed normal sinus rhythm. A transthoracic echocardiogram demonstrated a ventricular septal defect and vegetations on the septal leaflet of the tricuspid valve.

Three blood cultures were prepared, and treatment with antimicrobial drugs (intravenous penicillin G, 3 × 106 U every 6 h, and gentamicin, 50 mg every 8 h for 4 weeks) was initiated. The blood cultures were incubated at 37°C in an atmosphere of 5%–10% CO2. Characteristic white, downy, crenulate colonies were observed on the surface of the erythrocytes in all 3 cultures within 18–24 h of incubation. Cultures were subcultured onto 5% sheep blood agar plates and MacConkey agar plates. The plates were incubated at 37°C in an atmosphere of 5%–10% CO2. After 18–24 h of incubation, growth was seen on the sheep blood agar plates. Colonies were 1–2 mm in diameter, gray, smooth, and butyrous. A Gram stain of these colonies identified gram-variable, pleomorphic coccobacilli that were negative for catalase, oxidase, urease, and citrate, and did not produce indole or reduce nitrate.

Antimicrobial susceptibility testing was performed by using the Kirby-Bauer disk diffusion method according to recommendations of the National Committee for Clinical Laboratory Standards (2). The isolate was sensitive to penicillin G, ceftriaxone, cephalaxin, amoxicillin, gentamicin, and erythromycin. The patient responded well to treatment and became afebrile within 48 h after initiation of therapy. Treatment with antimicrobial drugs was continued for 4 weeks. The blood cultures were negative when repeated after 2 weeks. The patient had an uneventful recovery and was discharged from the hospital.

Rat bite fever is a zoonosis caused by either Streptobacillus moniliformis or Spirillum minus (1,3). S. moniliformis is found in the nasopharynx of small rodents, especially rats. Rats that are carriers have no symptoms but can effectively transmit the infection by bite or through infected body fluids such as urine.

This patient had a history of living in a rat-infested area, and admitted having been bitten by a rat several months before the onset of symptoms. However, we considered it unlikely that disease contracted by a rat bite would take months to be manifested. Thus, it is more likely that he contracted the infection from food or water contaminated with rat excreta. Endocarditis is a rare complication of S. moniliformis infection, and cardiac valvular abnormalities have been reported in 50% of cases (4). This patient, however, had only a small ventricular septal defect. This is the first report of S. moniliformis endocarditis from India.

Nandhakumar Balakrishnan,* Thangam Menon,* Somasundaram Shanmugasundaram,† and Ramasamy Alagesan†

*University of Madras, Chennai, India; and †Madras Medical College and General Hospital, Chennai, India

References
Alerted by the findings of WNV transmission in the region (1), we collected serum samples from horses from 19 departments of Guatemala from September 2003 to March 2004, to initially estimate the extent of WNV spread and its potential public health risk. Because no animals exhibited signs of neurologic illness at the time of the survey, only healthy horses were sampled. Before 2005, equine WNV vaccines were prohibited and unavailable in Guatemala (Unidad de Normas y Regulaciones, Ministerio de Agricultura Ganadería y Alimentación, Guatemala, pers. comm.); as such, cross-reactivity due to prior vaccination is highly unlikely.

Samples were initially tested for WNV-reactive antibodies by using an epitope-blocking enzyme-linked immunosorbent assay (blocking ELISA) (6). The ability of the test sera to block the binding of the monoclonal antibodies to WNV antigen was compared to the blocking ability of control horse serum without antibody to WNV. Data were expressed as relative percentages and inhibition values ≥30% were considered to indicate the presence of viral antibodies.

A subset of positive samples was further confirmed by plaque-reduction neutralization test (7). Of 352 samples, 149 (42.3%) tested positive with the 3.1112G WNV-specific monoclonal antibody. Of 70 blocking ELISA–positive samples, the neutralization tests indicated the infecting agent was WNV, SLEV, and undifferentiated flavivirus in 9, 33, and 21 samples, respectively. Titters were expressed as the reciprocal of serum dilutions yielding ≥90% reduction in the number of plaques in a plaque-reduction neutralization test (PRNT90). PRNT90 titers of horses seropositive for WNV ranged from 80 to 320. PRNT90 titers of horses seropositive for SLEV ranged from 40 to 2,560. For the differential diagnosis of samples with neutralizing antibody titers against both WNV and SLEV in this test, a ≥4-fold titer difference was used to identify the etiologic agent. The undifferentiated flavivirus-reactive specimens had <4-fold difference in cross-neutralization titers. Likely possibilities for the inability to distinguish the infecting virus include previous infection with these or other flaviviruses (previously described or unknown) resulting in elevated cross-reactive titers. The remaining 10% of specimens that tested negative by PRNT probably represent nonneutralizing antibodies in the serum or false positivity in the blocking ELISA.

Our serologic results provide indirect evidence of past transmission of WNV, SLEV, and possibly other flaviviruses to horses in Guatemala. Although no confirmed cases of WNV-attributed disease have been reported in Central America to date, flavivirus transmission appears to be widely distributed in Guatemala (Figure). Efforts are under way to confirm WNV transmission by viral isolation and to evaluate the impact of WNV on human, horse, and wildlife populations. More information is needed to establish the public health threat of WNV and other zoonotic flaviviruses in the region.

Acknowledgments

We thank animal owners for permitting sampling, numerous veterinarians of the “Ministerio de Agricultura Ganadería y Alimentación,” Alejandra Castillo for technical assistance, and Nicholas Komar for helpful discussions and reviewing the manuscript.

This work was supported in part by Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, “Organismo Internacional Regional de Sanidad Agropecuaria” and by grant U50 CCU820510 from the Centers for Disease Control and Prevention.
To the Editor: Lyme disease is a multisystem disorder associated with skin, myocardial, musculoskeletal, and central and peripheral nervous system manifestations caused by infection with *Borrelia burgdorferi* sensu stricto from the bite of infected *Ixodes scapularis* (deer) ticks found primarily in the northeastern and upper midwestern United States (2). *B. burgdorferi*-infected ticks have also been recovered in portions of northern Illinois but have not yet been reported in the Chicago region (3). In fact, a previous survey (4) of forested areas in the heavily populated regions immediately adjacent to Chicago confirmed a low risk of contracting Lyme disease. Researchers failed to recover deer ticks from 7 sampling sites and recovered only a single *Borrelia* isolate from well-described *B. burgdorferi* sensu stricto rodent reservoirs (mice, voles, chipmunks) captured from 5 sampling sites. A subsequent genetic analysis confirmed the isolate was *B. bissetti* (5), a genomic group that is likely nonpathogenic to humans in the United States.

However, the area of the Midwest where Lyme disease is endemic has continued to expand from its origin in northeastern Minnesota and northwestern Wisconsin (2,6). The Chicago metropolitan region has numerous parks and natural areas that are biologically similar to the known midwestern focus (7), and these areas support a large population of white-tailed deer. Moreover, we have seen anecdotal reports of persons with clinical signs and symptoms of Lyme disease and epidemiologic evidence that suggests local acquisition. Two ticks submitted by a resident who had hiked...
in DuPage County near the east branch of the DuPage River were *I. scapularis*. We therefore began searching for questing ticks in this area and 9 other geographically diverse areas of DuPage County. The 10 sites were flagged by dragging white cotton sheets through the underbrush for 2- to 10-hour intervals during the spring of 2005. We timed these collections on the basis of information that adult deer ticks were questing in Wisconsin. Recovered ticks were placed in sealed vials and transported to the North Park University Laboratory where their identity was confirmed. The midguts were then removed aseptically, and each was placed into a separate vial that contained 2 mL modified Barbour-Stoenner-Kelly medium that could support the growth of small numbers of *B. burgdorferi sensu stricto* (8).

Cultures were incubated for 6 weeks at 35°C and examined weekly for spirochetes by darkfield microscopy. Deer ticks were not found at 8 of the DuPage County sample sites. However, 90 adult or nymphal *I. scapularis* were collected from the remaining 2 sites, and spirochetes were recovered from 3 (3%) of the tick midgut cultures. Because of these findings and anecdotal reports of deer ticks in Cook County, we also surveyed 3 sites in Cook County during the fall of 2005. Deer ticks were not found at 2 sites, but 37 adult *I. scapularis* ticks were collected from a site in the southwestern portion of Cook County, and spirochetes were recovered from 2 (5%) cultures.

We first examined the protein profiles to identify the spirochetes. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis analyses of 4 of the 5 isolates (1 isolate lost viability before analysis) showed that they were distinctly different from the *B. bissettii* isolate recovered previously from Cook County (4), but the isolates were strikingly similar to *B. burgdorferi sensu stricto* (Figure). We then amplified an intergenic spacer region of the *rfl-rrl* portion of the rRNA from 2 isolates by a previously described method (9) and sequenced the amplified products (sequencing by Laragen, Inc., Los Angeles, CA, USA). The sequences were identical to that of *B. burgdorferi sensu stricto* isolate B-31 (9).

The results confirmed that *I. scapularis* ticks infected with *B. burgdorferi sensu stricto* were recovered from forested areas surrounding Chicago. Additional studies to define the extent and severity of the risk are necessary, but clinicians and the public should be aware of the possibility of acquiring Lyme disease in the Chicago metropolitan region.

Acknowledgments

We thank Joan Bestudik and Linn D. Haramis for initiating the project; John and Tammie Bouseman, Mike O’Driscoll, Curt Colwell, Barb O’Meara, Peter Gianakis, Rachael Griffin, and our 16 student participants for fieldwork; John Bouseman for tick identification; and Steve Callister for guidance and manuscript review.

Partial funding for this work was received from the DuPage County Health Department (to J.A.N.).

**Dean A. Jobe,* Steven D. Lovrich,*
Jeffrey A. Nelson,† Tom C. Velat,‡
Chris Anchor,§ Tad Koeune,¶
and Stephen A. Martin, Jr#**

*Gundersen Lutheran Medical Center, La Crosse, Wisconsin, USA; †North Park University, Chicago, Illinois, USA; ‡Forest Preserve District of DuPage County, Wheaton, Illinois, USA; §Forest Preserve District of Cook County, Elgin, Illinois, USA; ¶DuPage County Department of Health, Wheaton, Illinois, USA; and #Cook County Department of Public Health, Oak Park, Illinois, USA

References

Address for correspondence: Jeffrey A. Nelson, North Park University, 3225 W Foster Ave, Chicago, IL 60625, USA; email: andersonnelson@yahoo.com

H5N1 Influenza A Virus and Infected Human Plasma

To the Editor: Since January 2004, a total of 22 persons have been confirmed infected with avian influenza A virus (H5N1) in Thailand; 14 of these patients died. Three waves of outbreaks occurred during the past 2 years. The last patient of the third wave was a 5-year-old boy whose symptoms developed on November 28, 2005; he was hospitalized on December 5 and died 2 days later. The child resided in the Ongkharak District, Nakhon Nayok Province, 70 km northeast of Bangkok. Villagers informed the Department of Livestock after the patient’s illness was diagnosed. Five dead chickens had been reported in this area from November 28 to December 1, 2005. Samples from these chickens could not be obtained, thus, no H5N1 testing was performed. The boy had fever, headache, and productive cough for 7 days before he was admitted to the Her Royal Highness Princess Maha Chakri Sirindhorn Medical Center. Clinical examination and chest radiograph showed evidence of lobar pneumonia. He was treated with antimicrobial drugs (midecamycin and penicillin G) and supportive care, including oxygen therapy. On December 7, the patient’s condition worsened, and severe pneumonia with adult respiratory distress syndrome developed. Laboratory tests showed leukopenia (2,300 cells/mm³), acidosis, and low blood oxygen saturation by cutaneous pulse oximetry (81.6%). Oseltamivir was administered after his parents informed hospital staff about the boy’s contact with the dead chicken. However, the boy died the same day; no autopsy was performed. On December 9, the cause of death was declared by the Ministry of Public Health to be H5N1 influenza virus.

A blood sample was collected from the patient on December 7; anticoagulation was accomplished with ethylenediaminetetraacetic acid (EDTA) for repeated biochemistry analysis and complete blood count. The plasma from the EDTA blood sample was separated 2 days later and stored at −20°C for 12 days. The sample was subsequently given to the Center of Excellence in Viral Hepatitis, Faculty of Medicine, Chulalongkorn University, for molecular diagnosis and then stored at −70°C, where specific precautions implemented for handling highly infectious disease specimens such as H5N1 influenza virus were observed. Plasma was examined by multiplex reverse transcription–polymerase chain reaction (RT-PCR) (1) and multiplex real-time RT-PCR (2), both of which showed positive results for H5N1 virus. The virus titer obtained from the plasma was 3.08 × 10³ copies/mL. The plasma specimen was processed for virus isolation by embryonated egg injection, according to the standard protocol described by Harmon (3). Briefly, 100 µL 1:2 diluted plasma was injected into the allantoic cavity of a 9-day-old embryonated egg and incubated at 37°C. The infected embryo died within 48 hours, and the allantoic fluid was shown to contain 2,048 hemagglutinin (HA) units; also, subtype H5N1 was confirmed (1,2). Whole genome sequencing was performed and submitted to the GenBank database under the strain A/Thailand/NK165/05 accession no. DQ 372591-8. The phylogenetic trees of the HA and neuraminidase (NA) genes were constructed by using MEGA 3 (4) for comparison with H5N1 viruses isolated from humans, tigers, and chickens from previous outbreaks in 2004 and 2005 (Figure). The sequence analyses of the viruses showed that the HA cleavage site contained SPQRERRKKK, which differed from the 2004 H5N1 virus by an arginine-to-lysine substitution at posi-
tion 341. That finding had also been observed in wild bird species during earlier outbreaks in Thailand in 2004 (5). Similar to the 2004–2005 H5N1 isolates from Thailand, a 20–amino acid deletion at the NA stalk region was observed. Moreover, the amino acid residues (E119, H274, R292, and N294) of the NA active site were conserved, which suggests that the virus was sensitive to oseltamivir. In addition, a single amino acid substitution from glutamic acid to lysine at position 627 of PB2 showed increased virus replication efficiency in mammals (6).

Observing live influenza virus in human serum or plasma is unusual. However, in 1963, low quantities of virus were isolated from blood of a patient on day 4 of illness (7), and in 1970, the virus was cultivated from blood specimens from 2 patients (8). Recently, a fatal case of avian influenza A (H5N1) in a Vietnamese child was reported. The diagnosis was determined by isolating the virus from cerebrospinal fluid, fecal, throat, and serum specimens (9); viral RNA was found in 6 of 7 serum specimens 4–9 days after the onset of illness (10). In this case, the H5N1 virus could be isolated from plasma on day 10 after symptoms developed. This case showed the virus in the patient’s blood, which raises concern about transmission among humans. Because probable H5N1 avian influenza transmission among humans has been reported (11), this case should be a reminder of the necessity to carefully handle and transport serum or plasma samples suspected to be infected with H5N1 avian influenza. Because viable virus has been detected in blood samples, handling, transportation, and testing of blood samples should be performed in a biosafety (category III) containment laboratory to prevent the spread of the virus to healthcare and laboratory workers.

We express our thanks to the Thailand Research Fund (Senior Research Scholar), Royal Golden Jubilee PhD Program and Center of Excellence in Viral Hepatitis Research, and Prasert Auewarukul for their generous support of our study.

Salin Chutinimitkul,* Parvapan Bhattarakosol,* Surangrat Srisuratanaon,† Atthaporn Eiamudomkan,† Kittipong Kongsomboon,† Sudarat Damrongwatanapokin,‡ Arunee Chaisingh,‡ Kamol Suwannakarn,* Thaweesak Chieochansin,* Apiradee Theamboonlers,* and Yong Poovorawan*
*Chulalongkorn University Bangkok, Bangkok, Thailand; †Srinakharinwirot University, Nakhon Nayok, Thailand; and ‡National Institute of Animal Health, Bangkok, Thailand

References

Address for correspondence: Yong Poovorawan, Center of Excellence in Viral Hepatitis Research, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; email: Yong.P@chula.ac.th
Infectious Diseases: A Clinical Approach, 2nd Edition

Allen Yung, Malcolm McDonald, Denis Spelman, Alan Street, Paul Johnson, Tania Sorrell, and Joe McCormack, editors

IP Communications, East Hawthorn, Victoria, Australia, 2005

ISBN: 095786177X
Pages: 602; Price: Australian $130.00 (includes CD-ROM)

The recent award of the Nobel Prize to Barry Marshall and J. Robin Warren for their discovery of Helicobacter pylori and its role in gastritis and peptic ulcer disease has again put infectious diseases on to the front page of newspapers around the world. Notably, their initial work was performed in Perth, Australia. The clinical practice of infectious diseases, and associated research into microorganisms, has long been established in Australia. This book capitalizes on the expertise of infectious disease physicians and microbiologists in Australia and surrounding regions.

Infectious Diseases: A Clinical Approach is written from an Australian perspective but has potential for a global audience.

The book’s first 2 parts deal with a general, clinical approach to the patient with a possible infection. This section is full of clinical “pearls,” particularly relating to the patient with undifferentiated fever. Some sections, such as “Pitfalls in the Diagnosis of Serious Bacterial Infection, Especially Meningococcemia” or “Reasons Not To Treat Fever,” are a joy to read and could be posted on the walls of emergency departments or general medical wards in every hospital. These sections are of relevance to internists and infectious disease fellows, but for a seasoned infectious diseases physician, they may not offer anything new.

Experienced infectious disease physicians, however, are likely to gain new insights into infections occurring in Asia, Australia, and the southwest Pacific region. A patient vacationing one day in Fiji or Tahiti may be visiting the emergency department of a hospital in North America or Europe the next day. While most physicians might search the Centers for Disease Control and Prevention website to find what infections are endemic in the region in question, or whether outbreaks have recently been reported there, this book provides context from authors working in the regions they describe. The clinical evaluation of infections in returned travelers and immigrants is also particularly well covered.

As an infectious disease physician working in the United States, I would not purchase this book to find detailed information on specific infections or specific antimicrobial agents. This is a book I would purchase for a first-year fellow or a resident who has enjoyed rounding with the infectious diseases service. The book is a gold mine of clinical advice based on obtaining a detailed history and performing a thorough physical examination. It is full of advice on “traps for young players” and ends with 28 golden rules of infectious disease practice. The book is dedicated to Richard Kemp, an infectious disease physician, who tragically died at the age of 50. Kemp was renowned as a clinician and would have undoubtedly endorsed the practical approach to infectious disease management advocated in this book.

David L. Paterson*
*University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Address for correspondence: David L. Paterson, Division of Infectious Diseases, University of Pittsburgh, Ste 3A, Falk Medical Building, Pittsburgh, PA 15213, USA; email: PatersonD@dom.pitt.edu
ABOUT THE COVER

“T his I drew, using a mirror; it is my own likeness, in the year 1484, when I was still a child,” wrote Albrecht Dürer about his first self-portrait, sketched with great confidence and skill when he was 13 years old (1). Fascinated by his own image, he continued to paint it throughout his life. His faithful dog once barked and wagged its tail at a newly completed self-portrait of his master, related his friend humanist scholar Konrad Celtis (1459–1508), repeating a story based on the anecdote from Roman writer Pliny (1).

Though born into the goldsmith trade on his father’s side of the family, Dürer also apprenticed with painter and woodcut illustrator Michael Wolgemut, who introduced him to commercial bookmaking. At age 19, he left his native Nürnberg to wander the world and improve his skills, as was the custom after successful apprenticeships. In Basel, Strasbourg, Vienna, and Venice, he came to know and excel in diverse styles and techniques. A painter, as well as master printmaker and engraver, he was the first serious artist to work in watercolor. His landscapes, painted directly from nature, were matched in his day only by those of Leonardo da Vinci.

“The art of measurement being the foundation of all painting,” he wrote, “I propose to give the elements thereof and to explain its principles to young people wishing to educate themselves in their art, so that they may confidently start measuring with a pair of compasses and ruler, thereby recognizing and having before their eyes the genuine truth….” (2). An artist working by the rule of thumb, without theoretical foundation, Dürer maintained, was “a wild, unpruned tree,” in need of the objective and rational standards of the Renaissance (3).

These standards, acquired during his travels abroad, particularly Italy, and brought back to Germany, he also embraced in his personal life. A mathematician and humanist, he sought knowledge across diverse fields. An innovator and tradesman, he applied his artistic skills to new technologies and the production of high quality prints for the open market. His radical techniques caught the

Albrecht Dürer (1471–1528). Self-Portrait with Sea Holly (1493). Parchment mounted on canvas (56 cm × 44 cm)
Photo: Arnaudet. Réunion des Musées Nationaux/Art Resource, NY. Louvre, Paris, France

“Il Faut Cultiver Notre Jardin”
Polyxeni Potter*

*Centers for Disease Control and Prevention, Atlanta, Georgia USA

1We must cultivate our garden. From Voltaire’s Candide

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 12, No. 6, June 2006 1045
attention of the intellectual elite of his day. His closest friend and mentor was one of Nürnberg’s most distinguished scholars, Willibald Pirckheimer, translator of Hellenic texts into Latin and German. Dürer’s copper plate portrait of Pirckheimer, created from printed graphics, contained the inscription “Man lives through his intellect; all else will belong to death” (4).

“What beauty is I know not,” Dürer pondered in his Book on Human Proportions. “In some things we consider that as beautiful which elsewhere would lack beauty.” Beauty as the goal of art continued to excite his imagination and later featured in his treatises on measurement and fortification. His drawings after Andrea Mantegna and Antonio Pollaiuolo reflected his appreciation of Italian painting, which at its peak was guided by knowledge of geometry and proportion. Near the end of his life, Mantegna heard that Dürer was in Italy and sent for him, “in order to instruct Albrecht’s facility and certainty of hand in his own understanding and skill” (5). But Mantegna died before Dürer could reach Mantua, “the saddest event in all my life” (5).

“There, where the yellow spot is located, and where I point my finger, there it hurts,” Dürer wrote on a pen and watercolor self-portrait he sent to a physician for consultation (6). This half-length portrait, The Sick Dürer (1471–1528), likely described the painter’s illness contracted during travel to the Netherlands in 1520. “In the third week after Easter I was seized by a hot fever, great weakness, nausea, and headache,” he wrote in his diary, “And before, when I was in Zeeland, a strange sickness came over me, such as I have never heard of from any man, and I still have this sickness” (7). In between periods of good health, the fever periodically returned until his death at age 56.

Self-portrait with Sea Holly, on this month’s cover, painted when Dürer was 22, is the earliest known free-standing self-portrait. Hands are difficult to paint from a mirror image. These (cover detail) are rough, a painter’s hands, cracked and smudged. Goethe, when he saw a preliminary version of the painting, recognized that they held a sprig of sea holly, a thistle-like plant regarded an aphrodisiac, which appears in other Dürer works. The plant’s German name means “fidelity of man,” and its presence in this self-portrait could be alluding to the painter’s engagement to be married around that time.

Dürer’s devotion to knowledge as the means to beauty and truth guided his life. In illness, he enlisted his knowledge of the human body to describe the pain, anticipating pain mapping several centuries later. He grasped that knowledge advances human life, from understanding the nature of beauty to curtailing the scourge of disease.

“He looked like a bundle of dried straw,” said Pirckheimer of his dying friend, supporting speculation today that Dürer had malaria, an ancient and continuing scourge (8). Newer scourges have now sprung, not the least of them HIV/AIDS, a “rough thistle.” Despite substantial progress in prevention and control, emerging HIV/AIDS takes a global toll, particularly among the young, the old, and the underprivileged, “a weed” still requiring of us to “get on our hands and knees and begin clearing… away” (9).

References

Address for correspondence: Polyxeni Potter, EID Journal, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop D61, Atlanta, GA 30333, USA; email: PMP1@cdc.gov
Helping CDC Do More Faster

The CDC Foundation helps the Centers for Disease Control and Prevention fight the most urgent health threats, like avian flu, bioterrorism and obesity.

Find out how you can partner with CDC to promote a safer, healthier world.

Private support is critical to our mission.

www.cdcfoundation.org
JOURNAL BACKGROUND AND GOALS

What are “emerging” infectious diseases?

Infectious diseases whose incidence in humans has increased in the past 2 decades or threatens to increase in the near future have been defined as “emerging.” These diseases, which respect no national boundaries, include:

- New infections resulting from changes or evolution of existing organisms.
- Known infections spreading to new geographic areas or populations.
- Previously unrecognized infections appearing in areas undergoing ecologic transformation.
- Old infections reemerging as a result of antimicrobial resistance in known agents or breakdowns in public health measures.

Why an “Emerging” Infectious Diseases journal?

The Centers for Disease Control and Prevention (CDC), the agency of the U.S. Public Health Service charged with disease prevention and health promotion, leads efforts against emerging infections, from AIDS, hantavirus pulmonary syndrome, and avian flu, to tuberculosis and West Nile virus infection. CDC’s efforts encompass improvements in disease surveillance, the public health infrastructure, and epidemiologic and laboratory training.

Emerging Infectious Diseases represents the scientific communications component of CDC’s efforts against the threat of emerging infections. However, even as it addresses CDC’s interest in the elusive, continuous, evolving, and global nature of these infections, the journal relies on a broad international authorship base and is rigorously peer-reviewed by independent reviewers from all over the world.

What are the goals of Emerging Infectious Diseases?

1) Recognition of new and reemerging infections and understanding of factors involved in disease emergence, prevention, and elimination. Toward this end, the journal:

- Investigates factors known to influence emergence: microbial adaptation and change, human demographics and behavior, technology and industry, economic development and land use, international travel and commerce, and the breakdown of public health measures.
- Reports laboratory and epidemiologic findings within a broader public health perspective.
- Provides swift updates of infectious disease trends and research: new methods of detecting, characterizing, or subtyping pathogens; developments in antimicrobial drugs, vaccines, and prevention or elimination programs; case reports.

2) Fast and broad dissemination of reliable information on emerging infectious diseases. Toward this end, the journal:

- Publishes reports of interest to researchers in infectious diseases and related sciences, as well as to public health generalists learning the scientific basis for prevention programs.
- Encourages insightful analysis and commentary, stimulating global interest in and discussion of emerging infectious disease issues.
- Harnesses electronic technology to expedite and enhance global dissemination of emerging infectious disease information.
Upcoming Issue

Look in the July issue for the following topics:

Global Public Health Surveillance under New International Health Regulations

Infectious Causes of Chronic Diseases

Neisseria meningitidis Sequence Type and Risk for Death, Iceland

Tickborne Arbovirus Surveillance in Market Livestock, Nairobi, Kenya

Rodent *Bartonella*-associated Febrile Illness, Rural Southwestern United States

Human Tularemia Caused by Type A and Type B, United States, 1964–2004

Maternal Outcomes in Pregnancy with Smallpox

Triple Reassortant H3N2 Influenza A Viruses, Canada, 2005

First Molecular Identification of Tickborne Encephalitis Virus, Norway and Denmark

Detection of Infectious Poxvirus Particles

European Bat Lyssavirus Type 2 RNA in *Myotis daubentonii*

Complete list of articles in the July issue at http://www.cdc.gov/ncidod/eid/upcoming.htm

Upcoming Infectious Disease Activities

June 17–22, 2006
Negative Strand Viruses 2006: Thirteenth International Conference on Negative Strand Viruses
Salamanca, Spain
Contact: 404-728-0564 or meeting@nsv2006.org
http://www.nsv2006.org

June 25–29, 2006
ISHAM 2006 (International Society for Human and Animal Mycology)
Palais des Congrès
Paris, France
Contact: 770-751-7332 or c.chase@imedex.com
http://www.imedex.com/calendars/infectiousdisease.htm

July 24–August 4, 2006
Diagnostic Parasitology Course
Uniformed Services University of the Health Sciences
Bethesda, MD, USA
Contact: 301-295-3139 or jcross@usuhs.mil
http://www.usuhs.mil/pmb/TPH/dpcourse.html

August 6–10, 2006
Advancing Global Health: Facing Disease Issues at the Wildlife, Human, and Livestock Interface
55th Annual Meeting, Wildlife Disease Association with American Association of Wildlife Veterinarians
University of Connecticut
Storrs, CT, USA
Contact: wda.2006@gmail.com
http://www.conferences.uconn.edu/wildlife/
Editorial Policy and Call for Articles

Emerging Infectious Diseases is a peer-reviewed journal established expressly to promote the recognition of new and reemerging infectious diseases around the world and to improve the understanding of factors involved in disease emergence, prevention, and elimination.

The journal is intended for professionals in infectious diseases and related sciences. We welcome contributions from infectious disease specialists in academia, industry, clinical practice, and public health, as well as from specialists in economics, social sciences, and other disciplines. Manuscripts in all categories should explain the contents in public health terms. For information on manuscript categories and suitability of proposed articles, see below and visit http://www.cdc.gov/eid/instruct.htm.

Types of Articles

Perspectives. Articles should be under 3,500 words and should include references, not to exceed 40. Use of subheadings in the main body of the text is recommended. Photographs and illustrations are encouraged. Provide a short abstract (150 words); a one-sentence summary of the conclusions; and brief biographical sketch. Articles in this section include public health policy or historical reports that are based on research and analysis of emerging disease issues.

Dispatches. Articles should be no more than 1,200 words and need not be divided into sections. If subheadings are used, they should be general, e.g., “The Study” and “Conclusions.” Provide a brief abstract (50 words); references (not to exceed 15); figures or illustrations (not to exceed 2); tables (not to exceed 2); and a brief biographical sketch of first author—both authors if only 2. Dispatches are updates on infectious disease trends and research. The articles include descriptions of new methods for detecting, characterizing, or subtyping new or reemerging pathogens. Developments in antimicrobial drugs, vaccines, or infectious disease prevention or elimination programs are appropriate. Case reports are also welcome.

Commentaries. Thoughtful discussions (500–1,000 words) of current topics. Commentaries may contain references but no figures or tables.

Another Dimension. Thoughtful essays, short stories, or poems on philosophical issues related to science, medical practice, and human health. Topics may include science and the human condition, the unanticipated side of epidemiologic investigations, or how people perceive and cope with infection and illness. This section is intended to evoke compassion for human suffering and to expand the science reader’s literary scope. Manuscripts are selected for publication as much for their content (the experiences they describe) as for their literary merit.

Letters. Letters commenting on recent articles as well as letters reporting cases, outbreaks, or original research are welcome. Letters commenting on articles should contain no more than 300 words and 5 references; they are more likely to be published if submitted within 4 weeks of the original article's publication. Letters reporting cases, outbreaks, or original research should contain no more than 800 words and 10 references. They may have 1 figure or table and should not be divided into sections. All letters should contain material not previously published and include a word count.

Book Reviews. Short reviews (250–500 words) of recently published books on emerging disease issues are welcome. The name of the book, publisher, and number of pages should be included.

Announcements. We welcome brief announcements (50–150 words) of timely events of interest to our readers. (Announcements may be posted on the journal Web page only, depending on the event date.)

Conference Summaries. Summaries of emerging infectious disease conference activities are published online only. Summaries, which should contain 500–1,000 words, should focus on content rather than process and may provide illustrations, references, and links to full reports of conference activities.