Emerging Infectious Diseases
Poxvirus Infections
June 2023

John Williamson (c.1730–c.1803), Recovering Smallpox Patient, c.1770. Bust, pine, boiled linseed oil. 12.6 x 5.7 in x 9.45 in/32 cm x 14.5 cm x 24 cm.

Shetland Islands, Scotland.
Synopses

Association of Persistent Symptoms after Lyme Neuroborreliosis and Increased Levels of Interferon-α in Blood
S.A. Hernández et al. 1091

Probable Transmission of SARS-CoV-2 from African Lion to Zoo Employees, Indiana, USA, 2021
A.A. Siegrist et al. 1102

Epidemiologic Characteristics of Mpox among People Experiencing Homelessness, Los Angeles County, California, USA, 2022
H.K. Brosnan et al. 1109

Case Studies and Literature Review of Francisella tularensis–Related Prosthetic Joint Infection
We describe 3 cases of this rare condition in France and review the literature on previous cases.
L. Ponderand et al. 1117

Neurologic Complications of Babesiosis, United States, 2011–2021
Such complications occurred in 60% of patients and were associated with high-grade parasitemia, renal failure, and history of diabetes mellitus.
S. Lock et al. 1127

Research

SARS-CoV-2 Seroprevalence Studies in Pets, Spain
S. Barroso-Arévalo et al. 1136

Similar Prevalence of Plasmodium falciparum and Non–P. falciparum Malaria Infections among Schoolchildren, Tanzania
R. Sendor et al. 1143

Early SARS-CoV-2 Reinfections Involving the Same or Different Genomic Lineages, Spain
C. Rodríguez-Grande et al. 1154

SARS-CoV-2 Vaccine Effectiveness against Omicron Variant in Infection-Naive Population, Australia, 2022
L.E. Bloomfield et al. 1162

Increased Incidence of Legionellosis after Improved Diagnostic Methods, New Zealand, 2000–2020
F.F. Graham et al. 1173

Risk Factors for Non-O157 Shiga Toxin–Producing Escherichia coli Infections, United States
E.P. Marder et al. 1183
Evolution of Avian Influenza Virus (H3) with Spillover into Humans, China
J. Yang et al. 1191

Dispatches

Detection of Novel Poxvirus from Gray Seal (*Halichoerus grypus*), Germany
F. Pfaff et al. 1202

Tanapox, South Africa, 2022
M. Birkhead et al. 1206

Replication of Novel Zoonotic-Like Influenza A(H3N8) Virus in Ex Vivo Human Bronchus and Lung
K.P.Y. Hui et al. 1210

Risk for Infection in Humans after Exposure to Birds Infected with Highly Pathogenic Avian Influenza A(H5N1) Virus, United States, 2022
K. Kniss et al. 1215

Results of PCR Analysis of Mpox Clinical Samples, Sweden, 2022
J. Edman-Wallér et al. 1220

SARS-CoV-2 Seroprevalence and Cross-Variant Antibody Neutralization in Cats, United Kingdom
G.B. Tyson et al. 1223

Ranid Herpesvirus 3 Infection in Common Frog *Rana temporaria* Tadpoles
F.C. Origgi, A. Taugbøl 1228

Baylisascaris procyonis Roundworm Infection in Child with Autism Spectrum Disorder, Washington, USA, 2022
B.A. Lipton et al. 1232

MERS-CoV-Specific T-Cell Responses in Camels after Single MVA-MERS-S Vaccination
C. Meyer zu Natrup et al. 1236

High Prevalence of SARS-CoV-2 Omicron Infection Despite High Seroprevalence, Sweden, 2022
R. Groenheit et al. 1240

Baylisascaris procyonis Roundworm Infection in Child with Autism Spectrum Disorder, Washington, USA, 2022
B.A. Lipton et al. 1232

MERS-CoV-Specific T-Cell Responses in Camels after Single MVA-MERS-S Vaccination
C. Meyer zu Natrup et al. 1236

High Prevalence of SARS-CoV-2 Omicron Infection Despite High Seroprevalence, Sweden, 2022
R. Groenheit et al. 1240

Novel Avian Influenza Virus (H5N1) Clade 2.3.4.4b Reassortants in Migratory Birds, China
J. Yang et al. 1244

Detection of *Leishmania* RNA Virus 1 in *Leishmania (Viannia) panamensis* Isolates, Panama
K. Gonzalez et al. 1250

Novel Orthonairovirus Isolated from Ticks Near China–North Korea Border
F. Li et al. 1254

Enterovirus D68 Outbreak in Children, Finland, August–September 2022
V. Peltola et al. 1258

Treatment Failure in Patient with Severe Mpox and Untreated HIV, Maryland, USA
E. Filippo et al. 1262
EMERGING INFECTIOUS DISEASES®
June 2023

Detection of Severe Murine Typhus Infection by Nanopore-Targeted Sequencing, China
P. Qian et al. 1275

Mycobacterium marinum Infection after Iguana Bite in Costa Rica
J. Mah et al. 1278

Microscopic Evidence of Malaria Infection in Visceral Tissue from Medici Family, Italy
F. Maixner et al. 1280

Enhanced Adenovirus Vaccine Safety Surveillance in Military Setting, United States
J. Iskander et al. 1283

Isolated Ocular Mpox without Skin Lesions, United States
M.T. Nguyen et al. 1285

National Surveillance of Pediatric Acute Hepatitis of Unknown Etiology, Japan, October 2021–December 2022
S. Otake et al. 1288

About the Cover
“Unassisted by Education, and Unfettered by the Rules of Art”
B. Breedlove 1292

Online Report
One Health Approach for Reporting Veterinary Carbapenem-Resistant Enterobacterales and Other Bacteria of Public Health Concern
K. KuKanich et al.
https://wwwnc.cdc.gov/eid/article/29/6/22-1648_article

Research Letters

Manifestations and Management of Trimethoprim/Sulfamethoxazole–Resistant Nocardia otitidiscaviarum Infection
K. Fu et al. 1266

Limited Cutaneous Leishmaniasis as Ulcerated Verrucous Plaque on Leg, Tucson, Arizona, USA
C.B. Dagene tet al. 1268

Genomic Surveillance of Monkeypox Virus, Minas Gerais, Brazil, 2022
N.R. Guimarães et al 1270

Antimicrobial-Resistant Infections after Turkey/Syria Earthquakes, 2023
A. Rizk et al. 1273

About the Cover
“Unassisted by Education, and Unfettered by the Rules of Art”
B. Breedlove 1292

Online Report
One Health Approach for Reporting Veterinary Carbapenem-Resistant Enterobacterales and Other Bacteria of Public Health Concern
K. KuKanich et al.
https://wwwnc.cdc.gov/eid/article/29/6/22-1648_article
Click on the link below to read about the people behind the science.
https://bit.ly/3LN02tr

See requirements for submitting a photo quiz to EID.
Lyme disease, which is caused by several species of *Borrelia burgdorferi* sensu lato complex (Lyme borreliae), is the most common vectorborne disease in the Northern Hemisphere. The US Centers for Disease Control and Prevention now estimates that nearly 500,000 new cases are diagnosed and treated for Lyme disease annually in the United States (1). Approximately 200,000 cases are believed to occur each year in western Europe (2,3). The first sign of the infection is usually an expanding cutaneous lesion, termed erythema migrans, which might be accompanied with nonspecific symptoms, such as headache, fever, malaise, fatigue, myalgias, and arthralgias. If untreated, spirochetes might disseminate to other organ systems, including the heart, joints, and central nervous system (CNS) (4,5). Lyme neuroborreliosis (LNB), which results from borreliae infection of the CNS, is the most common extracutaneous manifestation of Lyme disease in Europe and the second most common such manifestation in North America (4–6).

Most patients who have Lyme disease respond well to antibiotic drug therapy and their disease resolves. However, a subset of patients have sequelae, such as headache, fatigue, sleep or memory disturbance, and arthralgias or myalgias that persist for months to years after antibiotic use, termed posttreatment Lyme disease symptoms or syndrome (PTLDS) (7–14). Those sequelae might occur with each Lyme disease manifestation and are heterogenous, ranging from mild, self-resolving symptoms to debilitating syndromes that greatly impair the quality of life and require regular use of analgesics (7–13,15). Although PTLDS is generally more common in women and in persons who have a difficult early disease course (12,15), the underlying causes are not well understood, and biomarkers to identify patients at risk for such outcomes are lacking. Thus, treatment strategies are symptom-based and often ineffective, leaving patients and physicians in a quandary about how to restore health.

Although persistent infection is often considered as an explanation for lingering symptoms, microbiological evidence of infection in the post-antibiotic drug period is limited in humans. Two clinical trials in Europe of antibiotic drug efficacy established that only 2 (0.8%) of 244 patients had microbiologic treatment...
failure, and neither had PTLDs (10,11). Similarly, in xenodiagnostic studies, 2 of 11 patients with PTLDs were positive for borrelia DNA, but all were culture negative, implying lack of viable organisms (16). Findings from those microbiologic studies are substantiated by 5 clinical trials in United States and Europe that have failed to show sustained amelioration of PTLDs with additional antimicrobial drug therapy (17–20).

Emerging evidence now points to metabolic and immune system abnormalities in post-Lyme sequelae (21–24). Because Lyme borreliae do not encode toxins, the clinical manifestation of disease has been largely attributed to the host immune response. By extension, 2 longitudinal studies of erythema migrans patients demonstrated that sustained activation of this response could contribute to persistent symptoms in the post-antibiotic drug period, when few, if any, spirochetes remain (21,24). A study of US patients by Aucoct et al. reported increased serum levels of CCL19 in those with PTLDs, implying that ongoing immune reactivity in peripheral tissues might contribute to PTLDs (21). In our study of patients in Europe, a subset who had PTLDs had increased interleukin (IL) 23 levels in serum that correlated directly with autoantibodies but not with borrelia antibodies or culture positivity, thus implicating dysregulated Th17 immunity in those symptoms (24). Those reports linked the immune response to PTLDs after erythema migrans.

However, the potential immune etiology of persistent symptoms after neurologic manifestations of Lyme disease has not been explored.

We investigated the role of host immune responses in the clinical course and outcome of LNB, a CNS infection with a high prevalence (≈20%) of post-antibiotic drug sequelae. (12) We determined during infection whether immune responses in cerebrospinal fluid (CSF) correlated with signs and symptoms of LNB. In contrast, we also determined whether post-LNB sequelae were associated with increased interferon-α (IFN-α) levels in blood, supporting a role for unremitting, low-grade, systemic inflammation in those outcomes.

Methods

Patient Selection

This study included 79 adult patients who met the modified European diagnostic criteria for LNB (4,14), defined as presence of signs or symptoms indicative of neurologic involvement (i.e., radicular pain, cranial nerve paresis, meningeal signs/meningitis, tremor); CSF lymphocytic pleocytosis; and evidence of borrelial infection demonstrated by intrathecal synthesis of borrelia-specific antibodies, Borrelia isolation from CSF, or presence of erythema migrans. Patients were recruited on an ongoing basis in the Lyme borreliosis

Table 1. Clinical characteristics of patients at study entry stratified according to resolution or persistence of symptoms after antimicrobial drug therapy in study of persistent symptoms after Lyme neuroborreliosis and increased levels of interferon-α in blood, Slovenia*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Resolved, n = 52</th>
<th>Persistent, n = 27</th>
<th>p value†</th>
<th>Adjusted p value‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td>47 (15–81)</td>
<td>52 (15–74)</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Female/male sex</td>
<td>15 (29)/37 (71)</td>
<td>16 (59)/11 (41)</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>Annual no. tick bites</td>
<td>2 (0–50)</td>
<td>1 (0–50)</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Clinical characteristics at first visit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current or recent EM</td>
<td>19 (37)</td>
<td>9 (33)</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>Solitary EM</td>
<td>14 (27)</td>
<td>8 (30)</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>Multiple EM</td>
<td>5 (10)</td>
<td>1 (4)</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>No. symptoms/patient</td>
<td>3 (1–11)</td>
<td>6 (1–13)</td>
<td>0.02</td>
<td>0.1</td>
</tr>
<tr>
<td>Duration of symptoms, days</td>
<td>14 (3–90)</td>
<td>20 (3–365)</td>
<td>0.3</td>
<td>0.9</td>
</tr>
<tr>
<td>Radicular pain</td>
<td>14 (27)</td>
<td>9 (33)</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Peripheral facial palsy</td>
<td>37 (71)</td>
<td>20 (74)</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Laboratory findings in blood</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRP, mg/L</td>
<td>1 (1–29)</td>
<td>1 (1–18)</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>ESR, mm/h</td>
<td>10 (2–40)</td>
<td>11 (1–41)</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>Blood leukocyte count, x 10⁹ cells/L</td>
<td>7 (3–23)</td>
<td>6.5 (3–15)</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>Platelet count, x10⁹/L</td>
<td>247 (134–428)</td>
<td>245 (165–416)</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>AST, µkat/L</td>
<td>0.4 (0.18–1.1)</td>
<td>0.4 (0.24–1.2)</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>ALT, µkat/L</td>
<td>0.43 (0.17–2.3)</td>
<td>0.39 (0.14–1.8)</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>CSF findings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleocytosis</td>
<td>52 (100)</td>
<td>27 (100)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Leukocyte count, x 10⁶ cells/L</td>
<td>73 (6–1,579)</td>
<td>80 (6–806)</td>
<td>0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>Lymphocyte count, x 10⁶/L</td>
<td>63 (4–1,477)</td>
<td>69 (4–768)</td>
<td>0.6</td>
<td>1</td>
</tr>
<tr>
<td>Borrelia culture positivity</td>
<td>5 (10)</td>
<td>3 (11)</td>
<td>0.9</td>
<td>0.9</td>
</tr>
</tbody>
</table>

*Values are median (range) or no. (%). Bold indicates statistically significant p values. ALT, alanine aminotransferase; AST, aspartate aminotransferase; Borrelia, Borrelia burgdorferi sensu lato; CRP, C-reactive protein; CSF, cerebrospinal fluid; EM, erythema migrans; ESR, erythrocyte sedimentation rate.
†Statistical analyses were performed by using Fisher exact test or Mann-Whitney nonparametric rank-sum test.
‡Values after Benjamini-Hochberg correction for multiple comparisons (false discovery rate = 0.05).
outpatient clinic at the University Medical Center Ljubljana, Ljubljana, Slovenia, during 2006–2013. The 79 patients were chosen based on availability of matched serum and CSF samples for each patient at multiple follow-up timepoints. All participants provided written informed consent, and the study was approved by the Medical Ethics Committee of the Ministry of Health of Slovenia and the Institutional Review Boards at Massachusetts General Hospital and the New York State Department of Health.

Clinical Assessment
We collected demographic and clinical information at baseline and at subsequent visits at 2 weeks and 3, 6, and 12 months after study entry by using a structured questionnaire (12). In addition to medical history, patients reported recurrence of tick bites, presence of EM, and severity and duration of symptoms. We also assessed signs of neurologic involvement (meningeal signs, cranial nerve damage, radiculitis, tremor) (14). In addition, we asked patients about any new or intensified (more severe) subjective symptoms.

We classified patients as resolved if they recovered completely with antibiotic therapy or as persistent symptoms/PTLDS if they had new or intensified subjective symptoms at 6 or 12 months after initiation of antibiotic therapy for which there was no other medical explanation. We further subgrouped patients who had PTLDS into 2 categories according to self-reported severity of symptoms based on a visual analog scale: those with mild-to-moderate symptoms that required occasional analgesics (once or twice weekly), and those who had debilitating symptoms with major impact on quality of life that required frequent use (>3×/wk) of analgesics. In addition to clinical assessment, we obtained serum at each time point and CSF at baseline and at 3 months. We obtained serum and CSF samples during the same study visit, enabling direct comparison. Samples were stored at −80°C. The same study physician evaluated all patients over the entire study period.

Laboratory Evaluation
We assessed antibody levels (IgM and IgG) to *B. burgdorferi* sensu lato in serum and CSF by using an indirect chemiluminescence immunoassay against OspC

Figure 1. Individual frequency of each symptom at each follow-up timepoint in study of association of persistent symptoms after Lyme neuroborreliosis and increased levels of interferon-α in blood among patients in Slovenia. Data in patients whose symptoms resolved are shown in the left graph and in those with persistent symptoms in the right graph. Red stars indicate symptoms that occurred at significantly higher frequency in the persistent group compared with the resolved group. p values were calculated using nonparametric Mann-Whitney rank sum tests; p<0.05 was considered statistically significant. T, timepoint (0 indicates baseline).
and VlsE recombinant antigens (LIAISON; Diasorin, https://www.diasorin.com). We determined intrathecal borrelia IgM/IgG as described; antibody index values ≥1.5 were indicative of borrelia-specific antibody production (25). We defined CSF pleocytosis as CSF leukocyte counts >5 × 10^6 cells/L and performed cultivation of borreliae from CSF as reported (26).

Cytokine and Chemokine Determinations

We assessed levels of 20 cytokines and chemokines associated with innate (CCL2, CCL3, CCL4, IL-6, IL-8, IL-10, tumor necrosis factor-α, IFN-α) and adaptive T-cell (T_H1: IFN-γ, CXCL9, CXCL10, CXCL11, CCL19, IL-12p70; T_H17: IL-17A, IL-21, IL-23; CCL21) and B-cell (CXCL12, CXCL13) immune responses in serum and CSF by using bead-based multiplex assays (EMD-Millipore, https://www.emdmillipore.com). We performed cytokine determinations in all samples in 1 complete experiment to minimize interassay variation and repeated sample freeze–thaw.

Statistical Analyses

We assessed categorical variables by using the Fisher exact test and quantitative variables by using the Mann-Whitney nonparametric rank-sum test (GraphPad.PRISM 9.2.0, https://www.graphpad.com). We adjusted p values for multiple comparisons by using the Benjamini-Hochberg procedure. We used a robust, rank-based analysis of variance to examine differences in cytokine/chemokine levels in repeated measures and using time as a within-subject factor and severity as a between-subject factor; we considered p<0.05 statistically significant.

Results

Clinical Characteristics at Study Entry

A total of 79 patients were included in the study; 31 (39%) were female and 48 (61%) were male, and median age was 50 years (Table 1). Of the 79 LNB patients, 52 (66%) recovered completely after antibiotic therapy (resolved), whereas 27 (34%) had PTLDS 6–12 months after antibiotic therapy (persistent). The unusually high proportion of PTLDS patients is caused by our selection criteria, which we enriched for this patient population to enable meaningful comparisons. Compared with the resolved group, we found that patients who had PTLDS were more often female (59% vs. 41%; p = 0.03) and were more symptomatic at baseline (6 vs. 3 symptoms; p = 0.02) (Table 1). In contrast, we observed no major differences between these 2 groups for other demographic, laboratory, or clinical measurements, including the characteristic signs of LNB, Bannwarth syndrome or peripheral facial palsy.

Prevalence of Constitutional Symptoms During Follow-up

By definition, all LNB patients had signs and symptoms indicative of nervous system involvement (i.e., radiculitis, cranial nerve paresis, meningeal signs, tremor) at first visit, before antibiotic therapy. In addition to those neurologic signs and symptoms, patients often reported associated nonspecific systemic symptoms, most commonly headache, fatigue, and sleep disturbance (Figure 1). When stratified by presence of symptoms in the post–antibiotic therapy period, patients who had PTLDS had a more symptomatic early disease course, before antibiotic therapy (6 vs. 3 symptoms; p = 0.02), as well as at the conclusion of therapy (after 2 weeks, 3.5 vs. 0 symptoms; p<0.001) and at 3 months (3 vs. 0 symptoms; p<0.001) (Figure 2). Moreover, when systemic symptoms were evaluated individually, 11 of the 13 symptoms were found at higher prevalence at the initial visit for patients who later had PTLDS develop, although only malaise and memory disturbance reached statistical significance (Figure 2). Those differences became more pronounced after antibiotic therapy; at 2 weeks, patients who
had a higher prevalence of 9 of the 13 symptoms than did those in the resolved group (Figure 2).

Comparison of Immune Mediators in Serum and CSF

We assessed levels of 20 cytokines and chemokines associated with innate and adaptive T- and B-cell immune responses in matched serum and CSF samples at study entry and 3 months. At baseline, 12 mediators were more highly concentrated in CSF, the site of infection, than in serum (Table 2). The highest levels and the most dramatic differences were observed for CCL2 (median 1,096 pg/mL vs. 668 pg/mL; p = 0.0002), the IFN-γ-inducible chemokines CXCL9 (2,274 pg/mL vs. 1,175 pg/mL; p = 0.05), and CXCL10 (16,920 pg/mL vs. 600 pg/mL; p = 0.0002), and B-cell chemottractants CXCL12 (3,760 pg/mL vs. 2,875 pg/mL; p = 0.06) and CXCL13 (187 pg/mL vs. 18 pg/mL; p = 0.0002). Those data established that both innate and adaptive T- and B-cell immune responses are triggered during *Borreliia* infection and that those responses occur locally in CNS, the site of the disease. Conversely, TNF-α, CCL4, and IL-23 were present at greater levels in serum, suggesting that those responses occur systemically. However, by 3 months, most mediators decreased dramatically in CSF, reaching concentrations comparable to those in serum, presumably because of successful resolution of the CNS infection. Moreover, the concentrations of most mediators in serum were unremarkable and did not change between the 2 time points, further supporting the conclusion that immune responses occur locally in CSF and thereby contribute to CNS symptoms (Table 3).

Immune Responses at the Initial Visit According to PTLDs

Because the greater frequency of symptoms at first visit was associated with an unfavorable clinical outcome, we assessed whether the immune responses during early infection might predict resolution or persistence of symptoms after antibiotic drug therapy. For that purpose, we stratified cytokine and chemokine levels at initial visit, before use of antimicrobial drugs, by resolution or persistence of symptoms 6–12 months later (Table 4). In serum, 4 mediators varied greatly between patients who had persistent or resolved symptoms. Levels of 3 mediators, CXCL11, CXCL19, and IL-21, were higher in patients whose symptoms resolved after antibiotic therapy, implying that they might play a protective role in the infection and contribute to symptom resolution. Those associations were lost in follow-up (data not shown), substantiating their role in the infection. In contrast, IFN-α levels were significantly higher in patients who had PTLDs.
(median 18 pg/mL vs. 2 pg/mL; p = 0.01). A similar trend was observed for IL-17A and IL-23, but those differences were not significant after adjustment for multiple comparisons. In CSF, none of the mediators differentiated patients with persistent symptoms from those whose symptoms resolved, despite the association between increased CSF immune responses, symptoms, and CNS infection. This finding implies the decoupling of immune responses in CSF during infection from systemic immune responses associated with the development of PTLDS in the post–antibiotic therapy period.

Immune Responses During Follow-up According to PTLDS

IFN-α in serum was the only mediator that remained significantly increased in patients with PTLDS at each follow-up visit, compared with patients whose symptoms resolved (Figure 3, panel A). Patients with severe symptoms had the highest levels of IFN-α in serum at baseline (median 35.5 pg/mL), those with moderate severity had intermediate IFN-α concentrations (9 pg/mL), and those without PTLDS had the lowest IFN-α levels (2 pg/mL) in serum. This association was observed at each subsequent time point. A similar trend was observed for IL-23, although those differences did not reach statistical significance. In contrast, other mediators did not differ by disease severity at any time point after antibiotic therapy, including CCL19, which was previously associated with PTLDS in patients after erythema migrans (21), and IL-10, which is a major regulatory cytokine (Figure 3, panel C). A nonparametric analysis of variance-type testing, which measured the effect of relative disease severity on cytokine levels, reinforced this association between PTLDS, IFN-α, and IL-17/IL-23 pathways (Figure 3, panel C).

We provide serum IFN-α levels for individual patients (Figure 4). Although there was overlap between disease severity groups, most patients with severe PTLDS had IFN-α levels above the third quartile of patients without PTLDS at each time point. Thus, increased serum IFN-α levels in the post–antibiotic therapy period might play a pathogenic role by contributing to ongoing symptoms after LNB.

Discussion

A subset of patients with LNB experience lingering symptoms that persist despite appropriate antimicrobial therapy. The etiology of such symptoms is unclear, and effective biomarkers and treatment strategies...
Persistent Symptoms after Lyme Neuroborreliosis

Table 4. Cytokine and chemokine levels at study entry vs 3 mo in cerebrospinal fluid and serum in study of association of persistent symptoms after Lyme neuroborreliosis and increased levels of interferon-α in blood, Slovenia*

<table>
<thead>
<tr>
<th>Mediator</th>
<th>Cerebrospinal fluid</th>
<th>Serum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T = 0, median (range), pg/mL, n = 67</td>
<td>T = 3, median (range), pg/mL, n = 64</td>
</tr>
<tr>
<td>Innate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFN-α</td>
<td>3 (0–64)</td>
<td>1 (0–19)</td>
</tr>
<tr>
<td>IL-6</td>
<td>7 (0–146)</td>
<td>1 (0–1)</td>
</tr>
<tr>
<td>IL-8</td>
<td>144 (18–1,288)</td>
<td>1 (0–1)</td>
</tr>
<tr>
<td>IL-10</td>
<td>6 (0–422)</td>
<td>31 (13–107)</td>
</tr>
<tr>
<td>TNF</td>
<td>10 (0–150)</td>
<td>2 (0–20)</td>
</tr>
<tr>
<td>CCL2</td>
<td>1,096 (223–48,494)</td>
<td>719 (241–1,889)</td>
</tr>
<tr>
<td>CCL3</td>
<td>49 (1–107)</td>
<td>38 (1–87)</td>
</tr>
<tr>
<td>CCL4</td>
<td>29 (1–787)</td>
<td>11 (1–35)</td>
</tr>
<tr>
<td>γ-adaptive</td>
<td>2 (0–193)</td>
<td>1 (0–11)</td>
</tr>
<tr>
<td>CXCL9</td>
<td>2,274 (14–37,051)</td>
<td>117 (1–1,997)</td>
</tr>
<tr>
<td>CXCL10</td>
<td>16,920 (137–193,804)</td>
<td>905 (201–16,407)</td>
</tr>
<tr>
<td>CXCL11</td>
<td>80 (1–2,640)</td>
<td>10 (1–86)</td>
</tr>
<tr>
<td>CCL19</td>
<td>55 (10–1,598)</td>
<td>10 (3–362)</td>
</tr>
<tr>
<td>IL-12p70</td>
<td>3 (1–17)</td>
<td>1 (1–3)</td>
</tr>
<tr>
<td>γ7-adaptive</td>
<td>9 (4–25)</td>
<td>7 (3–11)</td>
</tr>
<tr>
<td>IL-21</td>
<td>3 (3–11)</td>
<td>20 (1–20)</td>
</tr>
<tr>
<td>IL-23</td>
<td>3 (3–408)</td>
<td>49 (0–85)</td>
</tr>
<tr>
<td>CCL21</td>
<td>530 (312–927)</td>
<td>530 (256–1,222)</td>
</tr>
<tr>
<td>B-cell adaptive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CXCL12</td>
<td>3,760 (98–27,479)</td>
<td>1,953 (98–6,880)</td>
</tr>
<tr>
<td>CXCL13</td>
<td>187 (1–107,723)</td>
<td>4 (1–62)</td>
</tr>
</tbody>
</table>

Bold indicates statistically significant p values. CCL, CC motif chemokine ligand; CSF, cerebrospinal fluid; CXCL, CXC motif chemokine ligand; IFN, interferon; IL, interleukin; T, timepoint (0 indicates baseline); TNF, tumor necrosis factor.

†Benjamini-Hochberg corrected (false discovery rate = 0.05).

are lacking. The usefulness of this report is that it defines IFN-α as a distinguishing marker and possibly a mediator of post-Lyme sequelae. These findings have potential implications for diagnosis of patients and treatment for this condition.

Prolonged systemic symptoms have been observed after several bacterial and viral infections, including infectious mononucleosis, influenza, Q fever, and COVID-19 (27,28). Despite the diversity of triggering agents, several common themes have emerged. As a generalization, those sequelae comprise a constellation of nonspecific symptoms that occur more frequently after severe early infection; they also are believed to represent a postinfectious process and are indistinguishable by standard clinical, demographic, or laboratory markers (27). Those observations are also applicable to patients who have Lyme disease, including LNB, ≈10%–20% of whom report lingering symptoms after antimicrobial drug therapy for *Borrelia* infection (7–13). Combined, those studies suggest that, despite different triggers, the underlying pathophysiology of postinfectious sequelae might be similar.

In the absence of microbiological evidence of persistent infection, other hypotheses have been proposed to explain lingering symptoms after Lyme disease. Those hypotheses include retained spirochetal antigens (29,30), metabolic irregularities (31), and excessive inflammation (21,23,24), all of which could arguably be linked to inappropriate activation of host immune responses. Insights from our study of patients with LNB, along with 2 previous reports of patients with erythema migrans who were followed longitudinally to evaluate their posttreatment status (21,24), support the role of maladaptive immune responses in PTLDs. Moreover, those studies suggest that the stage for dysregulated immunity is set early in infection. In all 3 studies, heightened levels of PTLDs-associated inflammatory mediators were observed at first visit, before antimicrobial drug therapy, implying that *Borrelia* infection serves as the initial trigger for these responses (21,24). However, the sustained immune activity in the post–antibiotic therapy period, which occurs concurrently with post-Lyme sequelae, appears to represent a postinfectious process (10,11,24). Similar observations have been made in patients with postinfectious Lyme arthritis who have persistent synovitis for months to years after receiving antibiotics (23,32). Thus, a range of post-Lyme complications have been linked to dysregulated host immunity.

What is driving unremitting inflammation in the absence of an ongoing infection is not yet entirely clear. One possibility is that spirochetal remnants, such as *Borrelia* peptidoglycan, which is not easily
cleared, continue to stimulate immune responses in the postinfectious period (29,30). However, given that such components presumably also persist in patients whose symptoms resolve after treatment with antibiotics, this finding alone is unlikely the entire explanation for post-Lyme sequelae. Alternatively, several studies in Lyme arthritis point to infection-induced autoimmune phenomena as a potential reason for persistent postinfectious arthritis (23). Finally, in mice and in humans, genetic predisposition might contribute to dysregulated immunity (33–35). Those possibilities, and probably other unidentified mechanisms, are not mutually exclusive. Depending on the condition, multiple factors might play a role. This concept is supported at least partially by distinct immune signatures associated with PTLDS across different patient populations, including CCL19 in erythema migrans patients in the United States (21), IL-23 in erythema migrans patients in Europe (24), and IFN-α in patients who have LNB. Nevertheless, the preponderance of evidence across distinct manifestations underscores the role of maladaptive immune responses as both effectors and biomarkers of post-antibiotic therapy sequelae after Lyme disease.

In this longitudinal study, both CSF and serum were available at multiple time points over 1 year. This approach enabled tracking of immunologic responses systemically and locally in CSF during the clinical course and outcome of LNB. This analysis showed that, during CNS infection, the innate and adaptive immune responses are highly concentrated in CSF, the site of the disease. Those responses resolve after antimicrobial drug therapy and presumed resolution of CNS infection. This contraction of immune responses in CSF coincides with resolution of neurologic signs and symptoms of LNB (radiculitis, cranial nerve damage, meningeal

Figure 3. Cytokine and chemokine levels in serum of patients in Slovenia who had Lyme neuroborreliosis in study of association of persistent symptoms after Lyme neuroborreliosis and increased levels of interferon-α in blood. Prevalence of constitutional symptoms is stratified according to PTLDS severity during the 1-year follow-up period. A) Median serum levels of IFN-α, IL-23, and CCL19 during 1 year of follow-up stratified by presence or absence of PTLDS. B) Median serum levels of IFN-α, IL-23, and CCL19 graphed according to disease severity. p values above red line correspond to the comparison between patients with severe PTLDS vs those with no PTLDS (resolved). p values above yellow lines represent significant differences between the no PTLDS and moderate PTLDS groups. C) Analysis of variance comparison of relative effect of disease severity or time on cytokine levels in serum. Error bars indicate 10th–90th percentiles. CCL, CC motif chemokine ligand; IFN, interferon; IL, interleukin; PTLDS, posttreatment Lyme disease symptoms or syndrome.
Persistent Symptoms after Lyme Neuroborreliosis

signs/meningism, tremor), thereby linking the infection and inflammation in CSF with CNS disease. In contrast, the nonspecific lingering symptoms after LNB are associated with increased IFN-α levels in serum. Those results imply that sustained systemic immune responses and associated symptomology are decoupled from infection-driven immune responses in CSF. This interpretation is consistent with the notion that type 1 IFNs represent a maladaptive immune response that contributes to disease pathology but not to control of Borrelia infection. In murine models, type 1 IFN responses are associated with development of arthritis in the absence of spirochetal eradication (36,37). In humans, increased IFN-α activity has been observed in patients with a history of Lyme disease and persistent cognitive deficits months to years after receiving antimicrobial drugs (17). Those observations provide new considerations for treatment approaches that prioritize targeting the immune response after appropriate antibiotic regimens, a treatment algorithm used successfully in post-antibiotic therapy for Lyme arthritis (23,38).

Although this study does not establish causality, the association between increased systemic IFN-α levels and PTLDS is nonetheless intriguing. This cytokine plays a central role in maladaptive hyperinflammatory immune responses in type 1 interferonopathies in other infections and autoimmune diseases, including COVID-19, influenza, and lupus (39). The pathologic effects of IFN-α are also apparent from treatment studies in cancer and chronic viral hepatitis in which administration of this cytokine often results in adverse events, particularly influenza-like symptoms, such as fever, chills, myalgia, headache, and nausea, as well as neurologic and psychiatric sequelae (40,41). Those symptoms, which are remarkably similar to those

Figure 4. Serum IFN-α levels of individual patients with Lyme neuroborreliosis in Slovenia at each follow-up timepoint according to PTLDS severity in study of association of persistent symptoms after Lyme neuroborreliosis and increased levels of interferon-α in blood. A) T = 0; B) T = 2 wks; C) T = 3 mo; D) T = 6 mo; E) T = 12 mo. Levels of interferon-α in serum for individual patients throughout the 1-year follow-up are shown. Solid black lines symbolize median values, and shaded area between dotted lines indicates interquartile range. Statistical analyses were performed by using nonparametric Mann-Whitney rank-sum tests. Significant p values for each comparison are shown above the corresponding brackets. IFN, interferon; PTLDS, posttreatment Lyme disease symptoms or syndrome.
SYNOPSIS

in patients with PTLDs, occur in most patients undergoing IFN-α therapy and might lead to discontinuation of treatment. Lessons learned from these studies could offer major insights into novel therapeutic approaches that target IFN-α in Lyme disease. However, before such strategies can be considered, our initial observations need to be validated in larger cohorts of patients with PTLDs and appropriate control groups. Nevertheless, emerging anti–IFN-α therapies offer hope for more effective treatment strategies for patients with debilitating lingering symptoms after LNB and perhaps other manifestations of Lyme disease.

Acknowledgments

We thank the patients and physicians for participating in this study.

This study was supported by the National Institutes of Health (NIAID: R21AI144916, R01 AI150157-01 and NIAMS: K01AR062098); the Massachusetts General Hospital Executive Committee on Research Interim Support Fund, and the Wadsworth Center, New York State Department of Health startup funds to K.S. and the Slovenian Research Agency (P3-0296, J3-1744, and J3-8195) to F.S.

K.S., F.S., and K.O. designed the study. K.S., S.H., M.K., and AK conducted experiments and data analyses. K.O., F.S., P.B., and T.R. examined patients who had LNB, made diagnosis, and collected clinical samples and clinical information. S.H., M.K., A.K., and K.S. performed statistical analyses and contributed to generation of tables and figures. S.H., K.S., F.S., K.O., K.W.K., and J.J.W. helped with interpretation of data and in writing the manuscript. All authors reviewed and approved the manuscript.

K.S. served as a consultant for T2 Biosystems, Roche, BioMerieux, and the New York State Biodefense Fund for the development of a diagnostic assay in Lyme borreliosis. F.S. served on the scientific advisory board for Roche on Lyme disease serologic diagnostics and on the scientific advisory board for Pfizer on Lyme disease vaccine and is an unpaid member of the steering committee of the ESCMID Study Group on Lyme Borreliosis/ESGBOR. Other authors report no conflict of interests.

About the Author

Mr. Hernández is a research assistant at Tufts University School of Medicine. His primary research interests are understanding protective and pathogenic immune responses in Lyme borreliosis, infection-triggered autoimmunity, and its molecular underpinnings.

References

Persistent Symptoms after Lyme Neuroborreliosis

Address for correspondence: Klemen Strle, Tufts University School of Medicine, 145 Harrison Ave., Boston, MA 02122, USA; email: kstrle@broadinstitute.org

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 29, No. 6, June 2023

1101
Although SARS-CoV-2 is primarily transmitted from person-to-person (1), it is considered zoonotic because of natural infections observed in a range of mammalian species (2,3). The broad host range of SARS-CoV-2 is evident from natural infections occurring in zoos, sanctuaries, and aquaria, most frequently in big cats (3), but also in mustelids (4), nonhuman primates (5), and others. Zoo outbreaks typically begin after close contact with an infected zookeeper (6–10). One Health investigations have shown transmission of SARS-CoV-2 from human to animals (4,8,9,11–14), but examples of animal-to-human transmission are rare (15–19).

We report a multispecies cluster of SARS-CoV-2 infections associated with an infected African lion (Panthera leo) at a seasonal, mid-sized, Association of Zoos and Aquariums-accredited zoo in Indiana, USA. The lion’s likely source of exposure was a fully vaccinated, asymptomatic employee, and forward transmission from the lion to other fully vaccinated employees probably occurred.

Methods

Setting

The sentinel case occurred in December 2021, when the zoo was closed for the season. The lion was housed alone in a building with an indoor/outdoor enclosure located >30 feet from other animal enclosures. Feeding and veterinary procedures were conducted indoors by dedicated staff with assigned key access. Susceptible species elsewhere in the zoo included a snow leopard (Panthera uncia), Amur tigers (Panthera tigris altaica), Amur leopards (Panthera pardus orientalis), North American river otters (Lontra canadensis), and several species of nonhuman primates. All susceptible animals, including the lion, had received 2 doses of Zoetis experimental mink coronavirus vaccine (https://www.zoetis.com) during September–November 2021. Animal health was overseen by a full-time onsite veterinarian.

Zoo practice before the outbreak included SARS-CoV-2 prevention measures from the Zoo and Aquarium All Hazards Partnership (20,21), such as suspending behind-the-scenes tours and close-distance behavioral training for susceptible species. Employees were required to complete the COVID-19 vaccination series, practice social distancing, monitor for...
COVID-19 symptoms, and, when ill, exclude themselves from work. Disinfectant foot baths were placed at enclosure entrances, and high-pressure cleaning methods were replaced by methods less likely to aerosolize infectious material. Employees were required to wear surgical masks at all times and nitrile gloves during feedings.

Sentinel Case
The lion was a geriatric (20-year-old) male with chronic renal insufficiency and severe degenerative intervertebral disc disease prohibiting normal range of motion for self-grooming of the caudal body. He was vaccinated with the Zoetis vaccine on September 14 and October 7, 2021. Routine care included hand feeding twice daily, therapeutic laser treatments of the spine and hindquarters, corticosteroids, gabapentin, renal supplements, and mesenchymal stem cell treatments. On December 18, employees observed coughing, dyspnea, shivering, lethargy, sneezing, nasal discharge, anorexia, and exposed nictitans. Marbofloxacin treatment was initiated. Nasal swabs were collected on December 18 and 23. He was euthanized on December 23 because of declining mobility associated with intervertebral disc disease. The acute clinical signs attributed to SARS-CoV-2 had largely resolved and were not a factor in the euthanasia decision.

Investigation
We initiated an investigation on December 18 to identify the source of the lion’s exposure and the potential for forward transmission (Figure 1). We defined a confirmed cluster-associated case as illness in a human or animal at the zoo with laboratory evidence for the same strain as the sentinel case, based on genomic sequencing of a clinical sample. We defined a probable cluster-associated case as illness in a human or animal at the zoo with laboratory evidence for SARS-CoV-2 based on reverse transcription PCR (RT-PCR) or rapid antigen test of a clinical sample but for which no genomic sequencing information was available.

For both traceback and forward contact tracing investigations, we assumed the exposure period to begin 10 days before illness onset, with probable acquisition within 5 days prior. We assumed the infectious period to begin 2 days before illness and extend 10 days after illness onset. We considered any person who entered the enclosure during the lion’s exposure or infectious period to be a lion contact. We classified the care provided by lion contacts as cranial (e.g., feeding and nasal swabbing with ≤2 feet between...
human and lion heads) or caudal (e.g., arthritis care and injections performed ≈9 feet from the lion’s head). We defined close contact between persons as proximity of <6 feet for >15 minutes in 1 day.

Sentinel Case Investigation
We screened nasal swab samples from the lion onsite on December 18 by using a lateral flow immunoassay validated for human use (DiaTrust COVID-19 Ag Home Test; Celltrion, https://www.celltrionhealthcare.com). We sent aliquots of samples to the US Department of Agriculture’s National Veterinary Services Laboratories for confirmatory testing. Necropsy was performed on December 23 at the Michigan State University Veterinary Diagnostic Laboratory.

Traceback Investigation
We screened nasal swab samples from all employees exposed to the lion within the 10 days before his illness onset onsite by using lateral flow immunoassay on December 18 and 19. We reviewed personnel schedules, keeper and veterinary daily reports, maintenance logs, lion treatment schedules, veterinary examination notes, security logs, and social media pages for dates and nature of interactions among lion contacts.

Forward Contact Tracing Investigation
We screened lion contacts with subsequent symptoms suggestive of infection onsite for SARS-CoV-2 by lateral flow immunoassay within 24 hours of symptom onset. The Indiana Department of Health confirmed the results by using a TaqPath COVID-19 Combo Kit RT-PCR (ThermoFisher, https://www.thermofisher.com).

An Indiana Department of Health epidemiologist conducted interviews of infected personnel. Those interviews covered symptoms, vaccination history, and exposures to other zoo employees and the public during the 10 days before their onset of illness. We verified location history for activity outside the zoo for these persons through credit or debit card transaction data where possible. We cross-referenced contact data with zoo records. We deidentified data summaries for analysis.

Relatedness of genomic sequences was analyzed by the authors (L.L., B.P., and J.L.) by comparing samples with 10 closely related samples collected during August 2021–February 2022 throughout the state of Indiana. We sequenced all samples in 1 run by using Clear Dx WGS SARS-CoV-2 Reagent Kit 2.0 (Clear Labs, https://www.clearlabs.com), which contained midnight primers.

We used the Pangolin COVID-19 Lineage Assigner (https://pangolin.cog-uk.io) to identify lineage from FASTA files generated by Clear Dx. We constructed the phylogenetic tree in CLC Genomics Workbench 21.0.3 (QIAGEN, https://www.qiagen.com) using classical sequencing analysis tools.

Infection Control
Upon detection of SARS-CoV-2 in the lion, employees providing care for susceptible species at the zoo were required to wear N95 respirators. Those entering the lion building also used face shields, disposable gowns, shoe covers, and gloves. Lion building access was restricted further, and laser treatments were discontinued. Work assignments were altered so that employees providing care to the lion would not come in contact with other susceptible animals (22).

Results

Sentinel Case Investigation
We detected evidence of SARS-CoV-2 in the lion through onsite screening on December 18. We detected further evidence of SARS-CoV-2 by RT-PCR in nasal swab samples from December 18 and December 23, and in nasal turbinate, lung tissue, and intestinal tissues obtained at necropsy on December 23. Extracted RNA from both nasal swab samples produced high-quality 29,707-nt sequences for genomic sequencing (SARS-CoV-2 Delta variant, AY.103 lineage). Necropsy confirmed intervertebral disc degeneration, chronic renal disease, chronic lower airway disease, and severe rhinitis.

Traceback Investigation
Nine people (employees Z1–Z9) entered the lion building at some time during the lion’s potential exposure period during December 8–18 (Figure 1). All 9 reported being asymptomatic on December 18. Eight had screening tests on December 18, and 1 had a screening test on December 19; all were negative. Employees Z1, Z2, and Z3 had onset of COVID-19 during December 21–24, with infectious periods that began on or after December 19 (Figure 2). Employee Z5 had cranial contact during the lion’s 5-day probable acquisition period. Employees Z4, Z6, Z7, Z8, and Z9 had lion contact 6–10 days before onset of the lion’s illness, performed caudal activities exclusively, or both.

Forward Contact Tracing Investigation
No additional animals at the zoo had illness suggestive of SARS-CoV-2 infection (Figure 1). Eight persons
Transmission of SARS-CoV-2 from African Lion

entered the lion building during the lion’s infectious period (December 16–23). Employees Z1, Z2, and Z3 were fully vaccinated and previously healthy, each of whom was involved in cranial care 3 days before having onset of upper respiratory symptoms. Each of those 3 employees was positive on rapid antigen test within 24 hours after symptom onset and had subsequent RT-PCR confirmation of SARS-CoV-2 infection. Samples from patients Z1 and Z2 were suitable for sequencing; the sample from Z3 was of insufficient quality for sequencing.

The sequences generated from lion samples on December 18 and 23 were identical to those from Z1 and Z2 samples. The 10 community comparators varied from the cluster sequences by 12–24 nt (Figure 3).

Employees Z5, Z8, and Z9 had no close contact with Z1, Z2, or Z3 during their exposure periods. Z4 had close contact with Z2 on December 18, the day that both had negative screening tests. Z6 entered the lion enclosure at the same time as Z3, but was maintaining >6 feet distance, 9 days before Z3’s symptom onset. Z7 had close contact with Z1 on December 11, 12, and 18. Z7 worked in the lion enclosure with Z2, but that contact took place a full 10 days before Z2’s onset of symptoms and was at >6 feet for <15 minutes. Z7 also worked in the lion enclosure with Z3 for <15 minutes and at a distance of >6 feet 8 days before Z3’s onset of symptoms. Employee Z3 had no known exposures outside of the zoo but did participate in community social activities with risk for unrecognized transmission of SARS-CoV-2 on several occasions during the 10 days before onset of symptoms.

Discussion
This multispecies cluster of SARS-CoV-2 included 3 confirmed cases (2 human, 1 felid) and 1 probable case (human). The identical genomic sequences detected in samples from the confirmed cases demonstrate that the infections were acquired in a common setting. Given that the zoo was closed to visitors, the source of infection for the sentinel case was almost certainly 1 of 6 asymptomatic employees who tested negative on the day of the lion’s diagnosis and who subsequently reported no signs of illness. Among those 6, employee Z5, the only person who had cranial contact within 5 days before the lion’s onset of illness and who did not later have symptomatic COVID-19, was the most likely source of the lion’s infection.

To determine whether lion-to-human transmission took place, we considered 3 scenarios (Figure 1). The first scenario posits that zoo employees acquired infection from the same human source as the lion. Although employee-to-employee transmission could not be ruled out on an individual basis, no pathway of transmission could be identified that explained all probable cases within the cluster.

The second scenario posits that zoo employees acquired infection from an unrelated community source. For employee Z3, whose viral genome was unknown, community acquisition is possible. Employees Z1 and Z2 had low-risk social
behavior with no other identified sources of SARS-CoV-2 transmission from the community, and samples from both yielded sequences genetically identical to the lion’s viral strain. Although it is technically feasible that each of them, independently, could have acquired the cluster strain from asymptomatic community carriers, the chance of this happening are extremely low.

The third scenario posits that at least 1 zoo employee acquired infection from the lion. During cranial-end procedures, the lion breathed, roared, and coughed within arm’s length of staff. Each person that had symptom onset after the lion was involved in cranial-end care while the lion was sick, and each had symptoms 3 days after that exposure. Lion-to-human transmission of SARS-CoV-2 is, therefore, the most probable explanation for their infections.

Our investigation strongly suggests that lion-to-human transmission took place in 2, and possibly 3, instances, which is important for at least 2 reasons. First, animal-to-person transmission of SARS-CoV-2 is an occupational health risk for veterinary and animal care staff that interact closely with susceptible animals. Second, transmission occurred despite an up-to-date SARS-CoV-2 vaccination history in every person involved, including the person or persons who likely transmitted the virus to the lion, the lion, and the person or persons who likely became infected from the lion. Although SARS-CoV-2 transmission from vaccinated persons to vaccinated zoo animals has been documented previously (23), our results show that transmission can also occur from vaccinated zoo animals to vaccinated persons. Many human vaccine efficacy studies indicate reductions in COVID-19 disease severity after vaccination (24,25); however, further research is needed to determine if the same is true of zoonotic SARS-CoV-2 transmission among vaccinated persons and animals.

The unique setting for these cases minimized the number of potential exposure pathways required to reach this conclusion. Initiation of the investigation and heightened safety measures on the day of sentinel case discovery improved analysis and contained spread. Timely screening, prospective monitoring for symptom development, cross-referencing of occupational and interview data, and genomic sequencing combined to allow inferences of causality.

Swabbing of leonine nasal passages for SARS-CoV-2 diagnosis has been reported (26), but neither the sampling method nor the use of tests designed for human diagnosis has been formally validated. Rapid testing methods applicable to animals should be developed and validated to enable timely implementation of biosecurity measures.

The first limitation of our study is the limited number of community samples that were available for the sequencing analysis. Second, rapid tests may not reliably establish SARS-CoV-2 negative status. Third, the distance associated with close contact and exposure and infectious periods for lions were assumed to be similar to those for humans, although these have not been established. Finally, diminished immune response of this geriatric, chronically ill lion may have precluded a robust response to vaccination, limiting the generalizability of conclusions related to viral shedding after vaccination.

Timely human-animal-environmental assessments and implementation of appropriate biosafety interventions are essential for both animal and human health during community outbreaks of SARS-CoV-2. A One Health approach, which connects the health of persons, animals, and environment (27), should be used to respond to susceptible zoo animals, particularly those requiring close human contact, that develop clinical signs compatible with
SARS-CoV-2 infection. Close contact with large cats should be considered a risk factor for bidirectional zoonotic SARS-CoV-2 transmission, regardless of prior immunization. This consideration may be especially warranted in the cases of geriatric animals or those with underlying health conditions.

About the Author

Dr. Siegrist is a practicing zoo animal veterinarian currently affiliated with the Fresno Chaffee Zoo, Fresno, California, USA. Her research interests include envenomation of captive animals by native reptiles and arthropods and One Health investigation of infectious disease outbreaks.

References

Address for correspondence: Leslie Boyer, University of Arizona Health Sciences Center, Department of Pathology, 1501 N Campbell Ave, PO Box 245043, Rm 5205, Tucson, AZ 85724, USA; email: leslie@email.arizona.edu

Want to stay updated on the latest news in Emerging Infectious Diseases? Let us connect you to the world of global health. Discover groundbreaking research studies, pictures, podcasts, and more by following us on Twitter at @CDC_EIDJournal.
Since May 2022, laboratory-confirmed cases of mpox have been reported across nonendemic countries including the United States, mostly among men who have sex with men (1,2). Persons experiencing homelessness (PEH) are disproportionately affected by infectious diseases compared with the general population because of several factors, including close living quarters in shelters and encampments; lack of consistent access to hygiene facilities when living on the streets; less access to healthcare services; and coexisting medical, mental, and substance use disorders that may increase susceptibility or pose barriers to prevention and treatment (3–6). Minimal literature exists on the characteristics and epidemiology of mpox among PEH. Los Angeles County, California, USA, has a large, heterogeneous PEH population, estimated at 69,144 persons experiencing sheltered and unsheltered homelessness; 10% identify as gay, lesbian, bisexual, or questioning (7,8). Because widespread transmission of mpox among PEH became a concern at the outset of the local outbreak, the Los Angeles County Department of Public Health (LACDPH) initiated this study to review demographics, discern patterns of transmission, and identify risk factors unique to PEH to better understand the effect of mpox among that vulnerable population and determine the need for changes to existing surveillance and mitigation strategies. This study was evaluated by an LACDPH internal review board, which determined it meets criteria for not being human subject research and review was not needed.

Methods
In accordance with Centers for Disease Control and Prevention (CDC) emergency mpox response guidelines, LACDPH implemented mpox case surveillance and investigation beginning in May 2022 (9). We handled both probable and confirmed cases reported to LACDPH equally as actual mpox cases (10). In addition to mandatory laboratory reporting of positive mpox and orthopoxvirus test results, LACDPH required healthcare providers to report all mpox or orthopoxvirus infections, hospitalizations, and deaths within 1 working day after identification using an online form (11,12). Medical provider forms were used to collect demographic, clinical, and epidemiologic information, including preinfection residential location.

In Los Angeles County, California, USA, public health surveillance identified 118 mpox cases among persons experiencing homelessness (PEH) during July–September 2022. Age and sex were similar for mpox case-patients among PEH and in the general population. Seventy-one (60%) PEH mpox case-patients were living with HIV, 35 (49%) of them virally suppressed. Hospitalization was required for 21% of case-patients because of severe disease. Sexual contact was likely the primary mode of transmission; 84% of patients reported sexual contact <3 weeks before symptom onset. PEH case-patients lived in shelters, encampments, cars, or on the street, or stayed briefly with friends or family (couch surfed). Some case-patients stayed at multiple locations during the 3-week incubation period. Public health follow-up and contact tracing detected no secondary mpox cases among PEH in congregate shelters or encampments. Equitable efforts should continue to identify, treat, and prevent mpox among PEH, who often experience severe disease.

In Los Angeles County, California, USA, public health surveillance identified 118 mpox cases among persons experiencing homelessness (PEH) during July–September 2022. Age and sex were similar for mpox case-patients among PEH and in the general population. Seventy-one (60%) PEH mpox case-patients were living with HIV, 35 (49%) of them virally suppressed. Hospitalization was required for 21% of case-patients because of severe disease. Sexual contact was likely the primary mode of transmission; 84% of patients reported sexual contact <3 weeks before symptom onset. PEH case-patients lived in shelters, encampments, cars, or on the street, or stayed briefly with friends or family (couch surfed). Some case-patients stayed at multiple locations during the 3-week incubation period. Public health follow-up and contact tracing detected no secondary mpox cases among PEH in congregate shelters or encampments. Equitable efforts should continue to identify, treat, and prevent mpox among PEH, who often experience severe disease.

Epidemiologic Characteristics of Mpox among People Experiencing Homelessness, Los Angeles County, California, USA, 2022

Hannah K. Brosnan, Karen W. Yeh, Padma S. Jones, Sohum Gokhale, Dalia Regos-Stewart, Hang Tran, Kathleen Poortinga, Phoebe Danza, Rebecca Fisher, Lauren E. Finn, Chelsea Foo, Alicia H. Chang
situations (Appendix Table 1, https://wwwnc.cdc.gov/EID/article/29/6/23-0021-App1.pdf). Providers had the option to send photographs and additional medical records to LACDPH to complement the mandatory report form. We combined race and ethnicity data from all mpox case reports. Classification options were mutually exclusive and consisted of black or African American, Latinx/Hispanic, white, and other. All case-patients reporting Latinx/Hispanic ethnicity were grouped into that category regardless of any racial identification. Case-patients identifying as American Indian/Alaska Native, Asian, multirace, Native Hawaiian/Pacific Islander, or any other unspecified category, were grouped under the category other because <5 case-patients indicated each of those options.

LACDPH matched mpox cases to HIV cases in the electronic HIV registry (eHARS) to obtain co-infection, viral suppression, and CD4 counts. We categorized mpox cases as virally suppressed if the most recent HIV viral load on record was <200 copies/mL and performed ≤12 months before mpox diagnosis. We used most recent CD4 counts after mpox diagnosis to categorize HIV/mpox co-infections by level of immune suppression.

Trained investigators conducted structured interviews with all mpox case-patients reachable by phone or in person to collect additional risk factor data, assist with isolation housing and treatment, and initiate contact tracing; 3 phone calls, 3 texts, and 2 home visits were attempted for each case. Interview data included sexual orientation, symptoms and clinical history, employment, housing status and locations (Appendix Table 2), sexual history during the 3-week mpox incubation period before symptom onset, and other behavioral characteristics. The interviewer also asked mpox case-patients to name and provide phone numbers and addresses for all their intimate contacts. After the initial interview, we contacted mpox case-patients weekly until symptoms resolved and also gathered follow-up data on hospitalizations and treatments. Potential mpox contacts for whom we had information were called, texted, or visited by LACDPH staff for follow-up to review symptoms or arrange for mpox testing or vaccination.

LACDPH verified housing status for mpox case-patients for whom homelessness was noted in the mandatory healthcare provider report forms or who answered affirmatively to experiencing homelessness in the interview. The purpose of verifying housing was to confirm or amend homelessness status according to Department of Housing and Urban Development (HUD) and CDC definitions (13,14) during the 3 weeks before symptom onset. Verification methods included requesting and reviewing medical records from hospitals or clinics, and cross-checking against records from existing LACDPH communicable disease databases, other Los Angeles County department databases, and the local Homeless Management Information System, the data system required by HUD for providers receiving federal funds for the administration of homeless services (15). The Homeless Management Information System contains cumulative profiles and service records of persons who have entered emergency, transitional, or permanent shelter or who have received street outreach services for care and case management.

We included in this report mpox cases diagnosed among PEH during July 16–September 22, 2022. After verifying homelessness status, we categorized PEH case-patients by primary residential situation on the basis of where they spent the highest number of nights during the 3-week incubation period; we also recorded, categorized, and referred for public health follow-up additional locations where case-patients slept during the 3-week incubation period. Location categories were sheltered–congregate (emergency, transitional, and domestic violence shelters, and recuperative care centers); sheltered–other (non-congregate temporary housing such as hotels, motels, or couch surfing [staying briefly with friends or family] in private homes); unsheltered–encampment (living with others in places or structures not meant for human habitation, such as parks, streets, or vehicles); unsheltered–other (living alone in places or structures not meant for human habitation, such as parks, streets, or vehicles); and unknown.

We referred facility addresses identified during the interview and verification processes to field public health nurses who worked with facility staff to set up any necessary activities for outreach, education, symptom surveillance, clinical evaluation and testing, and vaccination of staff and residents. Each site was monitored for ≥3 weeks after an infectious PEH mpox case-patient was moved to dedicated isolation housing. If there were additional symptomatic persons reported, each site was monitored further until negative results were reported from mpox or orthopox testing. We cross-referenced locations for all mpox cases among PEH and among the general population when sufficient address information was available. We performed all analyses using SAS version 9.4 (SAS institute, https://www.sas.com).

Results
During July 16–September 22, 2022, a total of 118 mpox cases among PEH and 1,805 total mpox cases were
reported in Los Angeles County. PEH cases peaked at 26 during the week of August 6, 2022, whereas non-PEH cases peaked at 271 the week of July 30 (Figure). Most (62/118, 53%) PEH mpx cases were 30–39 years of age (Table 1). By gender identity, 108 (92%) identified as men, 5 (4%) as women, and 5 (4%) as other (includes transgender female, transgender male, or another gender identity). By race/ethnicity, 49 (42%) were categorized as Latinx/Hispanic, 37 (31%) black or African American, 18 (15%) white, and 7 (6%) other (American Indian/Alaska Native, Asian, multiracial, or Native Hawaiian/Pacific Islander); race/ethnicity were unknown for 7 (6%). By sexual orientation, 64 (54%) identified as gay or lesbian, 21 (18%) as bisexual or another term, and 14 (12%) as straight or heterosexual; 5 (4%) preferred not to state, and sexual orientation was unknown for 14 (12%).

HIV prevalence among PEH mpx case-patients was 60% (N = 71), among whom 36 (51%) had unsuppressed viral loads and 10 (14%) had a CD4 count <200 copies/mL. Clinical severity of mpx required hospitalization for 25 (21%) PEH, 19 of whom were HIV positive. A total of 42 (35%) PEH mpx case-patients received treatment with tecovirimat.

Among the 118 PEH mpx case-patients, public health staff were able to locate and interview 101 (86%) (Table 2). Of those interviewed, 21 (21%) reported exposure to a known or symptomatic mpx case-patient; none named exposure sources or provided additional details. When those 21 were cross-checked against records from all mpx cases, only 1 was named as a contact in a mpx case among the general population.

A total of 24 (24%) PEH mpx case-patients reported attending a large event <3 weeks before symptom onset. Seventy-four (73%) reported sexual contact; 23 (23%) denied sexual contact. Among those who were sexually active, 30 (41%) reported 1 sexual partner, 31 (42%) 2-5 partners, and 11 (15%) ≥6 partners. Nearly half (34/74; 46%) of sexually active PEH mpx case-patients reported meeting partners through mobile phone applications; others reported meeting through bath houses, sex clubs, or social events. Nine (12%) respondents reported engaging in group sex; 11 (15%) participated in transactional sex, defined as exchanging sex for money, drugs, food, housing, or other unspecified favors.

Among the 23 PEH mpx case-patients who denied sexual contact during the structured interview with public health investigators, 11 (48%) reported sexual contact to their healthcare providers as documented in notes within the mandatory reporting forms or medical records that were submitted to LACDPH. One of those 11 case-patients reported having been sexually assaulted to public health staff outside of the structured interview. Among the 12 case-patients with no report of sexual activity from interviews or records, 3 reported other possible sources of mpx transmission (1 self-reported trying on unwashed found clothing; 1 reported sharing food, utensils, dishes, bathrooms, and razor blades; and 1 reported staying at a shelter), although investigators were unable to confirm those sources. The other 9 mpx case-patients with no report of sexual activity reported no other possible sources of transmission.

Using data from healthcare provider reports and mpx case interviews, LACDPH was able to determine the primary residential situation in the 3 weeks before symptom onset for 112 (95%) PEH mpx case-patients; 55 (47%) were grouped in the sheltered–noncongregate category. Of these, 49 were couch surfing in private homes, 4 used temporary vouchers to stay in private rooms with bathrooms in hotels/motels, and 2 stayed in private rooms with bathrooms in hotels/motels used specifically for emergency housing. Of 37 (31%) PEH grouped as unsheltered–other, 18 were living outdoors.
but not associated with an encampment, 10 were unsheltered with details unknown, and 9 were living in vehicles. We grouped 12 (10%) in the unsheltered–encampment category, 8 (7%) as sheltered–congregate, and 6 (5%) as unknown (Table 1). Twenty-nine (25%) PEH mpox case-patients reported spending nights at >1 location within the 3-week incubation timeframe before onset of symptoms, among whom 14 spent most nights couch surfing (7 moved around from private home to private home), 5 spent some nights outdoors or in a vehicle, 4 spent time in a commercial hotel, 1 in an emergency shelter, 1 incarcerated, and 1 in a non-PEH setting; 1 additional location was unknown. No mpox case-patient was identified as sharing the same encampment or address with another case-patient.

Among the 21 PEH mpox case-patients who reported exposure to a person with known mpox or mpox symptoms, 10 couch surfed, 6 lived in encampments, 2 lived in emergency shelters, and 3 lived alone on the streets. One of the 21 case-patients who reported exposure to a known mpox case-patient reported exchanging sex for services. Of the 11 PEH mpox case-patients who reported exchanging sex for services, 5 were sheltered (3 couch surfing, 1 living in
a group home, and 1 in a shelter) and 6 were unsheltered (1 in an encampment, 2 in vehicles, and 2 alone on the streets). There were no additional details for 1 of the unsheltered PEH mpox case-patients who exchanged sex for services.

Discussion

In this large descriptive series of mpox cases among PEH, mpox case-patients were proportionally similar by age and race to the underlying PEH population in Los Angeles County but disproportionally by

| Table 2. Self-reported behavioral characteristics among mpox case-patients experiencing homelessness interviewed in Los Angeles County, California, USA, July 16–September 22, 2022 |
|-----------------|-----------------|
| Characteristic | No. (%) |
| **Total interviewed** | 101 (86) |
| **Reported exposure to monkeypox case** | |
| Y | 21 (21) |
| N | 45 (45) |
| Don't know | 34 (34) |
| Did not answer | 1 (1) |
| **Attended large public or private event** | |
| Y | 24 (24) |
| N | 75 (74) |
| Did not answer | 2 (2) |
| **Traveled** | |
| Y | 5 (5) |
| N | 94 (93) |
| Did not answer | 2 (2) |
| **Had sexual contact with >1 partners** | |
| Y | 74 (73) |
| N | 23 (23) |
| Did not answer | 4 (4) |
| **No. of partners, n = 74** | |
| Unknown | 2 (3) |
| 1 | 30 (40) |
| 2–5 | 31 (42) |
| >6 | 11 (15) |
| **Venues for meeting sex partners,** †n = 74 | |
| Online apps | 34 (46) |
| Social event, bathhouse, sex club | 5 (7) |
| Other | 20 (27) |
| All other venues| 17 (23) |
| Not applicable, e.g., long-term partner | 11 (15) |
| **Participated in group sex, n = 74** | |
| Y | 9 (12) |
| N | 65 (88) |
| **Gave or received drugs/money/favors/food/housing for sex, n = 74** | |
| Y | 11 (15) |
| N | 63 (85) |
| **Signs and symptoms,** † | |
| Rash, including lesions or skin bumps | 96 (95) |
| Malaise: general feeling of illness/weakness | 63 (62) |
| Fever | 62 (61) |
| Enlarged lymph nodes | 54 (53) |
| Headache | 51 (51) |
| Myalgia | 49 (49) |
| Chills | 47 (47) |
| Pruritus | 45 (45) |
| Back pain | 31 (31) |
| Vomiting or nausea | 24 (24) |
| Rectal pain | 23 (23) |
| Cough | 22 (22) |
| Abdominal pain | 21 (21) |
| Runny nose | 17 (17) |
| Pus or blood on stools | 14 (14) |
| Rectal bleeding | 11 (11) |
| Eye lesions | 7 (7) |
| Conjunctivitis | 5 (5) |
| Tenesmus | 5 (5) |

*Among 118 mpox case-patients experiencing homelessness.
†Not mutually exclusive categories.
sex (higher male proportion) (7,8). Our finding of a high proportion of male than female PEH mpox case-patients is similar among the general population (16). No mpox cases were identified among minors experiencing homelessness. HIV prevalence was higher among PEH mpox case-patients (60%) than among overall mpox case-patients reported from Los Angeles County and 7 other US jurisdictions (38%) (17). Positive referral bias might partially explain higher documented HIV prevalence; PEH with poorly controlled HIV might be more likely to seek care and receive a diagnosis because of more severe mpox illness. However, it is also possible that PEH with HIV are more susceptible because of discontinuous HIV care, disruptions in housing, and other risk factors, which might indicate higher actual prevalence.

After acquiring mpox, PEH are more vulnerable to severe disease. CDC reported 23% of persons with severe mpox who received medical consultation services through direct requests from local jurisdictions were PEH (18). Among our cohort of 118 PEH mpox case-patients, disease was severe enough in 21% to require hospitalization, and consistent with CDC findings, those hospitalizations comprised 27% of all mpox hospitalizations in Los Angeles County (data not shown). Los Angeles County maintains dedicated isolation housing outside of clinics for PEH mpox cases, so those hospitalizations were not for the purpose of isolation or housing. Additional details on coexisting medical conditions other than HIV that may have contributed to disease severity were not available and remain gaps in the data.

Of the 47% of mpox case-patients in sheltered–noncongregate settings, 89% were couch surfers, who are difficult to identify using traditional surveillance methods without dedicated questions delving into housing details. Couch surfers are not included in PEH population estimates from the point-in-time counts required by HUD in the Continuums of Care (19) and may rapidly cycle between private homes and streets to shelters (20). PEH who predominantly couch surf warrant further study to better understand their risk factors for communicable diseases and inform disease prevention strategies.

Similar to the situation for mpox cases among the general population, the primary mode of transmission for PEH mpox cases appeared to be through sexual contact; 84% of PEH mpox case-patients reported this risk factor, 73% to an LACDPH interviewer and 11% to another healthcare provider. California lists mpox under the California Division of Occupational Safety and Health’s Aerosol Transmissible Diseases standards, which includes both aerosol-borne diseases and select diseases transmitted through droplets (21). This designation requires shelter employees to use more stringent protections, including wearing fitted N95 respirators when interacting with persons suspected of having or confirmed to have mpox infection. However, despite our initial concerns about respiratory transmission of mpox and potential spread through droplets or fomites in congregate settings, we found no evidence of any transmission within shelters to either PEH or staff. Masking requirements in response to COVID-19 in Los Angeles County during the 2022 mpox outbreak may have affected mpox transmission in congregate settings. However, the lack of transmission within shelters is consistent with anecdotal reports from other jurisdictions (San Francisco Department of Public Health, New York State Department of Health, pers. comm., email, July 26, 2022) and with a Cook County, Illinois, USA, report of an exposure in a correctional facility where investigation by symptom monitoring and serologic testing after a single mpox case in a jail resident found no secondary cases (22). Similarly, no transmission in encampments, considered congregate settings by Los Angeles County, was identified despite potential sharing of sleeping bags, clothes, and utensils in settings with poor access to cleaning and laundry services. One PEH mpox case-patient did report exposure without sexual contact through wearing found clothing. Additional research is needed to identify nonsexual transmission among PEH, especially among encampment residents where follow-up and contact tracing are challenging. Transmission among couch surfers appeared to follow patterns among the general population. Addresses provided by couch surfers did not match addresses for any other recorded mpox case, so it was difficult to fully assess transmission characteristics for couch surfers.

Among limitations to this report, LACDHP surveillance data were limited by reliance on provider and laboratory reporting of positive test results. In a historically marginalized population that experiences multiple barriers to healthcare, it is probable that not all PEH with mpox symptoms received the necessary medical attention for diagnosis and treatment. A serosurvey conducted by CDC among 209 persons experiencing homelessness found 3 possible missed cases of mpox (23), suggesting a small, but present, negative case detection bias from mpox surveillance based on case reporting. This bias may also have affected LACDHP’s assessment of transmission within shelters and encampments, particularly because contact tracing is more challenging among PEH than among the general population. Symptomatic
persons may have been afraid of the stigma of mpox or losing housing and not come forward despite receiving public health outreach, education, onsite testing, and vaccination in shelters and encampments, which had 1 reported mpox case among PEH. LACDPH field staff relied on self-reports and did not conduct physical exams or serology testing as part of onsite follow-up.

In addition, case-patient information was self-reported through interviews, and LACDPH had minimal ability to confirm or verify responses. For example, among the 21 persons who reported contact with an mpox case-patient, no confirmation was possible because case-patients provided no contact names. Because sexual history can be a sensitive topic, mpox case-patients might have been hesitant to disclose information to a public health investigator who had no previous therapeutic relationship with the patient. The 11 persons who disclosed sexual encounters only to healthcare providers other than the interviewer, and the revelation outside of the interview by 1 PEH of having been sexually assaulted, suggests collection of incomplete risk factor data. In addition, this experience with collecting data from persons affected by a sexually transmitted disease reinforces the need for public health surveillance and interventions to be designed and implemented with sensitivity within a trauma-informed framework.

Our findings illustrate the medical vulnerability of PEH, the heterogeneity of their living situations, and the importance of designing disease surveillance methods that capture the complex risk factors and exposures unique to this population. Questionnaires that include sensitive topics may be more successful when implemented after a therapeutic or other trust-based relationship has been established. Developers of public health interventions to prevent and control disease among PEH should consider how differences in living situations can affect disease transmission. Equitable public health efforts should continue to identify, treat, and prevent mpox cases among PEH, who often experience severe cases in part because of barriers to accessing healthcare.

Acknowledgments

The authors acknowledge Clara Tyson, Jamila Tutor, Lylybell Fields, Suzane Kim, Emily Huang, Karin Chuang, Laura Luengas, Angela Tobias, Amber Lung, Kate Setterlund, Caroline Quintero, Roberto Gonzalez Coronado, Joanna Hernandez, Melissa Pruna, Rafa Alam, Jessy Fields, and Tahira Islam and the staff of the Acute Communicable Disease Control People Experiencing Homelessness COVID-19 Response Team.

Public health surveillance and analysis for this manuscript were completed as part of 2019–2024 ELC Cooperative Agreement activities under CDC grant no. 6 NU50CK000498-01-09 and CDC PS 18-1802.

About the Author

Ms. Brosnan is a supervising epidemiologist with the Los Angeles County Department of Public Health Acute Communicable Disease Control Program’s COVID-19 Response Team for People Experiencing Homelessness. She is interested in using surveillance data to inform programmatic interventions to reach vulnerable populations.

References

A single person with tuberculosis (TB) can infect up to fifteen people. This devastating disease is especially common among people living in crowded, poorly ventilated conditions. It is easy for TB to pass from husband to wife, from mother to child.

But in Karachi, Pakistan, physicians are finding new ways to slow the spread of drug-resistant TB among household members.

In this EID podcast, Dr. Amyn Malik, an epidemiologist and postdoctoral associate at Yale University, explains a potentially promising new strategy of preventative therapy for TB.

Visit our website to listen: https://go.usa.gov/xsMxn

EMERGING INFECTIOUS DISEASES®
Case Studies and Literature Review of *Francisella tularensis*–Related Prosthetic Joint Infection

Léa Ponderand, Thomas Guimard, Estibaliz Lazaro, Henry Dupuy, Olivia Peuchant, Nathalie Roch, Philippe Deroche, Tristan Ferry, Max Maurin, Aurélie Hennebique, Sandrine Boisset, Isabelle Pelloux, Yvan Caspar

In support of improving patient care, this activity has been planned and implemented by Medscape, LLC and Emerging Infectious Diseases. Medscape, LLC is jointly accredited with commendation by the Accreditation Council for Continuing Medical Education (ACCME), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC), to provide continuing education for the healthcare team.

Medscape, LLC designates this Journal-based CME activity for a maximum of 1.00 AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to 1.0 MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program. Participants will earn MOC points equivalent to the amount of CME credits claimed for the activity. It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting ABIM MOC credit.

All other clinicians completing this activity will be issued a certificate of participation. To participate in this journal CME activity: (1) review the learning objectives and author disclosures; (2) study the education content; (3) take the post-test with a 75% minimum passing score and complete the evaluation at http://www.medscape.org/journal/eid; and (4) view/print certificate.

For CME questions, see page 1295.

NOTE: It is Medscape's policy to avoid the use of Brand names in accredited activities. However, in an effort to be as clear as possible, the use of brand names should not be viewed as a promotion of any brand or as an endorsement by Medscape of specific products.

Release date: May 18, 2023; **Expiration date:** May 18, 2024

Learning Objectives

Upon completion of this activity, participants will be able to:

- Assess clinical presentation and course of *Francisella tularensis* prosthetic joint infection, based on a case series of 3 cases of *F. tularensis* subsp. *holarctica*–related prosthetic joint infection in France between 2016 and 2019 and a review of 5 other cases reported in the literature.

- Evaluate the diagnosis and laboratory findings of *Francisella tularensis* prosthetic joint infection, based on a case series of 3 cases of *F. tularensis* subsp. *holarctica*–related prosthetic joint infection in France between 2016 and 2019 and review of 5 other cases reported in the literature.

- Examine the treatment of *Francisella tularensis* prosthetic joint infection, based on a case series of 3 cases of *F. tularensis* subsp. *holarctica*–related prosthetic joint infection in France between 2016 and 2019 and review of 5 other cases reported in the literature.

CME Editor

Jill Russell, BA, Technical Writer/Editor, Emerging Infectious Diseases. Disclosure: Jill Russell, BA, has no relevant financial relationships.

CME Author

Laurie Barclay, MD, freelance writer and reviewer, Medscape, LLC. Disclosure: Laurie Barclay, MD, has no relevant financial relationships.

Authors

Léa Ponderand, PharmD; Thomas Guimard, MD; Estibaliz Lazaro, MD, PhD; Henry Dupuy, MD; Olivia Peuchant, PharmD, PhD; Nathalie Roch, MD; Philippe Deroche, MD; Tristan Ferry, MD, PhD; Max Maurin, MD, PhD; Aurélie Hennebique, PharmD, PhD; Sandrine Boisset, PharmD, PhD; Isabelle Pelloux, MD; and Yvan Caspar, PharmD, PhD.
Tularemia is a zoonotic infection caused by *Francisella tularensis*. Its most typical manifestations in humans are ulceroglandular and glandular; infections in prosthetic joints are rare. We report 3 cases of *F. tularensis* subspecies *holarctica*-related prosthetic joint infection that occurred in France during 2016–2019. We also reviewed relevant literature and found only 5 other cases of *Francisella*-related prosthetic joint infections worldwide, which we summarized. Among those 8 patients, clinical symptoms appeared 7 days to 19 years after the joint placement and were nonspecific to tularemia. Although positive cultures are typically obtained in only 10% of tularemia cases, strains grew in all 8 of the patients. *F. tularensis* was initially identified in 2 patients by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; molecular methods were used for 6 patients. Surgical treatment in conjunction with long-term antimicrobial treatment resulted in favorable outcomes; no relapses were seen after 6 months of follow-up.

Francisella tularensis is a fastidious, gram-negative cocobacillus that can cause tularemia, a zoonotic disease. Two subspecies are responsible for human cases: *F. tularensis* subspecies *tularensis* (type A strains) and *F. tularensis* subsp. *holarctica* (type B strains) (1). Tularemia is a reemerging disease that has occurred recently both sporadically and in outbreaks worldwide. No vaccines are available, and antibiotic classes effective in treatment are limited to aminoglycosides, fluoroquinolones, and tetracyclines (2,3).

Potential reservoirs and vectors in both the terrestrial and aquatic cycles of this bacterium are varied. Six main clinical forms of tularemia have been described (glandular, ulceroglandular, oropharyngeal, oculoglandular, pneumonic, and typhoidal), depending on the route of bacterial inoculation. Tularemia can be transmitted through direct contact with infected animals (hares, rabbits, small rodents, etc.); through the bites of blood-sucking arthropods; through consumption of contaminated food or water; through conjunctival inoculation with contaminated fingers, materials, or aerosolized particles; or through the lungs, either by inhaling infectious aerosols or by the hematogenous spread of bacteria (4–7).

Severe infections are predominantly associated with *F. tularensis* subsp. *tularensis*, which is present only in North America, whereas *F. tularensis* subsp. *holarctica*, the only subspecies found in both Europe and North America, largely causes incapacitating and chronic disease with large or multiple lymphadenopathies (8). According to data from the French National Reference Center for *Francisella* (FNRCF) and from mandatory notifications to the French Public Health Agency, the ulceroglandular and glandular forms account for most (72%) clinical forms of the disease (9). Bone and joint infections (BJIs) and prosthetic joint infections (PJIs) related to *F. tularensis* are extremely rare and have been reported sporadically in literature (10–13). BJIs are primarily related to staphylococci, streptococci, or gram-negative rods, but any bacterial species can cause an infection in the presence of prosthetic material (14,15). We report 3 cases of *F. tularensis*-related PJIs occurring during 2016–2019 in France, as well as the results of a literature review on BJIs and PJIs related to this highly pathogenic bacterium (Tables 1, 2).

Material and Methods

The following methods and laboratory precautions were used at the FNRCF to confirm the diagnosis of tularemia. For *F. tularensis* culturing, samples and strains were housed in a Biosafety Level 3 laboratory. Samples were seeded on chocolate agar and incubated at 37°C in a CO₂-enriched atmosphere for 10 days. Methods for identifying *F. tularensis* subsp. *holarctica* varied among the 3 patient cases described in this article. Before 2018 (case 1), specific real-time insertion sequence PCR and sequencing of the 16S 23S intergenic region (16) were used to confirm identification at the subspecies level. Since 2018 (cases 2 and 3), *F. tularensis* subsp. *holarctica* identification has been confirmed using in-house ISFtu2 PCR and *F. tularensis* subsp. *holarctica*-specific PCR, according to previously published protocols (17,18). Before 2018 (case 1), serologic testing was performed using in-house microagglutination test (MAT) and in-house indirect immunofluorescence assay (IFA). Since 2018, ELISA
We used an in-house broth microdilution method, as previously described (19). We performed retrospective antibiotic susceptibility testing to determine the MIC of 7 antibiotics (gentamicin, ciprofloxacin, levofloxacin, rifampin, erythromycin, azithromycin, and doxycycline). We used an in-house broth microdilution method, as previously described (19).

For the retrospective case search, we performed a PubMed search for published cases of PJI caused by *F. tularensis* using the terms “Francisella AND joint AND infection” with no restriction of date or language. In total, 21 articles matched the searched criteria, but only 5 cases corresponded to PJI.

Results

Case 1

A 49-year-old man living in Vendée County, France, was hospitalized in March 2016 for a left femoral neck fracture after a fall. The patient underwent hip arthroplasty with prosthesis placement. His medical history included right knee arthroscopy; +, positive.

<table>
<thead>
<tr>
<th>Case</th>
<th>Region</th>
<th>Age, y</th>
<th>Sex</th>
<th>Exposure factors</th>
<th>Type of surgery</th>
<th>Delay between diagnosis and prosthesis implantation</th>
<th>Clinical symptoms</th>
<th>CRP, mg/L</th>
<th>Leukocytes, G/L</th>
<th>Sample type</th>
<th>No. positive samples/total</th>
<th>Delay to positivity</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>France</td>
<td>49</td>
<td>M</td>
<td>Rural residence, dog</td>
<td>Left THR</td>
<td>35 d</td>
<td>Infected scar, fever</td>
<td>21</td>
<td>4.45</td>
<td>Abscess</td>
<td>1/1</td>
<td>7 d</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>Gironde</td>
<td>70</td>
<td>M</td>
<td>Hunter</td>
<td>Left TKA</td>
<td>12 y</td>
<td>Feverish confusion, bilateral mediastinal and hilar lymphadenopathy, knee swelling</td>
<td>100</td>
<td>4</td>
<td>Joint aspiration</td>
<td>1/1</td>
<td>5 d</td>
<td>24 h–48 h</td>
</tr>
<tr>
<td>3</td>
<td>Aube</td>
<td>68</td>
<td>M</td>
<td>Retired butcher, cooking with wild game</td>
<td>Left THR</td>
<td>19 y</td>
<td>Fever, abdominal pain, confusion, painful knee effusion</td>
<td>58</td>
<td>NA</td>
<td>3 tissues</td>
<td>2/3</td>
<td>1/1</td>
<td>12 y</td>
</tr>
<tr>
<td>4 (10)</td>
<td>United States</td>
<td>84</td>
<td>NA</td>
<td>Hunter</td>
<td>Right knee prosthesis</td>
<td>9 mo</td>
<td>Fever, joint pain and swelling, bullous skin lesion with itching</td>
<td>NA</td>
<td>NA</td>
<td>7 tissues</td>
<td>6/7</td>
<td>1/1</td>
<td>8 y</td>
</tr>
<tr>
<td>5 (11)</td>
<td>Switzerland</td>
<td>84</td>
<td>NA</td>
<td>Hunter</td>
<td>Right TKA</td>
<td>12 y</td>
<td>Fever, warm and swollen knee</td>
<td>81</td>
<td>NA</td>
<td>Joint aspiration</td>
<td>1/1</td>
<td>1/1</td>
<td>7 d</td>
</tr>
<tr>
<td>6 (11)</td>
<td>Czech Republic</td>
<td>77</td>
<td>F</td>
<td>Hunter, tick bite 6 mo before surgery</td>
<td>Right THR</td>
<td>8 y</td>
<td>Joint pain</td>
<td>98</td>
<td>NA</td>
<td>Joint aspiration</td>
<td>1/1</td>
<td>1/1</td>
<td>68</td>
</tr>
<tr>
<td>7 (12)</td>
<td>United States</td>
<td>68</td>
<td>M</td>
<td>Hunter, tick bite 6 mo before surgery</td>
<td>Right TKA</td>
<td>7 d</td>
<td>Joint pain</td>
<td>16</td>
<td>NA</td>
<td>Joint aspiration</td>
<td>1/1</td>
<td>1/1</td>
<td>77</td>
</tr>
<tr>
<td>8 (13)</td>
<td>Canada</td>
<td>6</td>
<td>M</td>
<td>Hunter, tick bite 6 mo before surgery</td>
<td>Right TKA</td>
<td>6 mo</td>
<td>Joint pain</td>
<td>16</td>
<td>NA</td>
<td>Joint aspiration</td>
<td>1/1</td>
<td>1/1</td>
<td>13</td>
</tr>
</tbody>
</table>

*CRP; C-reactive protein; IFA; immunofluorescence assay; MALDI-TOF MS, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; MAT, microagglutination test; Microflex LT, Bruker Daltonics; NA, not available; ND, not done; NS, not specified; THR, total hip replacement; TKA, total knee arthroplasty; +, positive.

Table 1. Clinical and biologic characteristics of patients with *Francisella tularensis*-related prosthetic joint infection*
included active smoking and alcoholic cirrhosis since 2008. One month later, the patient was transferred to the intensive care unit for hepatic encephalopathy. During his hospitalization, an abscess developed near the prosthesis scar; surgical site infection was suspected. A computed tomography (CT) scan of the pelvis revealed soft tissue infection of the left hip; the periosteal image was described. Unfortunately, no serum samples were already present in his blood, leading to prosthesis aspiration, which was not identified by Vitek 2 GN biochemical assay (bioMérieux) 1 day later. Multiple skin scratches, bruises, and wounds were described. Unfortunately, no serum samples were available to assess the date of contamination. Monitoring of laboratory staff included prophylactic treatment with doxycycline or ciprofloxacin. Because surgeons were protected with gloves, glasses, and surgical masks, and no injuries were reported involving contaminated materials, no monitoring was performed.

Case 2

A 70-year-old man was hospitalized in August 2018 with fever, confusion, headache, cervical pain, and included active smoking and alcoholic cirrhosis since 2008. One month later, the patient was transferred to the intensive care unit for hepatic encephalopathy. During his hospitalization, an abscess developed near the prosthesis scar; surgical site infection was suspected. A computed tomography (CT) scan of the pelvis revealed soft tissue infection of the left hip; the periosteal image was described. Unfortunately, no serum samples were already present in his blood, leading to prosthesis aspiration, which was not identified by Vitek 2 GN biochemical assay (bioMérieux) 1 day later. Multiple skin scratches, bruises, and wounds were described. Unfortunately, no serum samples were available to assess the date of contamination. Monitoring of laboratory staff included prophylactic treatment with doxycycline or ciprofloxacin. Because surgeons were protected with gloves, glasses, and surgical masks, and no injuries were reported involving contaminated materials, no monitoring was performed.

Case 2

A 70-year-old man was hospitalized in August 2018 with fever, confusion, headache, cervical pain, and
lower limb weakness. He lived in a forested rural area in Gironde County, France, and had been experiencing asthenia and anorexia for several months. His medical history included diabetes, high blood pressure, dyslipidemia, and regular alcohol consumption. He underwent a left knee replacement with total knee prosthesis in 2006. Laboratory examinations revealed a CRP level of 100 mg/L (reference <10 mg/L) and leukocyte count of 4 G/L (4.1–9.9 G/L). Cerebrospinal fluid (CSF) and blood culture samples were taken, and treatment with ceftriaxone and acyclovir was initiated. The culture of both samples remained sterile, and results of herpes simplex virus/varicella zoster virus PCR were also negative. The patient had not traveled abroad but had birds at home (hens, pigeons, and doves) and was a fisherman and hunter. CT and positron emission tomography demonstrated bilateral mediastinal and hilar lymphadenopathies associated with diffuse condensation of the upper right pulmonary lobe, compatible with infection (Figure 2). Legionella pneumonia and Streptococcus pneumonia urinary antigen test results were negative. Bronchoalveolar lavage did not identify any pathogen, but white blood cell count identified 60% gamma-delta T cells in the lymphocyte fraction (40% of total leukocytes), possibly indicating infection with an intracellular bacterium. At a follow-up visit 20 days later, the patient felt better but was still experiencing evening fever (38°C) without chills or night sweats. Clinical examination revealed swelling of the left knee. Joint aspiration revealed a leukocyte count of 99,000 cells/mm³ (reference <1,700 cells/mm³) with 70% lymphocytes. Unexpectedly, gray-white, smooth, and small colonies grew after 7 days on chocolate agar under 5% CO₂ enrichment; the bacteria were identified as F. tularensis by PCR targeting the gene encoding F. tularensis outer membrane protein A after failure to confirm identification with Biotyper MALDI-TOF mass spectrometry (Bruker Daltonics). Results of a Francisella-specific PCR performed directly on joint aspirate was also positive. The strains and samples were sent to FNRCF, where the strain was confirmed as F. tularensis subsp. holarctica. Results of the mediastinal lymph node biopsy, however, were PCR-negative.

Serologic samples from early September 2018 showed elevated IgM titers of 3.58 (reference <0.45) and IgG titers of 1.5 (reference <0.62) by ELISA (Serion Diagnostics) and titers of 640 (IgM) and 640 (IgG) by IFA, corroborating recent F. tularensis infection. Antibiotic therapy with ofloxacin (200 mg 2×/d) was administered for 6 weeks, and a 1-stage joint replacement was performed in March 2019. Of 5 samples taken during surgery, 2 were found to be positive for Francisella by ISFtu2 PCR; however, because of a small bacterial concentration, results for the specific but less sensitive F. tularensis subsp. holarctica PCR remained negative. The fifth culture was sterile. Ciprofloxacin (500 mg 2×/d) and amikacin (1,200 mg 1×/d) were started during surgery; amikacin was stopped after 5 days. By April, the wound was sufficiently healed and CRP had decreased to 13.5 mg/L, enabling the patient to return home; ciprofloxacin was continued for 6 weeks. His progress was favorable for clinical and biologic healing.

The suspected mode of contamination was infection by animal or aerosol, and initial pulmonary symptoms indicated likely airborne contamination.
that could have occurred by inhaling contaminated aerosols or dust. The patient was fishing at the time symptoms appeared, so inhaling contaminated water droplets seems a plausible source because of the possible aquatic reservoir of this bacterium (4,20).

Case 3
A 68-year-old man living in Aube County, France, with a medical history of left hip prosthesis implantation in 2000 and right knee prosthesis implantation in 2008 was evaluated in August 2019 for lateral discomfort on his left side, functional hip difficulties, and pain adjacent to his hip prosthesis. Radiography revealed no major prosthesis degradation. Scintigraphy was positive, however, and CT performed in September revealed wear and a cavity in the metal socket of the prosthesis. A 1-stage revision of the joint was performed in October 2019 to replace the metal socket of the prosthesis. The stem was not unsealed but was left in place; the surgeon noted a joint exudate and fibrosis during the operation. CRP was 58 mg/L. Unexpectedly, 2 of 3 samples obtained during surgery grew a fastidious Gram-negative coccobacillus, identified as <i>F. tularensis</i> by MALDI-TOF mass spectrometry after 5 days on chocolate agar of aerobic cultures with 5% CO₂ enrichment by direct contact with infected animals or meat. Despite those preventive measures, prosthetic joint infections occur in 1%–2% of patients (27–29). The most common pathogens described are staphylococci (<i>S. aureus</i> and coagulase-negative staphylococci), isolated in 50%–60% of the cases; streptococci; and enterococci (together accounting for 10%).

Laboratory Safety
For all 3 cases, before <i>F. tularensis</i> was suspected or confirmed, samples and strains were handled under Biosafety Level 2 conditions in clinical microbiology laboratories. Samples were rapidly sent to the FNRCF to confirm identification. MIC determinations were performed a posteriori on the 3 strains from France (Table 3). MICs were the lowest for ciprofloxacin (0.016–0.032 mg/L) and levofloxacin (0.032 mg/L), and no resistance to aminoglycosides, rifampin, fluoroquinolones, or tetracyclines was observed. The erythromycin MIC of 2 mg/L confirmed that the 3 strains belonged to biovar I of <i>F. tularensis</i> subspp. holarctica (19,21).

Discussion
Prosthetic joint replacement is a common surgery increasingly used to improve quality of life (22,23). Several recommendations to limit infection at the surgical site exist (24–26), which are either preoperative (skin disinfection by shower with antiseptic or antimicrobial soap, nasal and cutaneous decolonization of <i>S. aureus</i>), perioperative (perioperative antiseptic use, intraoperative systemic antimicrobial prophylaxis, asepsis of the operative environment), or postoperative (postoperative antimicrobial prophylaxis). Despite those preventive measures, prosthetic joint infections occur in 1%–2% of patients (27–29).

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Breakpoints for susceptibility, mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gentamicin</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>4†</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0.016</td>
<td>0.032</td>
<td>0.016</td>
<td>0.25†</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>0.032</td>
<td>0.032</td>
<td>0.032</td>
<td>0.5†</td>
</tr>
<tr>
<td>Rifampin</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1†</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>16†</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4‡</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>4†</td>
</tr>
</tbody>
</table>

*The assay medium was CAMHB supplemented with 2% PolyViteX (CAMHB-PVX; bioMérieux) and adjusted to pH 7.1±0.1 as recommended (17). MICs were read after 48 h of incubation and were interpreted using the Clinical and Laboratory Standards Institute susceptibility breakpoints for <i>Francisella tularensis</i> when available or the <i>Haemophilus influenzae</i> European Committee on Antimicrobial Susceptibility Testing breakpoints.
†Clinical and Laboratory Standards Institute breakpoint.
‡H. influenzae European Committee on Antimicrobial Susceptibility Testing breakpoint.
gram-negative rods and anaerobic bacteria are isolated from <10% of knee and hip prosthetic joint infections. However, 5%–34% of prosthetic infections remain culture-negative because of previous antimicrobial treatment or because fastidious or low-inoculum pathogens can remain undetectable by classic culture or PCR methods (27,28,30).

Prosthetic joint infection is an extremely rare form of tularemia; we found only 5 cases reported in the literature to date (Tables 1, 2) (10–13). Of the 8 cases of prosthetic infections summarized in this article, 7 (88%) occurred in men ≥49 years of age (range 49–84 years). The knee prosthesis was infected in 5 (62.5%) patients and hip prostheses in 3 (37.5%) patients. In all but 2 patients, clinical symptoms appeared >6 months after joint placement (7 days–19 years, median 4 years) and were unspecific to tularemia. Fever, joint pain, and joint exudate were often described, and inflammatory blood markers, where reported, usually increased (CRP range 16–100 mg/L). Inoculation of F. tularensis at the surface of the prosthesis seems to be possible in 3 different ways: through direct transfer from contaminated skin wounds or ulcers during surgery (case 1), after surgery through direct skin contamination close to the surgical site scar, or by hematologic spread of the bacteria from an initial infection site distant from the prosthesis (cases 2 and 3). In the reported BJIs, the initial contamination was suspected to occur through direct transmission from an animal reservoir, either by ingestion of undercooked meat prepared from an infected animal or contact with infected carcasses (cases 2, 3, 4, 7, and 8); possibly by an arthropod bite, as in case 8, in which the patient noted a tick bite 6 months before his initial knee arthroplasty; or by inhalation of contaminated aerosols or dust (cases 1, 5, and 6). For some patients, infectious symptoms were absent or mild, suggesting that the bacteria might be able to survive in a quiescent form with low virulence levels after seeding on the prosthesis. Mechanisms similar to those involved in the long-term persistence of F. tularensis subsp. holarctica in soil and water might occur, such as switching to a viable but noncultivable state or biofilm formation (4; C.D. Brunet et al., unpub. data, https://www.biorxiv.org/content/10.1101/2022.02.18.480867v3). Biofilm formation has been described for the Francisella species in vitro and might be a key mechanism in human pathogenesis and infection, especially PJIs (28,31).

According to the World Health Organization definition of tularemia, presumptive cases are defined as cases in persons with clinical symptoms compatible with tularemia and either positive DNA detection in 1 clinical sample or a single positive serum sample. An infection is confirmed when an F. tularensis strain is isolated and identified in culture or by a 4-fold increase in IgM or IgG titers in paired serum specimens (17). Although tularemia is primarily identified by serologic assays, the proportion of diagnoses assessed by molecular methods on tissue samples is increasing because of the development of specific PCRs or the availability of 16S rDNA sequencing. Positive bacterial cultures are usually obtained in <10% of cases (7,16) because F. tularensis is a fastidious bacterium that requires cysteine-supplemented agar (17). Growth occurs in 2–4 days of incubation at 37°C in aerobic or CO2-enriched atmosphere, and colonies are gray-white, round, and smooth with a small halo (32,33). Surprisingly, in these 8 cases, the diagnosis was made by positive culture on joint aspiration or perioperative tissues. This finding highlights the major need for rapid seeding of fresh tissues on an agar media to enable the growth of this fastidious bacterium from human samples (34). Serologic testing, when performed, identified mostly high titers in MAT, ELISA, or IFA, confirming Francisella infection, but was performed after the initial diagnosis. The identification of 1 strain was suspected on the basis of results of the Vitek 2 GN assay. MALDI-TOF mass spectrometry enabled identification of 2 strains but did not provide subspecies distinction (35–37). F. tularensis has been identified using the in vitro diagnosis database of the Biotyper mass spectrometer since 2017 (partial integration of 5 species of the security-relevant library as a library extension) only if the extension was added to the database by the user. In contrast, the Vitek MS database does not contain any F. tularensis spectra. In 7 of 8 cases, the strain was identified or confirmed by molecular methods (Table 1). Because of the high level of 16S rDNA similarity among the Francisella species (98.5%–99.9%), 16S rDNA amplification and sequencing enables identifying the bacterium only to the genus level (38). Species or subspecies determination requires PCR targeting specific genes, such as ISFtu2, 23kDa, tul4, or fopA (39). Some of those targets, however, might cross-react with F. novicida, F. philomiragia, or Francisella-like endosymbionts. Additional techniques are necessary to identify F. tularensis subspecies, such as PCR targeting a junction between ISFtu2 and a flanking 3′ region (18), identification on the basis of size differences of amplified DNA products (Ft-M19, ISFtu2, RD1, and pdpD-2 assay) (17,40), and amplification and sequencing of the 16S-23S rRNA intergenic spacer region (16).
Strategies for PJI treatment combine surgical interventions and antimicrobial therapy. Overall, in cases of early infection (≤15 days after prosthesis placement), prosthesis retention with debridement is recommended. In chronic infections, prosthesis removal is the best option, performed as either a 1-stage or 2-stage replacement procedure, depending on the patient history, the bacterium identified, and susceptibility to antibiotics. Those surgical treatments are associated with a long duration (4–6 weeks) of antimicrobial therapy adapted to the antibiotic susceptibility pattern of the bacteria identified [28,41,42]. Several guidelines for tularemia treatment have been published, [2,17,43,44]. The antibiotic classes recommended for first-line treatment of tularemia are aminoglycosides, fluoroquinolones, and tetracycline because the bacterium is intrinsically resistant to many other antibiotic classes (all β-lactams, TMP/SXT, clindamycin, glycopeptides, and daptomycin) [19]. For severe tularemia cases, parenteral gentamicin (5 mg/kg/d) treatment is recommended depending on the clinical response. In moderate cases, oral ciprofloxacin (800–1,000 mg/d) or doxycycline (200 mg/d) can be administered for a minimum duration of 10–14 days. However, those recommendations have not yet been established for BJIs. Of the 8 cases we reviewed, 5 patients underwent 1- or 2-stage revision joint replacement; 1 underwent debridement, antibiotic, and implant retention; and 2 underwent regular joint aspiration without prosthesis replacement. For 2 patients, aminoglycosides were administered during and after the surgery (120 mg amikacin for 5 days and 240 mg gentamicin for 10 days), followed by monotherapy with ciprofloxacin (500 mg 2×/d for 20 days). Three patients received monotherapy; 1 patient took ciprofloxacin (750 mg 2×/d) for 3 months, and 2 patients were prescribed doxycycline (100 mg 2×/d) for 6 weeks or 12 months. Combination therapy was administered in 2 other cases, consisting of ciprofloxacin with rifampin for >6 months or ciprofloxacin with doxycycline for 9 weeks. When information was available, the patients’ follow-up visits revealed favorable progress without joint infection relapse.

Strains have not been reported that are resistant to the recommended first-line antibiotic classes. A comprehensive review reported low MICs for ciprofloxacin (<0.002–0.125 mg/L), gentamicin (<0.016–2 mg/L), and doxycycline (0.064–4 mg/L) against Francisella tularensis strains [19]. Aminoglycosides penetrate slowly intracellularly and are effective against extracellular bacteria. On the basis of our previous comprehensive review of antimicrobial susceptibility testing data in vitro, in cellular model, and in mice model of infection [19], we advise using aminoglycoside for only a short period during and after surgery, when a bacteremic phase can occur, to rapidly kill extracellular bacteria and prevent hematologic spread after surgery. Combining aminoglycosides with ciprofloxacin might confer the highest efficacy because of the rapid penetration of fluoroquinolones in bones and joint tissues and their efficient activity against the intracellular niche of Francisella. Thus, combining aminoglycosides and fluoroquinolones might be considered in these severe cases [44]. Ciprofloxacin and doxycycline, alone or in combination, can be used for long-term treatment. Interest in combination therapy with rifampin has not been demonstrated, but in vitro activity of rifampin against Francisella has been observed (MICs range 0.094–3 mg/L), and its excellent bone diffusion might enhance successful outcomes, as demonstrated by case 1 [13,19,21,45]. However, rifampin is not recommended for tularemia treatment because of insufficient in vivo data [19].

Because of the difficulty and delay involved in identifying Francisella strains, laboratory staff can be exposed to bacteria without recommended precautions. During surgical interventions, surgeons can be exposed through contact with infectious materials, accidental inoculation, or exposure to aerosols and infected droplets. World Health Organization guidelines distinguish 3 situations: proven accidental laboratory exposure, potential exposure to F. tularensis aerosols, and unlikely exposure. Antibiotic prophylaxis (1,000 mg ciprofloxacin or 200 mg doxycycline for 14 days) or clinical follow-up was recommended according to exposure risk [17].

In conclusion, PJI is an unusual clinical manifestation of tularemia that might be underestimated because of the fastidious culture conditions and difficulty in strain identification. Infection might occur in tularemia-endemic areas or in the presence of risk factors. The combination of surgical and extended antibiotic treatment generally leads to favorable outcomes.
References

etymology revisited

Streptomycin
strep′to-mi′sin

I
n the late 1930s, Selman Waksman, a soil microbiologist working at the New Jersey Agricultural Station of Rutgers University, began a large-scale program to screen soil bacteria for antimicrobial activity. By 1943, Albert Schatz, a PhD student working in Waksman’s laboratory, had isolated streptomycin from *Streptomyces griseus* (from the Greek *strepto-* [“twisted”] + *mykēs* [“fungus”] and the Latin *griseus*, “gray”).

In 1944, William H. Feldman and H. Corwin Hinshaw at the Mayo Clinic showed its efficacy against *Mycobacterium tuberculosis*. Waksman was awarded a Nobel Prize in 1952 for his discovery of streptomycin, although much of the credit for the discovery has since been ascribed to Schatz. Schatz later successfully sued to be legally recognized as a co-discoverer of streptomycin.

References:

Neurologic Complications of Babesiosis, United States, 2011–2021

Sara Locke,¹ Jane O’Bryan,¹ Adeel S. Zubair, Melissa Rethana, Anne Spichler Moffarah, Peter J. Krause,² Shelli F. Farhadian²

In support of improving patient care, this activity has been planned and implemented by Medscape, LLC and Emerging Infectious Diseases. Medscape, LLC is jointly accredited with commendation by the Accreditation Council for Continuing Medical Education (ACCME), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC), to provide continuing education for the healthcare team.

Medscape, LLC designates this Journal-based CME activity for a maximum of 1.00 AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to 1.0 MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program. Participants will earn MOC points equivalent to the amount of CME credits claimed for the activity. It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting ABIM MOC credit.

All other clinicians completing this activity will be issued a certificate of participation. To participate in this journal CME activity: (1) review the learning objectives and author disclosures; (2) study the education content; (3) take the post-test with a 75% minimum passing score and complete the evaluation at http://www.medscape.org/journal/eid; and (4) view/print certificate. For CME questions, see page 1296.

NOTE: It is Medscape's policy to avoid the use of Brand names in accredited activities. However, in an effort to be as clear as possible, the use of brand names should not be viewed as a promotion of any brand or as an endorsement by Medscape of specific products.

Release date: May 19, 2023; Expiration date: May 19, 2024

Learning Objectives

Upon completion of this activity, participants will be able to:

• Assess the type and frequency of neurologic complications of babesiosis, on the basis of a record review of all adult patients admitted to Yale-New Haven Hospital from January 2011 to October 2021 for laboratory-confirmed babesiosis

• Evaluate the risk factors predisposing patients to neurologic complications of babesiosis and outcomes, on the basis of a record review of all adult patients admitted to Yale-New Haven Hospital from January 2011 to October 2021 for laboratory-confirmed babesiosis

• Determine the clinical implications of the type and frequency of neurologic complications of babesiosis and risk factors predisposing patients to neurologic complications, on the basis of a record review of all adult patients admitted to Yale-New Haven Hospital from January 2011 to October 2021 for laboratory-confirmed babesiosis.

CME Editor
Cheryl Salerno, BA, Technical Writer/Editor, Emerging Infectious Diseases. Disclosure: Cheryl Salerno, BA, has no relevant financial relationships.

CME Author
Laurie Barclay, MD, freelance writer and reviewer, Medscape, LLC. Disclosure: Laurie Barclay, MD, has no relevant financial relationships.

Authors
Sara Locke, BA; Jane O’Bryan, MPH; Adeel S. Zubair, MD; Melissa Rethana, MD; Anne Spichler-Moffarah, MD, PhD; Peter J. Krause, MD; and Shelli F. Farhadian, MD, PhD.

Author affiliations: Yale School of Medicine, New Haven, Connecticut, USA (S. Locke, J. O’Bryan, A.S. Zubair, M. Rethana, A. Spichler Moffarah, P.J. Krause, S.F. Farhadian); Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, Connecticut, USA (J. O’Bryan); Yale School of Public Health, New Haven (P.J. Krause, S.F. Farhadian).

DOI: http://doi.org/10.3201/eid2906.221890

¹These first authors contributed equally to this article.
²These senior authors contributed equally to this article.
Babesiosis is an emerging parasitic infection with global distribution. The infection is caused by intraerythrocytic protozoa of the genus Babesia. During the past 2 decades, the incidence of babesiosis has increased, particularly in the northeastern and northern midwestern United States. The Centers for Disease Control and Prevention reported an increased babesiosis incidence in Connecticut, USA, from 2011 (2.1 cases/100,000 persons) to 2019 (9 cases/100,000 persons), more than 10 times the incidence reported nationally during that time period (1). More than 100 species of Babesia have been described in wild and domestic animals. The predominant species causing human disease in the United States is B. microti (1–3). The disease is transmitted primarily through the bite of an infected ixodid tick, which is capable of transmitting several pathogens at the same time, including Borrelia burgdorferi, the cause of Lyme disease (2–5). Babesiosis is less commonly transmitted via blood transfusion, organ transplantation, or through the placenta (2,3,6).

Although most persons with babesiosis experience nonspecific influenza-like symptoms, more severe and prolonged disease can occur in persons >50 years of age; those who are immunocompromised due to asplenia, cancer, or HIV/AIDS or who are receiving immunosuppressive drugs; and those who have chronic heart, lung, renal, or liver disease (2,7,8). Severe infection is associated with high-grade parasitemia and organ failure (e.g., acute respiratory distress syndrome, congestive heart failure, severe hemolytic anemia, or renal failure) and death (2,8–11). Little has been published about babesiosis-induced central nervous system dysfunction (12,13). Neurologic complications include headache, syncope, neuropathy, retinal nerve infarcts, and altered state of consciousness (9,12,14–20). The full spectrum of neurologic complications and underlying pathophysiology are poorly understood, as are factors that predispose patients to neurologic complications.

We conducted this study to investigate the type and frequency of neurologic complications of babesiosis in a group of hospitalized patients and to assess risk factors that predispose patients to neurologic complications. We hypothesized that patients with a diagnosis of babesiosis commonly experience neurologic system manifestations and that those symptoms are most frequent in patients with severe babesiosis. Accordingly, we conducted a retrospective medical record review of all adult patients admitted to Yale-New Haven Hospital (YNHH) in New Haven, Connecticut, USA, during 2011–2021 with laboratory-confirmed babesiosis.

Methods

Design and Setting

The sample population included all adult patients (≥18 years of age) admitted to YNHH during January 2011–October 2021 with a diagnosis of babesiosis. Patients were required to have Babesia parasites present on thin blood smear or amplification of B. microti DNA by PCR to be included. Eligible patients were identified in collaboration with the Yale Center for Clinical Investigation Joint Data Analytics Team.

Data Collection

We obtained approval for study procedures from the Yale University Human Investigation Committee before data collection (HIC protocol #2000030420). We performed comprehensive medical record reviews and systematically abstracted study variables by using a standardized medical questionnaire (21). We recorded demographic and clinical variables, including the following underlying conditions and comorbidities: chronic cardiac, pulmonary, renal, or hepatic conditions; dementia; diabetes mellitus; hypertension; malignancy; migraine; seizure; stroke; and immunocompromised status.

We recorded all neurologic symptoms and complications documented at the time of hospital admission: acute cerebrovascular disease, acute syncope, ataxia/gait disturbance, confusion/delirium, facial droop, focal weakness, headache, impaired consciousness, nerve pain, confusion/delirium, facial droop, focal weakness, headache, impaired consciousness, nerve pain, language deficit, vision impairment, vertigo, and seizure. The neurologic
symptoms and complications we recorded were then independently confirmed by 2 neurologists. We defined confusion/delirium as a deficit in mental status characterized by disorientation, bewilderment, or difficulty following commands (22). We categorized impaired consciousness (i.e., diminished arousal and response to stimulation) on the basis of severity using the Glasgow Coma Scale, classifying symptoms as either lethargy, obtundation, stupor, or coma (23). Lethargy is a mild reduction in alertness, obtundation is a moderate reduction in alertness, stupor is a condition of deep sleep in which the patient can only be aroused by vigorous external stimulation, and coma refers to a complete lack of motor response to any stimuli from the external environment (23,24).

We abstracted key laboratory variables related to the severity of infection. We computed median laboratory values and interquartile ranges (IQRs) on the basis of either the recorded minimum or maximum laboratory value, as appropriate. Laboratory parameters included peak parasitemia, minimum hematoctrit and platelet count, and maximum blood urea nitrogen, creatinine, aspartate aminotransferase and alanine aminotransferase. We calculated glomerular filtration rate by using the 2021 Chronic Kidney Disease Epidemiology Collaboration equation (25).

Statistical Analysis
We performed statistical analyses by using SAS Studio 3.8 (SAS Institute Inc.). We summarized demographic characteristics of the sample by using appropriate descriptive statistics. We categorized patients according to peak parasitemia (group 1, <1.0%; group 2, 1.0% −10.0%; group 3, >10.0%) (Table 1). For patients with peak thin blood smear results reported as <1%, we used a value of 0.9% in calculations. We compared those subgroups to determine if neurologic manifestations were more frequent in patients with high parasitemia. Given the nonparametric distribution of those data, we reported medians and IQRs for hematologic, hepatic, and renal function laboratory tests. We used Wilcoxon 2-sample tests to compare laboratory results among patients with and without the most common neurologic symptoms.

To represent the distribution density of neurologic symptoms by peak parasitemia, we used Prism 9 software (GraphPad Software) to generate violin plots. We analyzed the relationship between peak parasitemia and each reported neurologic symptom by using Mann-Whitney U tests for continuous variables.

We used univariate logistic regression models to test associations between comorbid conditions and the 3 most common neurologic symptoms: headache, confusion/delirium, and impaired consciousness. We noted variables that were significant in unadjusted univariate analysis and entered them into a multivariate model for each neurologic symptom. We set the significance level for univariate and multivariate analysis to p<0.05.

Results

Demographic and Clinical Characteristics
We identified a total of 163 hospitalized patients with laboratory-confirmed babesiosis during the study period (January 2011–October 2021). The median age was 67 years (IQR 45–89; range 30–93). Most patients were male (n = 104 [63.8%]). The study population was predominately White or Caucasian (n = 118 [74.7%]). Most patients (n = 160 [98.2%]) were diagnosed with babesiosis by a blood smear positive for intra-erythrocytic organisms that were consistent with *Babesia*. Three patients were diagnosed with babesiosis on the basis of a positive PCR blood specimen in the context of an appropriate acute clinical syndrome. Most patients (n = 117 [71.8%]) had ≥1 medical comorbidity at admission. The most common comorbidities were...
hypertension (n = 82 [50.3%]), immunodeficiency (n = 40 [24.5%]), and cardiac disorder (n = 39 [23.9%]). Most of the immunodeficient patients (n = 21 [52.5%]) were asplenic. Other comorbid conditions included diabetes (n = 23 [14.1%]), stroke (n = 13 [8.0%]), chronic kidney disease (n = 8 [4.9%]), migraine (n = 4 [2.5%]), dementia (n = 3 [1.84%]), and seizure disorder (n = 2 [1.2%]). Twelve patients (7.4%) had erythema migrans rash, indicating active co-infection with Lyme disease.

Neurologic Symptoms of Babesiosis

We recorded the frequency of neurologic symptoms experienced by patients admitted to YNHH for babesiosis (Table 1). More than half (n = 97 [59.5%]) experienced ≥1 neurologic symptoms. The most frequent symptoms were headache (n = 52 [31.9%]), confusion/delirium (n = 27 [16.6%]), impaired consciousness (n = 24 [14.7%]), ataxia/gait disorder (n = 17 [10.4%]), and vision impairment (n = 10 [6.1%]). Patients noted to have impaired consciousness were 20 (12.3%) classified as lethargic, 3 (1.8%) as obtunded, and 1 (0.6%) as stuporous.

Confusion/Delirium and Parasitemia

Although we found no association between the degree of parasitemia and the presence of any neurologic symptoms, patients with confusion/delirium and impaired consciousness were significantly more likely to have a higher peak parasitemia than those without these symptoms (Figure). All 163 hospitalized patients were stratified by peak parasitemia into 3 groups: peak parasitemia of <1% (n = 45), peak parasitemia of 1.0%–10% (n = 81), and peak parasitemia of >10% (n = 37). The 27 patients with confusion/delirium were also stratified into the peak parasitemia groups. Among the 45 patients with a peak parasitemia <1%, 2 (4.4%) patients experienced confusion/delirium. Among the 81 patients with a peak parasitemia of 1.0%–10%, 13 (16.1%) experienced confusion/delirium. Among the 37 patients with a peak parasitemia of >10%, 12 (32.4%) experienced confusion/delirium (Table 1). The median peak parasitemia of the patients who experienced confusion/delirium was significantly higher than that of the patients who did not experience confusion/delirium (p = 0.001) (Figure). Those findings indicate that as parasitemia increases, so does the prevalence of confusion/delirium.

Impaired Consciousness and Parasitemia

We found a significant association between peak parasitemia and impaired consciousness (p<0.005). Of the 163 hospitalized patients, 14.7% experienced impaired consciousness at the time of hospital admission. When we stratified by peak parasitemia groups, we observed impaired consciousness in 4 (8.9%) of the group with the lowest (<1%) peak parasitemia, 9 (11.1%) of the group with mid (1.0%–10%) peak parasitemia, and 11 (29.7%) of those in the group with the highest (>10%) peak parasitemia. That distribution was similar to that of patients with confusion/delirium. Patients with impaired consciousness (of any degree) had a higher median peak parasitemia than those without impaired consciousness (p = 0.014) (Figure).

Ophthalmologic Symptoms

Ten (6.1%) patients reported transient vision impairment, one of whom was formally evaluated by the ophthalmology department after reportedly seeing different colored lights and shapes when she closed her eyes. Ophthalmologic examination revealed no evidence of ocular infection or inflammation.

Neuroimaging Findings

Thirty-three (20.2%) of the hospitalized patients underwent neuroimaging with cranial computerized tomography (n = 28), brain magnetic resonance imaging (n = 7), or electroencephalogram (n = 2) (Table 2). Only 2 patients had acute abnormalities seen on neuroimaging, 1 with ischemic stroke and 1 with subarachnoid hemorrhage. The patient who suffered a stroke had fever, malaise, and anemia; an episode of expressive aphasia during an acute babesiosis episode resulting from a small, left-middle cerebral artery stroke, confirmed on imaging to be secondary to high-grade internal carotid artery stenosis. The patient with a subarachnoid hemorrhage had confusion and jaundice and was in critical condition because of multiorgan failure, including respiratory, kidney, and liver failure, and disseminated intravascular coagulation. Computed tomography revealed subarachnoid hemorrhage, most conspicuous within the left frontal lobe. Most other patients who underwent neuroimaging had nonspecific white matter changes and some element of volume loss, which were considered to be related to chronic disease and aging. Electroencephalograms results were unremarkable for both patients who underwent this examination.

Laboratory Findings

We assessed laboratory measures of hematologic, hepatic, and renal function among patients with the most frequently reported neurologic symptoms: headache, confusion/delirium, and impaired consciousness.
Anemia was common in the overall sample population. Median hematocrit was 26.7% for male patients (reference range 40%-52%) and 25% for female patients (reference range 37%-53%). Patients with impaired consciousness had a lower hematocrit than did those without impaired consciousness (23.6% vs. 26.4%; p = 0.024) (Table 3). Patients with confusion/delirium and those with impaired consciousness had significantly higher median blood urea nitrogen and creatinine values and significantly lower glomerular filtration rate compared with patients without these symptoms (Table 3).

Six patients underwent lumbar puncture during hospital admission. The indications for lumbar puncture were headache (n = 2), confusion (n = 2), unresponsive state (n = 1), and confusion with bilateral hearing loss (n = 1). None of those patients were found to have a pleocytosis (i.e., all had cerebrospinal fluid [CSF] leukocyte counts <5 cells/µL). One patient had slightly elevated CSF protein (82 g/dL);
Patients affected by confusion/delirium or impaired consciousness tended to be older (median age 72.5 years [IQR 55.5–89.5]) compared with patients without these symptoms (median age 66.5 years [IQR 46.5–86.5]) (p = 0.012).

Outcomes
The median length of hospital stay was 6.5 (IQR 2.5–10.5) days for patients with confusion/delirium or impaired consciousness compared with 5 (IQR 2–8) days for those without those symptoms (p = 0.019). A greater percentage of patients with those symptoms were admitted to the intensive care unit (55.3% vs. 44.7%; p = 0.002). Four (2.5%) of the 163 patients in the study group died during hospitalization. Among those 4 patients, 2 had neurologic complications. One experienced ataxia/gait disturbance, confusion/delirium, impaired consciousness, tremor, and vision impairment. The other patient experienced confusion/delirium and impaired consciousness.

Discussion
More than half (59.5%) of the 163 patients admitted to YNHH with babesiosis had ≥1 neurologic complication. Confusion/delirium and impaired consciousness were the 2 most common severe neurologic complications among our study patients. Other severe neurologic symptoms, including seizure or stroke, were seldom reported. Confusion/delirium and impaired consciousness were significantly associated with high peak parasitemia (p < 0.005) and with markers of renal injury. We also found that the prevalences of confusion/delirium and of impaired consciousness were greater in patients with diabetes mellitus. Although Lyme disease can cause several neurologic complications, including confusion/delirium and impaired consciousness, less than one tenth of patients hospitalized for babesiosis had an erythema migrans rash. We found no relationship between babesiosis-Lyme disease co-infection and prevalence of neurologic complications (26–28).

The etiology of Babesia-associated neurologic symptoms is unknown. Central nervous system complications observed in B. bovis in cattle and B. canis in dogs are thought to be caused by erythrocyte, platelet, and leukocyte cytoadherence to vascular endothelium with vascular obstruction, excessive proinflammatory cytokine activation associated with high parasitemia, or both (12,29–32). One of the patients in our study had an acute left-middle cerebral artery stroke consistent with vascular obstruction; however, a direct link between stroke and this parasitic infection cannot

SYNOPSIS

Table 2. Imaging indications and findings in patients with neurologic symptoms associated with babesiosis admitted to Yale-New Haven Hospital, New Haven, Connecticut, USA, January 2011–October 2021*

<table>
<thead>
<tr>
<th>Imaging</th>
<th>No. (%) patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuroimaging modality</td>
<td></td>
</tr>
<tr>
<td>Computed tomography</td>
<td>28 (17.2)</td>
</tr>
<tr>
<td>Magnetic resonance imaging</td>
<td>7 (4.3)</td>
</tr>
<tr>
<td>Electroencephalogram</td>
<td>2 (1.2)</td>
</tr>
<tr>
<td>Indication</td>
<td></td>
</tr>
<tr>
<td>Altered mental status/confusion</td>
<td>15 (9.2)</td>
</tr>
<tr>
<td>Headache</td>
<td>8 (4.9)</td>
</tr>
<tr>
<td>Fever</td>
<td>5 (3.1)</td>
</tr>
<tr>
<td>Evaluate CNS abnormalities</td>
<td>3 (1.8)</td>
</tr>
<tr>
<td>Weakness</td>
<td>3 (1.8)</td>
</tr>
<tr>
<td>Dizziness</td>
<td>1 (0.6)</td>
</tr>
<tr>
<td>Dysphagia, slurred speech</td>
<td>1 (0.6)</td>
</tr>
<tr>
<td>Fall</td>
<td>1 (0.6)</td>
</tr>
<tr>
<td>Head injury</td>
<td>1 (0.6)</td>
</tr>
<tr>
<td>Visual changes</td>
<td>1 (0.6)</td>
</tr>
<tr>
<td>Syncope</td>
<td>1 (0.6)</td>
</tr>
<tr>
<td>Numbness</td>
<td>1 (0.6)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>1 (0.6)</td>
</tr>
<tr>
<td>Seizure</td>
<td>1 (0.6)</td>
</tr>
<tr>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>Nonspecific white matter changes</td>
<td>23 (14.1)</td>
</tr>
<tr>
<td>Volume loss</td>
<td>14 (8.6)</td>
</tr>
<tr>
<td>Acute changes</td>
<td>2 (1.2)</td>
</tr>
<tr>
<td>Evidence of previous stroke</td>
<td>3 (1.8)</td>
</tr>
</tbody>
</table>

*Total sample consisted of 163 patients. Neuroimaging modalities and indications sum to >33 because some patients received multiple imaging modalities or had multiple indications. CNS, central nervous system.

CSF parameters were otherwise within reference ranges. Five of the 6 patients who underwent lumbar puncture were tested for Lyme antibody in CSF, but results were negative in all cases.

Risk Factors for Neurologic Complications

Univariate logistic regression models tested associations between comorbid conditions and the 3 most common neurologic symptoms: headache, confusion/delirium, and impaired consciousness. In univariate modeling, we found significant associations (p < 0.05) between hypertension, diabetes mellitus, and stroke/transient ischemic attack and the presence of confusion/delirium during hospital admission. Those same factors were also significantly associated with impaired consciousness in univariate analysis and were entered into multivariate models of the respective complications (Table 4).

Multivariate analysis revealed increased adjusted odds of confusion/delirium (OR 3.04 [95% CI 1.11–8.34]; p = 0.031) and impaired consciousness (OR 5.36 [95% CI 1.98–14.48]; p < 0.001) among patients with diabetes mellitus. There was a significant association between stroke/transient ischemic attack and confusion/delirium in univariate modeling, but the association was nonsignificant in the multivariate model (p = 0.079).
Table 3. Laboratory result comparisons by neurologic symptoms in patients with babesiosis admitted to Yale-New Haven Hospital, New Haven, Connecticut, USA, January 2011–October 2021

<table>
<thead>
<tr>
<th>Laboratory result, median (IQR)</th>
<th>Reference range</th>
<th>Yes, n = 52</th>
<th>No, n = 111</th>
<th>p value†</th>
<th>Yes, n = 27</th>
<th>No, n = 136</th>
<th>p value†</th>
<th>Yes, n = 24</th>
<th>No, n = 139</th>
<th>p value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematologic function</td>
<td></td>
</tr>
<tr>
<td>Lowest hematocrit M, 40%–52%; F, 37%–53%</td>
<td>(16.2–35.6) (19.4–32.6)</td>
<td>25.9 (26.0) 0.581</td>
<td>24.0 (26.4) 0.088</td>
<td>23.6 (26.4) 0.024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowest platelet count 150–400 × 10^3/L</td>
<td>(4.0–150) (23.0–141.0)</td>
<td>78.5 (82.0) 0.881</td>
<td>68.0 (82.0) 0.339</td>
<td>59.5 (84.0) 0.084</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatic function</td>
<td></td>
</tr>
<tr>
<td>Highest AST</td>
<td>3–40 U/L</td>
<td>66.0 (76.0) 0.277</td>
<td>76.0 (75.5) 0.813</td>
<td>81.0 (75.0) 0.909</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest ALT</td>
<td>3–40 U/L</td>
<td>61.0 (63.0) 0.809</td>
<td>54.0 (63.5) 0.568</td>
<td>49.0 (63.0) 0.441</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal function</td>
<td></td>
</tr>
<tr>
<td>Highest BUN</td>
<td>7–20 mg/dL</td>
<td>17.0 (24.0) 0.002</td>
<td>31.0 (20.0) 0.025</td>
<td>33.0 (20.0) 0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest creatinine</td>
<td>0.5–1.2 mg/dL</td>
<td>1.00 (1.1) 0.091</td>
<td>1.5 (1.0) <0.001</td>
<td>1.5 (1.0) 0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowest GFR</td>
<td>≥60 mL/min</td>
<td>76.0 (67.0) 0.007</td>
<td>46.0 (73.0) <0.001</td>
<td>47.0 (73.0) 0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Boldface indicates significance. ALT, alanine transaminase; AST, aspartate transaminase; BUN, blood urea nitrogen; GFR, glomerular filtration rate; IQR, interquartile range.</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Associations between comorbid conditions and neurologic symptoms in patients with babesiosis admitted to Yale-New Haven Hospital, New Haven, Connecticut, USA, January 2011–October 2021

<table>
<thead>
<tr>
<th>Comorbid condition</th>
<th>Confusion/delirium, no. (%)</th>
<th>Adjusted odds of confusion/delirium OR (95% CI)</th>
<th>p value</th>
<th>Impaired consciousness, no. (%)</th>
<th>Adjusted odds of impaired consciousness OR (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes mellitus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>140 (13.6)</td>
<td>1.00</td>
<td>0.301</td>
<td>140 (10.7)</td>
<td>1.00</td>
<td><0.001</td>
</tr>
<tr>
<td>Yes</td>
<td>23 (34.8)</td>
<td>3.04 (1.11–8.34)</td>
<td></td>
<td>23 (39.1)</td>
<td>5.36 (1.98–14.48)</td>
<td></td>
</tr>
<tr>
<td>Stroke/transient ischemic attack</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>150 (14.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>13 (38.5)</td>
<td>3.06 (0.88–10.66)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p value <0.05 indicates statistical significance.

Table 4. Associations between comorbid conditions and neurologic symptoms in patients with babesiosis admitted to Yale-New Haven Hospital, New Haven, Connecticut, USA, January 2011–October 2021

be established with a single case. Retinopathy has been documented in both cerebral malaria and babesiosis and is thought to be the result of vascular obstruction in the brain and retina (33–35).

We noted an association between renal impairment (defined by elevated blood urea nitrogen and creatinine and low glomerular filtration rate) and patients who experienced confusion/delirium or impaired consciousness. Confusion/delirium and impaired consciousness may be a direct result of impaired renal function (i.e., secondary to uremia). Alternatively, those neurologic symptoms and renal impairment might be a consequence of a common pathologic mechanism, such as microvascular obstruction from cytoadhering infected erythrocytes or excessive proinflammatory cytokine release. Animal studies likewise have found an association between renal complications and cerebral complications of babesiosis (31,36–38).

Limitations of this study include the retrospective nature of the study design, the lack of histopathologic data, and incomplete access to prehospitalization data, including severity of comorbid conditions and medication use. Our sample size of 163 patients is modest because severe cases of babesiosis requiring hospitalization are uncommon.
This study cohort reflects the clinical manifestations of babesiosis patients who experienced severe infection that required hospitalization and, as such, the results may not be directly applicable to all patients with babesiosis. Neurologic symptom severity scores were not available, and duration of symptoms after discharge is unknown, although most patients had cleared or improved neurologic symptoms by the time of discharge. The long-term outcomes of neurologic complications of babesiosis warrant further research.

The lack of histopathologic data limits the specificity of our findings. Patients with severe infections other than babesiosis may also experience many of the neurologic complications described in this study. Regarding the patients we studied, it is challenging to delineate whether signs and symptoms were part of the typical course of systemic infection, were worsened by the presence of babesiosis, or were characteristic of the babesiosis agent itself. Despite those limitations, this study provides a baseline description of the prevalence of neurologic complications of babesiosis.

In conclusion, more than half of the patients admitted to YNHH from January 2011–October 2021 for acute babesiosis experienced ≥1 neurologic complication. Confusion/delirium and impaired consciousness were each significantly associated with peak parasitemia, renal impairment, and preexisting diabetes mellitus. Further research is needed to clarify the pathogenesis of neurologic manifestations of babesiosis and determine possible long-term neurologic sequelae. Clinicians caring for patients in endemic areas should be aware that babesiosis can manifest with a range of symptoms, including neurologic.

This work was supported by the National Institute of Mental Health and the National Institute on Aging of the National Institutes of Health (K23 MH118999 and T35 AG049685); the Llura A. Gund Laboratory for Vector-borne Diseases; and the Gordon and Llura Gund Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

P.J.K. is on the board of the American Lyme Disease Foundation, for which he receives no remuneration, and coauthored a chapter on babesiosis in UpToDate. All other authors report no potential conflicts.

About the Author

Ms. Locke is a second-year medical student at Yale School of Medicine, New Haven, Connecticut. She is interested in the epidemiology of vector-borne diseases.

References

16. Venigalla T, Adeckayode C, Doreswamy S, Al-Sudani H, Sekhar S. Atypical presentation of babesiosis with neurological manifestations as well as hematological

Address for correspondence: Shelli Farhadian, Yale School of Medicine, 135 College St, New Haven, CT, USA 06520; email: shelli.farhadian@yale.edu
Since December 2019, the entire world has experienced the pandemic produced by the novel beta-coronavirus SARS-CoV-2. This virus is the causative agent of COVID-19, a severe acute respiratory disease that has resulted in >700 million cases and >6.8 million confirmed deaths (1). Although the origin of the virus has not been clarified yet, it is thought to have originated from an animal reservoir and subsequently been transmitted to humans by a direct spillover event (2–4). Moreover, as the pandemic has progressed, numerous cases of natural SARS-CoV-2 infection have been reported in different animal species, such as minks, cats, dogs, ferrets, nonhuman primates, tigers, and otters (5). Most of those cases were associated with exposure to infected humans, a phenomenon defined as reverse zoonosis. This susceptibility is probably due to high homology between the human angiotensin-converting enzyme 2 (ACE2) receptor and those in several animal species; this receptor plays a key role in the virus entry into the cell (6,7).

Considering the zoonotic origin of the virus and the ongoing pandemic, both active and passive surveillance should be conducted on animals. Surveillance is particularly important for common pets, such as cats and dogs, because human-to-pet transmission is more likely to occur through close contact between owners and pets. That fact is evidenced by the great number of studies reporting SARS-CoV-2 infection and the presence of antibodies in cats and dogs all over the world (8–14). Quantitative reverse transcription PCR (qRT-PCR) is used to confirm SARS-CoV-2 infection in animals because of its high sensitivity and specificity (15). However, the period of viral shedding in animals is fairly short, according to experimental (16) and field (9) data; therefore, the detection of viral RNA from pet samples is fortuitous. qRT-PCR–based results confirm the infection by direct detection of the agent; serologic diagnosis may be useful to identify previous exposure in cats and dogs because these species develop a strong antibody-based response to viral infection with SARS-CoV-2 (17–19). Seroprevalence studies may extend our knowledge about the real prevalence of COVID-19 in pets; it is crucial to use a serologic test with high specificity to avoid cross-reactivity. Thus, the virus neutralization test (VNT) is a recommended technique because it can detect specific neutralizing antibodies against the virus. This assay, in combination with a simpler test for initial serum screening, could obtain specific and reliable results.

In this study, we performed an extensive serosurvey on cats and dogs in Spain, a country that has been severely affected by the COVID-19 pandemic, with >11 million cases and 100,000 thousand deaths (1) so far. We performed initial antibody detection using a
previously validated screening ELISA (20) and posterior confirmation using VNT. The results provide insights into the occurrence of COVID-19 and its spatial distribution in pets throughout the waves of the pandemic. The ethics committee for animal experiments at Complutense University of Madrid approved all the protocols (project license 14/2020).

Materials and Methods

Animal Sample Collection

Practitioners from hospitals, clinics, or Animal Protection Centers (APCs) in Spain collected serum samples from cats (n = 861) and dogs (n = 1,039) in accordance with the guidelines of good experimental practices, following European, national, and regional regulations. Samples were subsequently sent to the Health Surveillance Centre (VISAVET) at the Complutense University of Madrid (Madrid, Spain) by a transport company under the regulations stated in the UN3373 Biological Substance, Category B (21), and ARRIVE 2.0 guidelines (22). Owners and keepers were duly informed of the purpose of the study and the data protection policy and provided written consent for each pet. Serum samples were collected in tubes without any anticoagulant and kept refrigerated until shipment. At the laboratory, samples were stored at −80°C until analysis. When possible, further samples for qRT-PCR analysis were taken following the methods previously described (20).

To avoid a potential sampling bias, the survey included animals with known exposure to persons infected with SARS-CoV-2 as confirmed by qRT-PCR or antigen test, as well as nonexposed animals. We included domestic animals, defined as pets living in houses and animals from APCs (513 cats, 967 dogs), and stray animals, defined as free-ranging dogs or cats captured for sterilization and sampling (304 cats, 54 dogs). The presence or absence of clinical signs compatible with the disease (i.e., respiratory and digestive symptoms, anorexia, and apathy) was recorded for every animal. The study period was January 2020–November 2021. Sampling included animals from 11 autonomous communities in Spain: Andalucía, Aragón, Castilla la Mancha, Castilla y León, Cataluña, Ceuta, Madrid, País Vasco, Valencia, Navarra, and Murcia.

ELISA Based on RBD

We performed an indirect ELISA test based on the receptor-binding domain (RBD) of the virus as a screening test (Raybiotech, https://www.raybiotech.com). We adapted the ELISA to each species by using a specific anti-species conjugate. In brief, we covered coated plates with 100 μL of 1:40 diluted serum in phosphate-buffered saline (PBS) containing 0.05% Tween 20 (PBS-T) and incubated at 37°C for 30 minutes. We then washed the plates 4 times, added 100 μL of the specific anti-species HRP-conjugated IgG (Jackson Immuno Research Laboratories, https://www.jacksonimmuno.com) diluted 1:18,000 in PBS-T, and incubated the solution at 37°C for 15 minutes. After 4 more washes, we added 100 μL of SureBlue Reserve TMB microwell peroxidase substrate (TMB) (KPL, https://kpl.com) and incubated the plates in the dark for 10 minutes. We stopped the reaction by adding 100 μL of H₂SO₄ (3M, https://www.3m.com) to each well. We determined absorbance at 450 nm using an Anthos 2001 plate reader (Labtec, https://anthos-labtec.nl). We determined the endpoint cutoff by the analysis of a receiver operating characteristic (ROC) curve based on positive divided by negative (P/N) values. Validation of this ELISA test was extensively described (20).

Virus and Cells

SARS-CoV-2 MAD6 isolated from a 69-year-old male patient in Madrid, Spain, belonging to the B.1 (Pango v.3.1.162021-11-04) lineage, was provided by Dr. Luis Enjuanes from the National Biotechnology Centre (CNB) at the Higher Council for Scientific Research (CSIC). We prepared Vero E6 cells provided by the Carlos III Healthcare Institute (Madrid, Spain) or ATCC to reproduce the SARS-CoV-2 stocks. We incubated cells at 37°C under 5% CO₂ in GIBCO Roswell Park Memorial Institute (RPMI) 1640 medium with L-glutamine (Lonza Group Ltd, https://www.lonza.com) and supplemented with 100 IU/mL penicillin, 100 μg/mL streptomycin, and 10% fetal bovine serum (FBS) (Merck KGaA, https://www.emdgroup.com). We determined SARS-CoV-2 titers via a 50% tissue culture infectious dose (TCID₅₀) assay.

VNT for Detection of Specific Neutralizing Antibodies against SARS-CoV-2

We used VNT to confirm the presence of neutralizing antibodies against SARS-CoV-2 in all the samples that showed a doubtful or positive result to the screening ELISA. In brief, we performed the VNT in duplicate in 96-well plates by incubating 25 μL of 2-fold serially diluted serum with 25 μL of 100 TCID₅₀/mL of SARS-CoV-2. We incubated the virus/serum mixture at 37°C with 5% CO₂. After 1 hour, we added 200 μL of Vero E6 cell suspension to the mixtures and incubated the plates at 37°C with 5% CO₂. We determined the neutralization titers at 5
days postinfection. We recorded the titer of a sample as the reciprocal of the highest serum dilution that provided at least 100% neutralization of the reference virus, as determined by the visualization of cytopathic effect (CPE). We additionally determined cell viability after VNT by using a violet crystal assay to confirm the results observed by microscopy. At the end of VNT (5 days postinfection), we dried the cells, added 200 µL of 0.5% crystal violet solution (Sigma-Aldrich, https://www.sigmaaldrich.com), and incubated the solution at room temperature for 20 minutes. Finally, we removed the crystal violet for the visualization of CPE or cellular tapestry. We determined cell viability by comparing each well with both the virus and the cell control wells.

Data Analysis
We organized surveillance data on sampled dogs and cats by origin source, date, and results of diagnostic tests against SARS-CoV-2 in all the samples. We structured spatial data at the province level to reduce sampling bias between rural and urban scenarios. We conducted statistical analysis using SPSS Statistics 20 (IBM, http://www.spss.com) and R version 3.5.0 (The R Project for Statistical Computing, https://www.r-project.org). We used dplyr R package (23) for database exploration. We performed a descriptive analysis of seroprevalence from ELISA and VNT tests to calculate average ranges per species, sampling groups, and period at 95% CI. We studied variations in these parameters between groups and among different province-periods (3 months per period) with generalized linear mixed model (GzLMM) using a binomial distribution and probit link function. Thus, the response variable of the model was the presence (as 1) or absence (as 0) of a positive case to ELISA and confirmed by VNT test, with the reference value in the binomial distribution. We included sampling location as a random effect factor in the model; we included incidence of SARS-CoV-2 in humans, proportion of stray sampled animals, and contact with ≥1 person infected with SARS-CoV-2 at the province-period level as independent factors. We applied a protocol for data adjustment and checked the assumptions on the residuals of the model (24). We considered outcomes of p <0.05 statistically significant.

Results

Detection of Neutralizing Antibodies against SARS-CoV-2
A total of 68 samples tested positive to ELISA, and 3 were doubtful samples. We used VNT to determine the presence of specific and neutralizing antibodies against SARS-CoV-2 in those ELISA positive and doubtful (n = 71) samples from cats and dogs. Positive results were confirmed in 66/71 ELISA-positive samples (ELISA specificity = 92.95) (Table 1). A total of 66 animals (3.59% of the total) showed neutralizing antibodies, 28 cats (seroprevalence of 3.43%), and 38 dogs (seroprevalence of 3.73%) (Figure 1). Overall, 60 positive cases were domestic animals whereas 6 stray animals resulted positive. All the stray animals that showed neutralizing antibodies were cats. Out of the 66 positive animals, 44 had contact with ≥1 person infected with SARS-CoV-2; 16 of those also had symptoms compatible with the infection, including sneezing, cough, and diarrhea. Out of the 60 positive domestic animals, 44 were pets living in houses, and 16 were housed in APCs. Six animals that showed neutralizing antibodies were also positive by qRT-PCR. VNT titers varied among samples; the lowest recorded was 1:32 and the highest = 24. We observed no statistical differences in the VNT titers for cats and dogs.

Table 1. Distribution of cats and dogs testing positive for SARS-CoV-2 by location and type, Spain*

<table>
<thead>
<tr>
<th>Autonomous</th>
<th>No. cats infected/total</th>
<th>No. dogs infected/total</th>
<th>Total no. animals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Domestic</td>
<td>Stray</td>
<td>Domestic</td>
</tr>
<tr>
<td>Andalucía</td>
<td>6/305</td>
<td>0/89</td>
<td>15/816</td>
</tr>
<tr>
<td>Aragon</td>
<td>0/19</td>
<td>3/36</td>
<td>0/2</td>
</tr>
<tr>
<td>Cataluña</td>
<td>2/27</td>
<td>0/6</td>
<td>2/35</td>
</tr>
<tr>
<td>Castilla La Mancha</td>
<td>0/2</td>
<td>2/117</td>
<td>0/16</td>
</tr>
<tr>
<td>Castilla y León</td>
<td>7/37</td>
<td>0/13</td>
<td>0/14</td>
</tr>
<tr>
<td>Ceuta</td>
<td>0/5</td>
<td>0/0</td>
<td>2/19</td>
</tr>
<tr>
<td>Madrid</td>
<td>6/93</td>
<td>0/12</td>
<td>16/236</td>
</tr>
<tr>
<td>Murcia</td>
<td>0/7</td>
<td>0/0</td>
<td>0/8</td>
</tr>
<tr>
<td>Navarra</td>
<td>0/0</td>
<td>0/0</td>
<td>0/3</td>
</tr>
<tr>
<td>País Vasco</td>
<td>1/17</td>
<td>0/0</td>
<td>3/18</td>
</tr>
<tr>
<td>Valencia</td>
<td>0/1</td>
<td>0/31</td>
<td>0/0</td>
</tr>
</tbody>
</table>

*Animal origin is domestic (animal living in a house or housed in Animal Protection Centers) or stray (free-ranging animals captured for sterilization and sampling). The numbers shown correspond to the number of animals positive by virus neutralization test-with respect to the total number of animals sampled.
Factors Explaining SARS-CoV-2 Seroprevalence in Pets

When we considered the GzLMM on the seroprevalence variations obtained by VNT, we observed statistical differences once controlled by other factors, such as sampling locations and periods among groups (Table 2). The overall risk for SARS-CoV-2 seroprevalence in pets increased proportionally to the human incidence of this pathogen ($\beta = 4.85; p<0.001$) (Figure 2). In fact, we observed a higher risk for seroprevalence in animals with previous contact with ≥ 1 positive person ($\beta = 8.23; p<0.001$). The risk for SARS-CoV-2 seroprevalence in stray animals was significantly lower than in domestic animals ($\beta = -4.63; p<0.001$).

Discussion

Since the beginning of the COVID-19 pandemic, many studies have shown that pet cats and dogs are susceptible to SARS-CoV-2 infection, both experimentally (16) and naturally (18,25). Active infection in pets triggers the development of an effective immune response based on neutralizing antibodies, as previously demonstrated (17,19). Positivity by PCR tests lasts as long as the active infection does, 5–17 days (19,26). This short period in which positive PCR results are obtained hinders the detection of minor infections that typically occur in pets. In contrast, antibodies persist in serum for longer periods, <28 weeks (27), which makes those tests a helpful tool for evaluating previous exposure to the disease. Here, we evaluated a large number of samples from cats and dogs in Spain during a 23-month period, demonstrating a higher rate of antibody positivity than in previous seroprevalence studies. As we expected, the risk for SARS-CoV-2 seroprevalence in stray animals was lower than that for domestic animals. We have observed that seropositivity in animals increased proportionally to the human incidence of SARS-CoV-2. Therefore, the epidemiology of the disease in the human population has an effect on animal seroprevalence.

Taking into account the current state of the COVID-19 pandemic, we cannot rule out changes in the epidemiology of the disease. As new variants emerge, SARS-CoV-2 can adapt to other hosts such as cats and dogs. Clarifying the distribution of the disease in cats and dogs can reveal infection trends in these species.

Table 2. Variations of SARS-CoV-2 seroprevalence in pets by human contact, Spain*

<table>
<thead>
<tr>
<th>Model terms</th>
<th>Estimate</th>
<th>SE</th>
<th>Z value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-1.274</td>
<td>0.240</td>
<td>-5.307</td>
<td><0.001</td>
</tr>
<tr>
<td>Human incidence</td>
<td>0.001</td>
<td>0.001</td>
<td>4.852</td>
<td><0.001</td>
</tr>
<tr>
<td>Contact</td>
<td>0.116</td>
<td>0.014</td>
<td>8.234</td>
<td><0.001</td>
</tr>
<tr>
<td>Stray</td>
<td>-0.058</td>
<td>0.012</td>
<td>-4.628</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*Generalized linear mixed model output to explain variations of SARS-CoV-2 seroprevalence in pets in relation to the officially registered human incidence of SARS-CoV-2, the proportion of animals with previous contact with ≥ 1 positive person (Contact), and the proportion of stray animals. Sampling location was considered a random effect factor.
This study has several strengths in addition to the large number of samples analyzed. We have monitored both animals in contact with SARS-CoV-2–infected persons as well as animals with no previous exposure to the disease; we also analyzed a high number of samples from stray animals, which can give us information about infections caused by environmental contamination and virus circulation in the field. Moreover, the period of our study was long, which enabled us to evaluate infection trends in pets during the different waves in the human population. Because the study ended in November 2021, our results reflect the seroprevalence triggered by 3 consecutive variants of SARS-CoV-2: B.1, Alpha, and Delta. According to the sequencing reports from the government of Spain, B.1 variant was the most prevalent strain during March 2020–March 2021. More recently, the Alpha variant became dominant in the country until September 2021, the point in which the Delta variant replaced Alpha. The Omicron variant was introduced in Spain in December 2021, so no information about seroprevalence during the Omicron wave was available for this study. We note that the viral strain used for VNT in this study was the B.1 strain. The specificity of antibodies against this variant may have influenced the titers of neutralizing antibodies obtained from serum samples during subsequent waves, and, therefore, underestimated the level of antibodies in some cases.

The percentage of seropositivity in this work was slightly higher (3.56%) in comparison with other studies with similar sample size, as previously described in the United States (0.17%) (28), Italy (4.04%) (10), Germany (0.43%) (29), and the Netherlands (0.3%) (30). This finding could be related to the high COVID-19 incidence in humans in Spain during the study period. In January 2021, accumulated incidence reached ≈900 positive/100,000 inhabitants in Spain, followed by a few months in which the accumulated incidence exceeded 100 positive/100,000 inhabitants until July, when another peak was reached (700 positive/100,000 inhabitants). Subsequently, accumulated incidence had a large drop and remained <100 positive/100,000 inhabitants during September–November 2021. As demonstrated by the GzLMM, the incidence of SARS-CoV-2 infection in the human population was related to higher positivity to VNT in pets. This finding highlights the importance of taking preventive measures and minimizing contact with domestic animals when humans become infected. Because the epidemiologic scenario of the disease may change at any time due to the high rate of genomic mutation of the virus and the apparition of new variants, it is crucial to limit the contagion of susceptible species.

Previous studies on pets in Spain have demonstrated a low prevalence of positive animals by PCR (11,20). However, as we have demonstrated, more animals have been exposed to the virus. In all those cases, we can confirm that the exposure resulted in an active infection because the animals were able to develop an effective immune response based on neutralizing antibodies. We suspect that SARS-CoV-2 infection in pets is anecdotic because in none of the positive cases we described did the owners detect severe symptoms in the animals. Although some animals had antibodies and were experiencing clinical signs at the time of sampling (30.3%), such as sneezes, dyspnea, nasal discharge, coughs, vomiting, or depression, the relationship between those signs and the SARS-CoV-2 infection is not clear enough. Antibodies remain undetectable in serum until 8–10 days postinfection (19), leading to a delay between a positive result to antibody detection and the infection. In addition, a high percentage of the animals were sampled during their attendance at the veterinary clinic, and the symptoms reported as the reason for the visit might be unrelated to SARS-CoV-2 infection; comorbidities may cause a biased result.

We confirmed that stray animals had neutralizing antibodies, as do domestic animals in contact with SARS-CoV-2–infected persons. Those results are in line with those from other studies that confirmed the presence of neutralizing antibodies in stray animals (31–33). However, the seroprevalence in this group of animals was very low; the domestic animals represented 4.05% of the animals with neutralizing antibodies, compared with 1.69% in the case of stray animals. Those results make sense...
because domestic animals are more likely to be in contact with infected persons and share potentially contaminated spaces than stray animals. In those cases, the exposure to the virus may be related to the times that humans fed the stray colonies and to the presence of infectious excretions in the areas frequented by stray cats and dogs. Another potential route of transmission is animal-to-animal transmission, which has been demonstrated in the case of stray cats (9). These results suggest that virus circulation in stray populations is low, although special care should be taken in practices that may pose a risk, such as the feeding of stray animals.

In conclusion, this study demonstrated higher rates of human-to-pet SARS-CoV-2 transmission than those found by direct molecular detection. As expected, the seroprevalence of the disease was higher in animals with previous exposure to infected persons, whereas the lower risk of infection in stray animals is likely caused by a low rate of infection. In addition, the epidemiology of the disease in the human population seems to influence the seroprevalence of the infection in cats and dogs, which highlights the importance of performing active surveillance in susceptible species.

Acknowledgments
We thank Belén Rivera, Rocío Sánchez, and Deborah López for their excellent technical support, as well as all the members of the COVID-VISAVET team. We also thank all the veterinary clinics and owners who participated in this study and Luis Enjuanes for kindly providing us the virus.

This research was funded by the Institute of Health Carlos III, project “Estudio del potencial impacto del COVID19 en mascotas y linces” (reference: COV20/01385), and also financed as part of the European Union’s response to the COVID-19 pandemic, being the financing entities the Community of Madrid and the European Union, through the European Regional Development Fund with the “REACT ANTICIPA-UCM” project (reference PR38/21).

About the Author
Dr. Barroso-Arévalo is a postdoctoral researcher at the SUAT-VISAVET team of the Complutense University of Madrid. Her research interests include SARS-CoV-2 and African swine fever viruses, general virus pathogenesis, immunology, and vaccine development.

References
Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 29, No. 6, June 2023

Similar Prevalence of Plasmodium falciparum and Non–P. falciparum Malaria Infections among Schoolchildren, Tanzania

Achieving malaria elimination requires considering both Plasmodium falciparum and non–P. falciparum infections. We determined prevalence and geographic distribution of 4 Plasmodium spp. by performing PCR on dried blood spots collected within 8 regions of Tanzania during 2017. Among 3,456 schoolchildren, 22% had P. falciparum, 24% had P. ovale spp., 4% had P. malariae, and 0.3% had P. vivax infections. Most (91%) schoolchildren with P. ovale infections had low parasite densities; 64% of P. ovale infections were single-species infections, and 35% of those were detected in low malaria endemic regions. P. malariae infections were predominantly (73%) co-infections with P. falciparum. P. vivax was detected mostly in northern and eastern regions. Co-infections with ≥1 non–P. falciparum species occurred in 43% of P. falciparum infections. A high prevalence of P. ovale infections exists among schoolchildren in Tanzania, underscoring the need for detection and treatment strategies that target non–P. falciparum species.

Sub-Saharan Africa harbors 95% of the global malaria burden (1). National surveys conducted by ministries of health throughout Africa regularly assess Plasmodium falciparum prevalence (2); however, little is known about the prevalence and geographic distribution of non–P. falciparum (hereafter nonfalciparum) malaria species, such as P. malariae, P. vivax, and P. ovale curtisi or P. ovale wallikeri (hereafter P. ovale) (3–8). Although the clinical prevalence of nonfalciparum malaria in sub-Saharan Africa is dwarfed by P. falciparum (9), nonfalciparum species can still cause disease. P. malariae has been associated with increased risk for anemia (10) and other complications, such as chronic nephrotic syndrome (11,12). P. vivax can cause severe anemia, pregnancy-related complications, and death after recurrent infections, but infections in sub-Saharan Africa are infrequent (13–15). Clinical consequences of P. ovale infections have been mostly described in travelers and have been associated with severe infection in case reports (16).

Declining P. falciparum prevalence in East Africa might be associated with increasing nonfalciparum infections (17–20). However, comprehensive surveys of nonfalciparum malaria in sub-Saharan Africa have been infrequent because detection of those species remains challenging (11,17). Field diagnostic methods, such as microscopy and pan-Plasmodium spp. lactate dehydrogenase (LDH) or histidine-rich protein 2 (HRP2)–based rapid diagnostic tests (RDTs), lack

1Data from this study were presented as a virtual poster at the American Society of Tropical Medicine and Hygiene conference, November 17–21, 2021.
2These first authors contributed equally to this article.
3These senior authors contributed equally to this article.
sensitivity to detect nonfalciparum species (11,17). Nonfalciparum malaria parasite densities are often low, and most infected persons might not seek care. Mixed infections with *P. falciparum* can also complicate detection of nonfalciparum species (3,17). Molecular detection methods can sensitively detect nonfalciparum malaria species, but those methods remain largely confined to research use.

In Tanzania, the prevalence of malaria is high, accounting for 4.1% of global malaria deaths in 2020 (1). Although ≥93% of the population in mainland Tanzania is at risk for malaria, transmission throughout the country is highly heterogeneous (21). Transmission patterns are largely driven by geographic features of the country. Malaria transmission is low, unstable, and seasonal across the arid highlands and in urban centers; moderate and seasonally variable in southern, northern, and northwestern areas; and high and perennial along the coastal, lake, and southern lowland regions (21,22). Decades of concentrated malaria control interventions helped lower the national prevalence from 18% in 2008 to 7% in 2017 (23). Most reported malaria cases in Tanzania have been attributed to *P. falciparum* (9,21), but recent studies have also identified *P. malariae*, *P. vivax*, and *P. ovale* transmission (4,18,24,25). Given the widespread use of *P. falciparum*-specific HRP2-based RDTs for malaria diagnosis, the propensity for missed detection or misclassification of nonfalciparum species in Tanzania is high, and large-scale, geographically representative studies to assess spatial distributions of nonfalciparum malaria species are lacking. We used molecular methods to analyze blood samples collected during a national survey of schoolchildren in Tanzania and comprehensively characterize nonfalciparum malaria epidemiology.

Materials and Methods

Study Design

The 2017 School Malaria Parasitological Survey (SMPS) was a cross-sectional study of children who were 5–16 years of age and enrolled in public primary schools in mainland Tanzania. Methods for site selection and survey design mirrored the 2015 SMPS and have been previously described (22). Study regions were selected through a multistage sampling scheme to maintain geographic representation and reflect the heterogeneity of malaria transmission across Tanzania (22,26). The number of schools randomly selected per region was proportional to each region’s respective population (22,26). Within each school, an average of 100 students were randomly selected for screening. After consent, each student was interviewed to obtain demographic and clinical characteristics, a malaria RDT was performed, and a dried blood spot (DBS) sample was collected (22,26). The survey largely coincided with each region’s rainy season. From among students who provided a DBS, we selected a stratified random subpopulation for nonfalciparum malaria testing. To maintain representativeness, we selected students in proportions that equaled regional proportions reflected within the broader survey population.

Informed consent had been obtained from students and their legal guardians before survey data or blood sample collection, and ethical clearance was given by the Tanzania National Institute for Medical Research. Analysis of de-identified samples was approved by the Institutional Review Board of the University of North Carolina, Chapel Hill (approval no. 19-1495).

During the survey, malaria detection was conducted by using CareStart Malaria Pf/PAN (HRP2/pLDH) Ag Combo RDTs (AccessBio, https://www.accessbio.net) that were specific for *P. falciparum* HRP2 and pan-pLDH antigens. RDTs were considered positive if they were positive for either antigen. Schools and councils were grouped into epidemiologic malaria transmission risk strata on the basis of *P. falciparum* prevalences in children estimated from the 2014–15 Tanzania SMPS (22,26). *P. falciparum* prevalence was defined as very low if <5%, low if 5 to <10%, moderate if 10 to <50%, and high if ≥50% (22,26). DBS samples collected on Whatman filter paper (Cytiva, https://www.cytivalfsciences.com) were shipped to the University of North Carolina (Chapel Hill, NC, USA) for molecular testing.

Molecular Detection

We extracted DNA from three 6-mm punches from each DBS sample by using a Chelex method (27) and performed real-time PCR targeting the 18S rRNA subunit of malaria as previously described (28) (Appendix Table 1, https://wwwnc.cdc.gov/EID/article/29/6/22-1016-App1.pdf). We performed PCR for each *Plasmodium* spp. independently with appropriate controls. We prepared positive controls for *P. falciparum* detection by using whole human blood and cultured *P. falciparum* strain 3D7 parasites (BEI Resources, https://www.beiresources.org) to create mock DBS samples and for nonfalciparum species detection by using plasmid DNA (BEI Resources). We serially diluted the control samples and extracted DNA as described. We estimated semi-quantitative parasitemias for nonfalciparum species by assuming 6 18S rRNA gene copies/parasite (28) and multiplying by 4.0 to account for the 4-fold...
dilution of blood: ≈26 µL blood from 3 DBS punches (29) in 100 µL final volume of eluted DNA. We performed 40 PCR cycles for *P. malariae* and *P. falciparum* and 45 PCR cycles for *P. ovale* and *P. vivax* to enable detection of low-density infections (28). We previously validated this approach by using 390 negative controls comprising water (n = 22) and human DNA (n = 368) and >170 positive controls with decreasing nonfalciparum parasite densities; no false-positives were detected (28). We assessed PCR specificity by testing against 10 controls from each of the other *Plasmodium* spp.; no false positives were detected (Appendix Table 2). Our laboratory at the University of North Carolina participates in the World Health Organization malaria molecular quality assurance scheme, identifying and determining *Plasmodium* spp. in blinded samples every 6 months, and has consistently achieved high marks for assay performance across species. In this study, we did not detect false-positive amplification among 20 negative controls per each species-specific assay (Appendix Table 3). We performed further real-time PCR on a subset of *P. ovale*-positive samples to distinguish between *P. ovale wallikeri* and *P. ovale curtisi* (30,31). To evaluate potential bias from differences in PCR cycle numbers between species, we conducted a sensitivity analysis of randomly selected students (n = 750) stratified by malaria transmission risk. We performed semiquantitative real-time PCR of the 18S rRNA gene to 45 cycles to detect *P. falciparum* and *P. malariae* infections.

Analysis

We calculated overall malaria species-specific prevalences and prevalence of single- and mixed-species infections. We did not adjust prevalences for sampling weight because nonfalciparum samples were selected randomly and in equal proportion to the broader survey sample.

We performed descriptive statistical analyses of student characteristics according to *Plasmodium* spp. We analyzed differences between *P. falciparum* and nonfalciparum single-species infections by using Pearson χ^2 and Kruskal-Wallis rank-sum tests assuming nonnormality and applied Fisher exact test for small frequency counts. We performed similar analyses to compare malaria-positive and -negative students according to *Plasmodium* spp. Missing data were summarized, but we performed analyses on nonmissing data only.

Spatial Mapping

We assessed regional variation in prevalence of each species through geospatial mapping by council and region. We aggregated numbers of infections and students by council and estimated and mapped council-level prevalences for each species. We calculated scaled prevalences by dividing the proportion of each council’s prevalence by the highest council prevalence for each *Plasmodium* species, as follows:

$$\frac{P_{d_i}}{\text{Max}\{P_{d_1}, \ldots, P_{d_{25}}\}}$$

where P is the prevalence for a given council, d_i. We calculated and mapped differences between scaled nonfalciparum and scaled *P. falciparum* prevalences for each council. This method compared prevalence estimates between each nonfalciparum species and *P. falciparum*, while accounting for differences in the absolute burden of each species.

We performed analyses by using R version 4.0.2 (The R Project for Statistical Computing, https://www.r-project.org) and used the euler (https://cran.r-project.org/package=eulerr) and sf version 0.9–7 (32) packages for prevalence visualization and mapping. We sourced shapefiles from the Global Administrative Areas database (https://gadm.org) and collected elevation measurements from the US National Aeronautics and Space Administration, Shuttle Radar Topography Mission (https://www.nasa.gov).

Results

Study Population

We selected a total of 3,456 students from 180 schools across 8 geographic regions for nonfalciparum malaria testing from among 17,131 students in the SMPS who had available DBS samples. We did not detect differences in student characteristics between those in the nonfalciparum malaria and SMPS DBS populations (Appendix Table 4). Median (interquartile range [IQR]) student age in the nonfalciparum study population was 11 (9–13) years; distribution of male (51%) and female (49%) students was similar. Malaria dual-antigen RDTs were positive in 20% of students. Most students attended schools in regions classified as high (51%) or moderate (13%) malaria transmission risk (Table 1, https://wwwnc.cdc.gov/EID/article/29/6/22-1016-T1.htm).

Species Prevalence Determined by PCR

We identified *P. falciparum* infections in 22% (95% CI 21%–23%, n = 755), *P. ovale* in 24% (95% CI 22%–25%, n = 814), *P. malariae* in 4% (95% CI 3%–5%, n = 136), and *P. vivax* in 0.3% (95% CI 0.2%–0.6%, n = 1145).
n = 11) of students, including single- and mixed-species infections (Appendix Table 5). Most (64%, n = 519) *P. ovale* infections were single-species infections; 28% (n = 224) were co-infections with *P. falciparum* only (Figure 1). Conversely, most (40%, n = 55) *P. malariae* infections were co-infections with both *P. ovale* and *P. falciparum*; 32% (n = 44) were co-infections with *P. falciparum* only. We determined 36% (n = 4) of *P. vivax* infections were single-species infections, and 43% (n = 326) of *P. falciparum* infections were co-infections with ≥1 non-*falciparum* malaria species.

We conducted a sensitivity analysis, detecting *P. falciparum* and *P. malariae* by using PCR cycle thresholds of <45 to evaluate different PCR cycles between assays. We observed 25% (95% CI 21.0%–29.0%) *P. falciparum* and 3% (95% CI 2.0%–5.0%) *P. malariae* prevalences, weighted according to student distribution within the total non-*falciparum* population by transmission risk strata (Appendix Table 6). Within that subset, 2.5% (n = 4) of *P. falciparum* and 10% (n = 2) of *P. malariae* infections were detected at cycle thresholds of 40–45. Thus, >97% of *P. falciparum* and 90% of *P. malariae* infections were detectable by the primary 40-cycle assay in our study.

We evaluated differences in student characteristics according to *Plasmodium* spp. infection (Table 1; Appendix Table 7). We detected *P. ovale* single-species infections more frequently than *P. falciparum* infections in slightly younger (median 11 vs. 12 years of age; p<0.001) and female (54% vs. 45%; p = 0.009) students. Comparing RDT sensitivity to PCR, we observed 8% (n = 40) of students with *P. ovale* single-species infections were RDT-positive for any band, whereas 33% (n = 8) of those with *P. malariae* and 69% (n = 295) with *P. falciparum* single-species infections were RDT-positive. Co-infections with *P. falciparum* and non-*falciparum* were RDT-positive in 78% (n = 253/325) of cases detected by PCR. Although only 3% (n = 13) of *P. falciparum* single-species infections and no *P. malariae* or *P. vivax* single-species infections were detected in low transmission risk strata, 35% (n = 181) of *P. ovale* single-species infections occurred in regions classified as low or very low malaria transmission risk.

Figure 1. Distribution of *Plasmodium* spp. infections among schoolchildren, Tanzania. Prevalence estimates according to species: *P. falciparum*, 21.8% (95% CI 20.5%–23.3%, n = 755); *P. ovale*, 23.6% (95% CI 22.2%–25.0%, n = 814); *P. malariae*, 3.9% (95% CI 3.3%–4.6%, n = 136); *P. vivax*, 0.3% (95% CI 0.2%–0.6%, n = 11). *P. vivax* + *P. malariae* co-infection (n = 1) is not shown.
risk. High epidemiologic risk strata harbored most single-species infections across all 4 *Plasmodium* spp. and also mixed infections with *P. falciparum*.

Parasite Density
Malaria parasitemia estimated by semiquantitative PCR was low across nonfalciparum species (Figure 2). Median (IQR; min–max) *P. ovale* density was 7.2 (1.3–25.0; 0.1–168.596) parasites/µL, comparable to *P. malariae* density at 11.7 (2.7–54.9; 0.3–1,214) parasites/µL. *P. vivax* density was ≈0.6 (0.3–0.8; 0.1–8.1) parasites/µL. Although 18% (*n* = 25) of *P. malariae* infections had a parasite density >100 parasites/µL, we rarely observed that level for *P. ovale* (3%, *n* = 25) and never for *P. vivax*. *P. falciparum* density was also low at 13.1 (2.6–55.9; 0.1–8,248) parasites/µL; however, 17% (*n* = 132) of *P. falciparum* cases had a parasite density >100 parasites/µL, and 3% (*n* = 24) had >500 parasites/µL. Median (IQR) density among *P. ovale* mixed infections was 3.1 (1.2–11.4) parasites/µL and 13.5 (1.3–53.9) parasites/µL for mixed-species infections (*n* = 112) (*p* = 0.169). *P. vivax* density was 0.4 (0.2–0.9) parasites/µL for single-species infections (*n* = 4) and 0.7 (0.5–0.8) parasites/µL for mixed-species infections (*n* = 7) (*p* = 0.571).

Figure 2. Estimated parasite density distributions according to malaria species in study of similar prevalence of *Plasmodium falciparum* and non–*P. falciparum* malaria infections among schoolchildren, Tanzania. We estimated *Plasmodium* spp. parasite densities for single infections and co-infections (mixed) by using semiquantitative PCR and species-specific primers (Appendix Table 1, https://wwwnc.cdc.gov/EID/article/29/6/22-1016-App1.pdf). Mixed infections included *P. falciparum* and nonfalciparum co-infections. Number of samples varied by species. *P. ovale* and *P. vivax* parasite densities were detected by using 45 PCR cycles; other species were determined by using 40 PCR cycles. A) *P. falciparum*: median (IQR) density was 11.4 (2.5–54.7) parasites/µL for single-species infections (*n* = 429) and 16.5 (3.5–56.9) parasites/µL for mixed-species infections (*n* = 326) (*p* = 0.017). B) *P. ovale*: median (IQR) density was 13.5 (1.3–30.1) parasites/µL for single-species infections (*n* = 519) and 3.1 (1.2–11.4) parasites/µL for mixed-species infections (*n* = 295) (*p* < 0.001). C) *P. malariae*: median (IQR) density was 16.1 (3.8–164.0) parasites/µL for single-species infections (*n* = 24) and 11.2 (2.6–53.9) parasites/µL for mixed-species infections (*n* = 112) (*p* = 0.169). D) *P. vivax*: median (IQR) density was 0.4 (0.2–0.9) parasites/µL for single-species infections (*n* = 4) and 0.7 (0.5–0.8) parasites/µL for mixed-species infections (*n* = 7) (*p* = 0.571). IQR, interquartile range.
successful in 35% (n = 21) of samples; *P. ovale curtisi* was detected in 17 samples and *P. ovale wallikeri* in 9 samples. We identified *P. ovale curtisi* and *P. ovale wallikeri* co-infections in 5 students. We did not perform further characterization because of limited sample sizes.

Geographic Distribution

We detected *P. ovale* across all 8 regions sampled in Tanzania, indicating widespread distribution (Table 2; Figures 3, 4). *P. ovale* prevalence was highest within the northern Kagera (34%, n = 273) and central Tabora (17%, n = 139) regions. We detected *P. ovale*...
infections in 6 of 8 regions (all but Arusha and Rukwa) and *P. ovale wallikeri* in 5 of 8 (Kagera, Mara, Tabora, Tanga, and Iringa) regions. We observed high prevalence of *P. malariae* in Kagera (29%, n = 39) and in southernmost Mtwara (28%, n = 38), and *P. vivax* was predominantly distributed along the northwestern borders of Tanzania in Kagera (55%, n = 6); select, isolated cases of *P. vivax* were also detected in southern and eastern regions. Arusha and Iringa did not have any cases of *P. malariae* or *P. vivax* infections and had the lowest frequencies of *P. ovale* (3%, n = 23, in Arusha; 4%, n = 30, in Iringa) and *P. falciparum* (0.4%, n = 3, in Arusha; 0.1%, n = 1, in Iringa) infections.

We detected malaria infections in students who were predominantly located at elevations <1,500 m, including 85% (n = 693) infected by *P. ovale*, 94% (n = 707) by *P. falciparum*, 95% (n = 129) by *P. malariae*, and 100% (n = 11) by *P. vivax* (Table 2). Most (77%, n = 2,667) students enrolled in our study were from schools located at elevations <1,500 m. Among students located at elevations >1,500, *P. ovale* infections were detected most frequently in 15% (n = 121) of students compared with 6% (n = 48) infected with *P. falciparum*, 1% (n = 7) infected with *P. malariae*, and 0% infected with *P. vivax*.

We compared scaled prevalence estimates for nonfalciparum species with *P. falciparum* and identified areas where prevalences were higher than expected for *P. ovale* and *P. malariae* on the basis of *P. falciparum* frequency (Figure 5); *P. vivax* infections were too infrequent for comparison. In the southern and southwestern highlands and northwestern lake regions (Iringa, Rukwa, Tabora, and Kagera), scaled *P. ovale* prevalences were higher than *P. falciparum* prevalences. Scaled prevalence of *P. malariae* was notably higher than that of *P. falciparum* in the Karagwe council in Kagera and Mtwara municipal council in Mtwara. In most other areas, scaled prevalence of *P. malariae* was similar to or lower than *P. falciparum* prevalence.

Discussion

Our study describes a large nationally representative molecular survey of nonfalciparum malaria epidemiology across Tanzania. We used real-time PCR to estimate nonfalciparum infection prevalences in school-aged children in 8 regions of the country selected to maintain geographic diversity and malaria transmission risk heterogeneity. One quarter (24%) of schoolchildren harbored *P. ovale* parasites, comparable to the 22% *P. falciparum* prevalence in the population, and 64% of *P. ovale* infections were single-species infections. *P. malariae* was observed in 4% of students, of which most were co-infected with other malaria species. *P. vivax* infections were rare (0.3% prevalence).
High \(P. \) ovale prevalence could be attributed to several factors. First, we increased the number of PCR cycles for \(P. \) ovale detection to 45 to enable detection of low-density infections, which comprised 91% of all \(P. \) ovale infections identified (Appendix Table 8). This approach has precedence (17,25,31), as low-density parasitemia is characteristic of \(P. \) ovale infections, making detection challenging. Using 40-cycle PCR for \(P. \) ovale yielded a 0.8% prevalence estimate in our previous work in the Democratic Republic of the Congo (5). The prevalence of \(P. \) ovale infections positive at <40 cycles in this study was 9% (\(n = 75 \)), confirming most infections occurred at very low parasite densities. Second, many large-scale molecular surveys of nonfalciparum malaria have focused on adults or all-age cohorts, whereas school-aged children are increasingly recognized as the main contributors to asymptomatic and infectious malaria reservoirs (33–35). Finally, the high prevalence of \(P. \) ovale in our study might reflect increasing \(P. \) ovale transmission despite malaria control efforts targeting \(P. \) falciparum. Increasing or persistent transmission of \(P. \) ovale and \(P. \) malariae amid a \(P. \) falciparum decline has been observed in molecular surveys from Tanzania and nearby Kenya and Uganda, including in symptomatic cases (17,18,24,36). The causes of increased transmission are unclear but might include hypnozoite-induced relapses of \(P. \) ovale infections not treated by artemisinin-based combination therapies, insect day-biting, or outdoor vectors that evade bed nets.

In contrast to findings from other studies (11,36–39), we found that \(P. \) ovale infections occurred more commonly as single-species infections than did other nonfalciparum species infections, although increased sensitivity of \(P. \) ovale–specific PCR might partially explain those observations. \(P. \) ovale single-species infections were rarely detected by RDTs, rendering them more difficult to detect and treat. In addition, \(P. \) ovale single-species infections were largely the only infections identified within regions categorized as low risk for malaria transmission, suggesting an unexpected transmission risk in areas where prevention measures might be less common and \(P. \) falciparum risk is not a particular concern. Our scaled differential prevalence map similarly highlighted several councils where \(P. \) ovale and \(P. \) malariae prevalences were proportionally higher than expected on the basis of \(P. \) falciparum frequency. Taken together, those characteristics indicate a hidden burden of \(P. \) ovale infections in Tanzania.

Detection of \(P. \) vivax in this study is notable given the infection control challenges posed by this species. Infections were predominately detected in the northwest/Lake regions of Tanzania and in the east, where several other studies have also observed low \(P. \) vivax prevalences (4,24,40). \(P. \) malariae prevalence of 4% aligns with recent research in the region that also identified low infection prevalences (2.5% in Malawi, 4.1% in Democratic Republic of the Congo, and 3.3% symptomatic and 5.3% asymptomatic cases in western Kenya) (12,28,39). Estimated parasite densities were low across nonfalciparum species, as expected. \(P. \) falciparum parasite densities were also relatively low (median 13.1 parasites/µL), likely because of the predominantly asymptomatic population. In addition, mapping confirmed low or nonexistent prevalence of nonfalciparum malaria within the northern highlands of Arusha and southern highlands and midlands of Iringa.

The first limitation of our study is that using different PCR cycling times for different species introduces ascertainment bias. Because \(P. \) malariae and \(P. \) falciparum assays were run at 40 rather than 45 cycles, their relative prevalences compared with prevalence for \(P. \) ovale might be underestimated. However, we

Figure 5. Differential scaled prevalences between *Plasmodium malariae* or *P. ovale* and *P. falciparum* at the school council level in study of similar prevalence of *Plasmodium falciparum* and non–*P. falciparum* malaria infections among schoolchildren, Tanzania. A) Blue shading indicates councils where *P. falciparum* scaled prevalence is greater (indicated by + in key) than *P. malariae* scaled prevalence; gold indicates regions where *P. malariae* scaled prevalence is greater. B) Light blue shading indicates councils where *P. falciparum* scaled prevalence is greater than *P. ovale* spp. scaled prevalence; green indicates regions where *P. ovale* scaled prevalence is greater. Comparison of scaled prevalences for *P. falciparum* and *P. vivax* is not depicted because the low number of *P. vivax* infections biased the scaled measurement.
performed a sensitivity analysis to quantify this bias, which indicated that only an additional 2.5% of *P. falciparum* and 10% of *P. malariae* infections would be detected by using 45 cycles, suggesting minimal underestimation of reported *P. falciparum* and *P. malariae* prevalences and no meaningful effect on overall conclusions. Weighting sensitivity analysis results to the total study population yielded a *P. falciparum* prevalence of 25% if 45 cycles were used compared with the observed prevalence of 22%. Despite this result, prevalences could still be underestimated given lower probabilities of detecting very low density infections because of PCR limits of detection in concert with small volumes of template DNA used in the assays (2 µL for *P. malariae*, *P. ovale*, and *P. falciparum*; 5 µL for *P. vivax*). Second, our study did not sample all geographic regions in Tanzania, and findings cannot be extrapolated to other age groups with differing malaria risk profiles. School-based sampling likely underestimated prevalence of symptomatic or severe malaria infection in school-aged children because children might have been absent because of illness. Finally, the cross-sectional survey design revealed little about clinical implications of prevalent non-*falciparum* infections, especially given substantial nonrandom missingness in fever data, or the extent to which infections represented chronic infection carriage versus transient parasitemia.

In conclusion, the overall high prevalence and broad geographic distribution of *P. ovale* and, to a lesser extent, *P. malariae* and the more focal distribution of *P. vivax* in this study underscore an urgent need to elucidate clinical prevalence and transmission patterns of those species to inform malaria control programs in Tanzania. Current treatment protocols in Tanzania do not regularly address hypnozoite liver-stage *P. ovale* infection, and relapses are expected after blood-stage clearance by artemisinin-based combination therapy (41). Accumulating evidence exists for increases in previously unappreciated non-*falciparum* malaria infections in sub-Saharan Africa (38). Molecular detection methods, such as PCR, and new treatment strategies will be required for continued progress toward malaria control and elimination.

Acknowledgments

We thank the 2017 SMPS study administrators and staff for their tireless work implementing the survey and students for participating in the study.

The following reagents were obtained through BEI Resources, National Institute of Allergy and Infectious Diseases, National Institutes of Health: diagnostic plasmids containing the small subunit 18S ribosomal RNA gene from *Plasmodium malariae*, MRA-179; *Plasmodium ovale*, MRA-180; and *Plasmodium vivax*, MRA-178, contributed by Peter A. Zimmerman; and *Plasmodium falciparum*, strain 3D7, MRA-102, contributed by Daniel J. Carucci.

This study was funded by the US National Institutes of Health (K24AI134990 and R01TW010870 to J.J.J.; T32AI070714 to C.L.M.; R21AI152260 to J.T.L.; R21AI148579 to J.T.L. and J.B.P.; R01AI139520 to J.B.P., R.S., and C.L.M.; and T32AI070114 to R.S.); Global Fund, which funded the survey; and US President’s Malaria Initiative via the US Agency for International Development Okoa Maisha Dhibiti Malaria (cooperative agreement no. 72062118CA-00002) implemented by RTI International under the terms of an interagency agreement with the US Centers for Disease Control and Prevention for data management and facilitation of the initial processing and exporting of blood samples. Funding sources had no role in the study design, analysis, or writing of the manuscript.

The findings and conclusions in this report are those of the author(s) and do not necessarily represent the official position of the US Centers for Disease Control and Prevention, the President’s Malaria Initiative via the US Agency for International Development, or other employing organizations or sources of funding.

About the Author

Ms. Sendor is a doctoral student at the University of North Carolina, Chapel Hill. Her research interests focus on malaria epidemiology.

References

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 29, No. 6, June 2023

Malaria Infections among Schoolchildren, Tanzania

Address for correspondence: Jonathan Juliano, University of North Carolina at Chapel Hill, 111 Mason Farm Rd, 2340B, MBRB, CB#7036, Chapel Hill, NC 27713, USA; email: jjuliano@med.unc.edu

etymologia revisited

Escherichia coli
[esh”ə-rik’e-ə co’li] A gram-negative, facultatively anaerobic rod, Escherichia coli was named for Theodor Escherich, a German-Austrian pediatrician. Escherich isolated a variety of bacteria from infant fecal samples by using his own anaerobic culture methods and Hans Christian Gram’s new staining technique. Escherich originally named the common colon bacillus Bacterium coli commune. Castellani and Chalmers proposed the name E. coli in 1919, but it was not officially recognized until 1958.

References:

Originally published in August 2015

https://wwwnc.cdc.gov/eid/article/21/8/et-2108_article
Estimates of the burden of SARS-CoV-2 reinfections continue to be crucial for assessing new SARS-CoV-2 variants with immune escape potential (1). Genomic analysis of SARS-CoV-2 strains involved in sequential COVID-19 episodes has been key to assessing the proportion of reinfections, differentiating reinfection from persistent infection, and characterizing reinfection in detail.

Centers for Disease Control and Prevention (CDC) guidelines require evidence of 2 sequential COVID-19 episodes separated by ≥90 days between sequential episodes (2). However, inclusion criterion for most studies that have focused on COVID-19 reinfection have usually required 45–60 days between sequential episodes (3,4). This timeframe maximizes factors that increase the likelihood of reinfection, including the chance of cure of the first episode, clearance of the strain involved in the first episode, and possibility of reexposure to another positive case. Following this philosophy, we reported a systematic population-based analysis of reinfections during the first, second, and third pandemic waves in Spain (5). Some studies conducted during Omicron waves described an increase in the proportion of reinfections (6,7) and a shorter interval between reinfection episodes, such as early reinfections in <60 days. In this study, we aimed to evaluate the possibility of finding reinfections when they are even less likely, <45 days between episodes, and assess which SARS-CoV-2 variants were involved. The study was conducted in a sample of 26 patients with 2 COVID-19 episodes separated by 20–45 days. Among sampled patients, 11 (42%) had reinfections involving different SARS-CoV-2 variants or subvariants. Another 4 cases were probable reinfections; 3 involved different strains from the same lineage or sublineage. Host genomic analysis confirmed the 2 sequential specimens belonged to the same patient. Among all reinfections, 36.4% involved non-Omicron, then Omicron lineages. Early reinfections showed no specific clinical patterns: 45% were among unvaccinated or incompletely vaccinated persons, 27% were among persons <18 years of age, and 64% of patients had no risk factors. Time between sequential positive SARS-CoV-2 PCRs to consider reinfection should be re-evaluated.
based on the 15,794 COVID-19 cases diagnosed during November 26, 2021–August 21, 2022, at Gregorio Marañón General University Hospital, a tertiary hospital that serves 650,000 inhabitants in the population of Madrid, Spain.

Material and Methods

Specimens

We selected all cases with 2 sequential COVID-19 episodes at an interval of 20–45 days by considering the time between the last positive reverse transcription PCR (RT-PCR) specimen in the first episode and the first positive specimen in the second episode. We also requested cases for which >1 positive specimen was available in our stored collection, among those taken in the first 10 days of each sequential episode, and for which the specimens had sufficient viral load (cycle threshold [Ct] < 32) to maximize the chance of obtaining optimal coverage in whole-genome sequence analysis. To minimize the possibility of including potentially persistent cases, we excluded cases that had clinical conditions or admissions to hospital services that likely corresponded to immunocompromised status.

Whole-Genome Sequencing

We performed whole-genome amplification of SARS-CoV-2 (Appendix, https://wwwnc.cdc.gov/EID/article/29/6/22-1696-App1.pdf). We deposited sequences above the GISAID quality thresholds into the GISAID database (https://www.gisaid.org); we submitted sequences below the GISAID threshold to the European Nucleotide archive (https://www.ebi.ac.uk/ena; project no. PRJEB56460) (Appendix Tables 1–3).

We considered a case to be a reinfection if different lineages or sublineages were involved in each sequential episode. We also assigned cases as probable reinfections when the sequential strains belonged to the same lineage or sublineage and the sequential strains harbored specific single-nucleotide variants (SNVs) not shared between the first and second episode, indicating that the sequence from the second episode was not derived from the first episode.

Minority Variant Analysis

We assessed whether the strain involved in the first episode persisted as a minority variant (i.e., trace of the virus) in the second episode. In each early reinfection case, we used Integrative Genomics Viewer version 2.14.1 (Broad Institute, https://www.broadinstitute.org) to visually inspected SNV alleles called in the strain involved in the first episode in the sequences obtained from the strains involved in the second episode.

Short Tandem Repeat Analysis

We conducted short tandem repeat analysis to ensure that the tested specimens from sequential episodes of all reinfection and probable reinfection cases belonged to the same patient. We used the Mentype Chimera PCR Amplification Kit (Biotype, https://www.biotype.de) to examine 12 noncoding short tandem repeat loci and the sex-specific amylogenic locus on specimens (Appendix).

Results

The first Omicron variant in our study population was identified during late November 2021. Delta and Omicron variants coexisted during November 26, 2021–January 15, 2022. The study population yielded 66 (0.42%) cases with 2 sequential COVID-19 cases that fulfilled our criteria (Figure). From this initial selection, we excluded 23 cases with clinical conditions or hospitalizations that likely corresponded to an immunocompromised status. Of the remaining 43 cases, 29 had positive specimens in our stored collection representative of 2 sequential episodes that could be analyzed by WGS. For 26 cases (89.7%), we obtained sequences of optimal quality and good coverage from 2 sequential episodes that enabled us to perform a one-to-one genomic comparison of both sequences (Figure).

In 11 (42%) of the 26 cases, genomic analysis indicated that reinfection occurred and involved different lineages or sublineages in each episode (Figure). Among those 11 cases, 4 involved non-Omicron followed by Omicron variants (i.e., Delta to Omicron BA.1); 4 involved 2 different Omicron lineages (BA.1.17 to B.1.1.529, BA.5 to BA.1.1, BA.5 to BA.2, and BA.2.36 to BA.5.1); and 3 involved different Omicron sublineages (BA.1.17 and BA.1.1, 10 differential SNVs; BA.1 and BA.1.1, 8 SNVs; and BA.5.2 and BA.5.1, 13 SNVs).

We considered another 4 cases to be probable reinfections (Figure): 3 involved different strains from
the same sublineage (BA.2, BA.1.1, and BA.1.17); in the fourth case (case 26), we were unable to assign the variant in 1 of the specimens. In all 4 cases, we observed differential SNVs (4–8 SNVs) between the sequences from the sequential episodes. All the differential SNV calls between the sequential episodes were robust, as indicated by the good sequencing coverage (73–2,847 nt depth) observed in those positions (Appendix Table 3). The distribution of the differential SNVs between the sequential sequences in these cases pointed to independent evolutionary pathways; 1–4 SNVs in the first episode were absent in the second, and 3–5 SNVs in the second episode were absent in the first. Those observations ruled out the possibility that the sequence from the second episode evolved from the first sequence, thus indicating that 2 unrelated strains were involved in each of the sequential episodes.

Because of the short time between COVID-19 episodes in our study, we assessed whether the strain involved in the first episode of early reinfection cases could still be traced as remnant minority variants in the second episode. A thorough visual review of SNVs called in the second episode did not identify any minority calls corresponding to SNVs identified in the first episode strain, which indicated that the strain involved in the first episode had been cleared by the time the second infection was established.

We further refined the characterization of reinfections by also performing host genomic characterization to clean up any laboratory errors and ensure that the sequential specimens belonged to the same patient. We performed short tandem repeat analysis on specimens from 15 of 16 cases assigned as reinfections or probable reinfections. For all 15 cases, host genetic analysis confirmed that the 2 sequential specimens used in the study belonged to the same patient. For the remaining 1 case (case 10), no host material was available.

A review of the clinical characteristics of the 11 cases of early SARS-CoV-2 reinfections did not suggest a specific pattern: 63.6% were among female patients, patient ages were 8–88 years, 36.4% of patients had not been vaccinated, and 9.1% had incomplete vaccination schedules (Table 1). Among the unvaccinated case-patients, most were young (8–29 years of age). In most (54.5%) reinfections, symptoms were mild, and 5 patients were asymptomatic. Relevant risk factors were high blood pressure (27.3%), heart disease (18.2%), diabetes (18.2%), and previous ictus.
In 50% of cases, a SARS-CoV-2 RT-PCR was requested before a procedure or intervention at the hospital or after exposure to a COVID-19 case (Table 2). SARS-CoV-2 antibody serology testing was not available before the first episode for all but 2 cases (cases 10 and 11), but in those cases, serologic results were negative. None of the patients died.

Among the 4 probable reinfections, patient ages were 58–81 years, 2 were male, and 3 had a full vaccination schedule before the first COVID-19 episode (Table 2). Three of the probable reinfections were asymptomatic, but we have no clinical information regarding the COVID-19 episode in the fourth patient. Relevant risk factors were high blood pressure (100%), diabetes (75%), chronic kidney disease (50%), and heart disease (50%).

Another 11 cases in the analysis were not reinfections but short-term persistence involving the same strain. The evolution of the Ct values in those cases was consistent with persistence because most (82%) had higher Ct in the second specimen; 2 had Ct values that were not markedly lower, 3 and 8 cycles difference. The strains corresponded to the Omicron variant and either had acquired no diversity, had 0 SNVs between sequential isolates, or had 1–5 SNVs in the second specimen, consistent with an acquisition of diversity by microevolution during the persistence period. We also reviewed the clinical charts for those case-patients (Table 3); their ages were 1–94 years and 63.6% were female. The most prevalent risk factors were high blood pressure (54.5%), overweight or obesity (54.5%), heart disease (45.5%), and autoimmune diseases (27.3%). Compared with patients who had short-term SARS-CoV-2 persistence, early reinfected patients were younger (43.3 vs. 58.5 years) and had lower baseline pathology (36.4% vs. 72.7%). In terms of clinical severity, 36.4% of patients with early reinfection were asymptomatic in the first episode and 45.5% were asymptomatic in the second episode, compared with only 18.2% of case-patients who had short-term persistence. For the early reinfection group, despite being statistically nonsignificant, the second episode tended to be less severe; in only 3 cases, the second episode was more severe than the first. Among early reinfections, 18.2% of case-patients required hospital admission for COVID-19 during the first episode and none required hospitalization for the second episodes, compared with 27.3% of patients with short-term persistence who required hospitalization. One (9.1%) patient in the short-term persistence group died due to COVID-19 versus none in the early reinfection group.

Table 1. Clinical characteristics of patients with early SARS-CoV-2 reinfection involving the same or different genomic lineages, Spain*

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>First episode, n = 11</th>
<th>Second episode, n = 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average age, y (range)</td>
<td>43.27 (8–88)</td>
<td>43.27 (8–88)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>4 (36.36)</td>
<td>4 (36.36)</td>
</tr>
<tr>
<td>F</td>
<td>7 (63.64)</td>
<td>7 (63.64)</td>
</tr>
<tr>
<td>Illness severity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>4 (36.36)</td>
<td>5 (45.45)</td>
</tr>
<tr>
<td>Mild</td>
<td>5 (45.45)</td>
<td>6 (54.55)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>2 (18.18)</td>
<td>0</td>
</tr>
<tr>
<td>Severe</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Care required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hospital admission</td>
<td>3 (27.27)</td>
<td>2 (18.18)</td>
</tr>
<tr>
<td>Hospital admission for COVID-19</td>
<td>2 (18.18)</td>
<td>0</td>
</tr>
<tr>
<td>Nosocomial transmission</td>
<td>1 (9.09)</td>
<td>0</td>
</tr>
<tr>
<td>ICU</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ICU for COVID-19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Underlying conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None of interest</td>
<td>7 (63.64)</td>
<td>7 (63.64)</td>
</tr>
<tr>
<td>High blood pressure</td>
<td>3 (27.27)</td>
<td>3 (27.27)</td>
</tr>
<tr>
<td>COPD</td>
<td>1 (9.09)</td>
<td>1 (9.09)</td>
</tr>
<tr>
<td>Asthma</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diabetes</td>
<td>2 (18.18)</td>
<td>2 (18.18)</td>
</tr>
<tr>
<td>Ictus</td>
<td>2 (18.18)</td>
<td>2 (18.18)</td>
</tr>
<tr>
<td>Overweight/obesity</td>
<td>1 (9.09)</td>
<td>1 (9.09)</td>
</tr>
<tr>
<td>Heart disease</td>
<td>2 (18.18)</td>
<td>2 (18.18)</td>
</tr>
<tr>
<td>Autoimmune</td>
<td>1 (9.09)</td>
<td>1 (9.09)</td>
</tr>
<tr>
<td>Oncological</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td>1 (9.09)</td>
<td>1 (9.09)</td>
</tr>
<tr>
<td>HIV infection</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AIDS</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pregnant</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Paxiloid use‡</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Use of dexamethasone</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Death</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vaccines and serology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete vaccination schedule</td>
<td>6 (54.55)</td>
<td>6 (54.55)</td>
</tr>
<tr>
<td>Incomplete vaccination schedule</td>
<td>1 (9.09)</td>
<td>1 (9.09)</td>
</tr>
<tr>
<td>Unvaccinated</td>
<td>4 (36.36)</td>
<td>4 (36.36)</td>
</tr>
<tr>
<td>Previous positive serology for SARS-CoV-2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Previous negative serology for SARS-CoV-2</td>
<td>2 (18.18)</td>
<td>2 (18.18)</td>
</tr>
<tr>
<td>Serology not available</td>
<td>9 (81.82)</td>
<td>9 (81.82)</td>
</tr>
</tbody>
</table>

*Values are no. (%) except as indicated. COPD, chronic obstructive pulmonary disease; ICU, intensive care unit.
†Illness severity was defined according to the following criteria: mild, general unrest, cough, diarrhea, cephalgia, fever, anosmia, myalgias, rhinorrhea; moderate, previous symptoms plus dyspnea, mild respiratory failure, or unilateral pneumonia; severe, previously listed symptoms plus bilateral pneumonia or severe respiratory failure.
‡Nirmatrelvir/ritonavir.

Discussion

Most studies focusing on COVID-19 reinfections followed the CDC guidelines during the first waves of the pandemic (8). Nevertheless, the guidelines need to be reviewed in the current epidemiologic context, which is substantially different from when most reinfection studies were conducted. One crucial
difference is the emergence of the Omicron variant at the end of 2021. Omicron is markedly different from previous variants, harboring a constellation of >55 mutations, 32 of which are in the spike, and 15 mutations map to the receptor-binding domain. Those mutations triggered alarm about the possibility of immune escape from the protection conferred by pre-Omicron variant infections. Those suspicions were confirmed, and Omicron was shown to be barely neutralized by serum from vaccinated or convalescent patients (9).

The lack of Omicron neutralization during in vitro exposure to serum from vaccinated or convalescent case-patients infected with earlier variants led to consideration that reinfections were likely to increase. A large study in South Africa demonstrated that risk assessments for reinfection with Omicron were higher than for pre-Omicron variants (7). Similarly, the 6.8% reinfection rate with Omicron in Marseille, France, was markedly higher than infection rates (0.2%–1.5%) in pre-Omicron pandemic waves (6).

If Omicron escapes the protection associated with infection from earlier variants, then higher rates of Omicron reinfection could be expected to occur within a shorter time after the first episode (i.e., early reinfections) than was seen with previous variants. This shorter reinfection time was noted in Italy (10), where Omicron reinfections occurred 25–60 days after the first COVID-19 episode involving the Delta variant, making rapid reinfection more likely.

Table 2. Clinical characteristics of patients with early SARS-CoV-2 reinfection or probable reinfection involving the same or different genomic lineages, Spain

<table>
<thead>
<tr>
<th>Pt no.</th>
<th>Age, y/sex</th>
<th>Underlying conditions</th>
<th>Illness severity, 1st/2nd episode†</th>
<th>COVID-19 care required, 1st/2nd episode</th>
<th>COVID-19 treatment</th>
<th>Vaccine schedule</th>
<th>PCR Ct, 1st/2nd episode</th>
<th>Reason for PCR, 1st/2nd episode</th>
<th>SARS-CoV-2 variant, 1st/2nd episode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinfections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>29/M</td>
<td>None</td>
<td>Mild/mild</td>
<td>N/N</td>
<td>N</td>
<td>N</td>
<td>37</td>
<td>24/22</td>
<td>Symp/symp</td>
</tr>
<tr>
<td>2</td>
<td>12/M</td>
<td>None</td>
<td>Mild/mild</td>
<td>N/N</td>
<td>N</td>
<td>N</td>
<td>34</td>
<td>30/19</td>
<td>Symp/symp</td>
</tr>
<tr>
<td>3</td>
<td>8/F</td>
<td>None</td>
<td>Asympt/mild</td>
<td>N/N</td>
<td>N</td>
<td>N</td>
<td>37</td>
<td>30/22</td>
<td>PE/symp</td>
</tr>
<tr>
<td>4</td>
<td>85/F</td>
<td>HBP, DM, obesity</td>
<td>Asympt/mild</td>
<td>N/N</td>
<td>N</td>
<td>Complete, Pfizer</td>
<td>41</td>
<td>32/25</td>
<td>PP/PE</td>
</tr>
<tr>
<td>5</td>
<td>27/F</td>
<td>None</td>
<td>Mild/asympt</td>
<td>N/N</td>
<td>N</td>
<td>Complete, AstraZeneca/Pfizer</td>
<td>42</td>
<td>22/32</td>
<td>PP/PP</td>
</tr>
<tr>
<td>6</td>
<td>28/F</td>
<td>None</td>
<td>Asympt/mild</td>
<td>N/N</td>
<td>N</td>
<td>Complete, Pfizer/Moderna Incomplete, Pfizer N</td>
<td>27</td>
<td>32/16</td>
<td>PE/symp</td>
</tr>
<tr>
<td>7</td>
<td>42/F</td>
<td>None</td>
<td>Mild/mild</td>
<td>N/N</td>
<td>N</td>
<td>N</td>
<td>41</td>
<td>32/20</td>
<td>Symp/symp</td>
</tr>
<tr>
<td>8</td>
<td>11/F</td>
<td>None</td>
<td>Asympt/ asympt</td>
<td>N/N</td>
<td>N</td>
<td>N</td>
<td>22</td>
<td>30/27</td>
<td>PP/PP</td>
</tr>
<tr>
<td>9</td>
<td>88/M</td>
<td>COPD, heart disease, CKD</td>
<td>Mod/asympt</td>
<td>Hospital admission</td>
<td>N</td>
<td>Steroids Complete, Pfizer</td>
<td>25</td>
<td>13/26</td>
<td>Symp/PP</td>
</tr>
<tr>
<td>10</td>
<td>63/F</td>
<td>HBP, systemic sclerosis</td>
<td>Mild/asympt</td>
<td>N/N</td>
<td>N</td>
<td>Incomplete, AstraZeneca</td>
<td>20</td>
<td>19/32</td>
<td>Symp/PP</td>
</tr>
<tr>
<td>11</td>
<td>83/M</td>
<td>HBP, DM, heart disease</td>
<td>Mod/asympt</td>
<td>Hospital admission</td>
<td>N</td>
<td>Steroids Complete, Pfizer</td>
<td>27</td>
<td>16/32</td>
<td>Symp/PP</td>
</tr>
<tr>
<td>Probable reinfections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>74/F</td>
<td>HBP, DM, heart disease</td>
<td>NA/NA</td>
<td>NA/NA</td>
<td>NA</td>
<td>Complete, Pfizer</td>
<td>21</td>
<td>31/16</td>
<td>NA/NA</td>
</tr>
<tr>
<td>24</td>
<td>81/M</td>
<td>HBP, DM, heart disease</td>
<td>Mod/asympt</td>
<td>Hospital admission</td>
<td>N</td>
<td>Steroids Complete, Pfizer</td>
<td>45</td>
<td>22/30</td>
<td>Symp/PP</td>
</tr>
<tr>
<td>25</td>
<td>64/F</td>
<td>HBP, CKD</td>
<td>Mild/asympt</td>
<td>N</td>
<td>N</td>
<td>Incomplete, Pfizer</td>
<td>26</td>
<td>32/30</td>
<td>Symp/symp</td>
</tr>
<tr>
<td>26</td>
<td>58/F</td>
<td>HBP, DM</td>
<td>Asympt/ asympt</td>
<td>N/N</td>
<td>N</td>
<td>Complete, Pfizer</td>
<td>24</td>
<td>29/30</td>
<td>PP/PP</td>
</tr>
</tbody>
</table>

*Asympt, asymptomatic; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; DM, diabetes mellitus; HBP, high blood pressure; ICU, intensive care unit; NA, not available; PP, pre-procedure; PE, postexposure; symp, symptoms.

†Severity of illness was defined according to the following criteria: mild, general unrest, cough, diarrhea, headache, fever, anosmia, dysgeusia, myalgia, rhinorrhea; Moderate, the above symptoms plus dyspnea, mild respiratory failure, or unilateral pneumonia; Severe, the above symptoms plus bilateral pneumonia or unilateral pneumonia with respiratory failure.
whereas reinfections involving Omicron in both sequential episodes (BA.1 to BA.2) were identified within the standard time range for reinfection, ≥90 days. Likewise, in Belgium, most early reinfections (<60 days) identified involved Omicron after a Delta infection (11). Other studies have also reported shorter times (24 days and 39 days) between episodes involving non-Omicron to Omicron reinfections (11,12).

To identify early non-Omicron followed by Omicron infections and classify variants as Omicron or non-Omicron, many previous studies relied on indirect inference methods, not WGS. In one study, spike gene target failure, which could be detected in Delta but not Omicron in the TaqPath RT-PCR, was used as a proxy marker to assign the variant (11). In another study, variants of concern (VOCs) were inferred by determining changes in the melting patterns of probes used in RT-PCR to target regions where marker SNVs are located (4). Although such inferences are useful and practicable, they can only assign reinfections involving certain VOCs, thereby missing possible early reinfections involving the same lineages or even sublineages, which can only be addressed by WGS characterization.

In our study, we tried to optimize the characterization of early reinfections in the Omicron era by performing WGS to cover all possible variants involved, narrowing the time range between episodes to <45 days to capture the earliest reinfections, and fine-tuning the analysis as much as possible by host genetic analysis to ensure that the 2 sequential specimens used for genomic viral comparison belonged to the same patient. During the study period, we detected a total of 66 (0.42%) cases with sequential RT-PCR–positive specimens in an interval of 20–45 days. That percentage was higher than the cases with sequential positives 45–90 days (8 cases, 0.05%) or >90 days (38 cases, 0.24%) apart.

One relevant finding was that among suspected cases of early reinfection, we confirmed early reinfection in 38% (11/29) of cases with specimens available for sequencing. In addition, the time interval between episodes was very short, 20–42 days. A recent systematic review on SARS-CoV-2 reinfections also determined a period of 23–57 days for reinfections (8), below the standard 90-day threshold, despite including data from studies published before May 22, 2022; data from the latest waves were also probably underrepresented. More recent criteria for considering reinfections enable reduction to ≥45 days between episodes for persons with symptoms, evidence of close contact with a confirmed case, and no evidence of other causes of infection (2). Our data indicate that even those updated guidelines would miss the early reinfections that we highlight, and these combined findings should lead to reconsideration of the more stringent and longer period of ≥90 days between episodes used in the CDC guidelines.

About one third (36.4%) of the early reinfections in our study involved sequential infection with non-Omicron followed by Omicron variants, which is consistent with previous descriptions of Omicron

Table 3. Clinical characteristics of case-patients with short-term SARS-CoV-2 persistence in study of early SARS-CoV-2 reinfection involving the same or different genomic lineages, Spain*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value, n = 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average age, y (range)</td>
<td>58.5 (1–94)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>4 (36.4)</td>
</tr>
<tr>
<td>F</td>
<td>7 (63.6)</td>
</tr>
<tr>
<td>Illness severity</td>
<td></td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>2 (18.2)</td>
</tr>
<tr>
<td>Mild</td>
<td>4 (36.4)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>2 (18.2)</td>
</tr>
<tr>
<td>Severe</td>
<td>2 (18.2)</td>
</tr>
<tr>
<td>Care required</td>
<td></td>
</tr>
<tr>
<td>Emergency</td>
<td>1 (9.1)</td>
</tr>
<tr>
<td>Hospital admission</td>
<td>6 (54.5)</td>
</tr>
<tr>
<td>Hospital admission for COVID-19</td>
<td>3 (27.3)</td>
</tr>
<tr>
<td>Nosocomial transmission</td>
<td>1 (9.1)</td>
</tr>
<tr>
<td>ICU</td>
<td>0</td>
</tr>
<tr>
<td>ICU for COVID-19</td>
<td>0</td>
</tr>
<tr>
<td>Underlying conditions</td>
<td></td>
</tr>
<tr>
<td>None of interest</td>
<td>3 (27.3)</td>
</tr>
<tr>
<td>High blood pressure</td>
<td>6 (54.5)</td>
</tr>
<tr>
<td>COPD</td>
<td>2 (18.2)</td>
</tr>
<tr>
<td>Asthma</td>
<td>1 (9.1)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0</td>
</tr>
<tr>
<td>Ictus</td>
<td>1 (9.1)</td>
</tr>
<tr>
<td>Overweight/obesity</td>
<td>6 (54.5)</td>
</tr>
<tr>
<td>Heart disease</td>
<td>5 (45.5)</td>
</tr>
<tr>
<td>Autoimmune</td>
<td>3 (27.3)</td>
</tr>
<tr>
<td>Oncological</td>
<td>2 (18.2)</td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td>2 (18.2)</td>
</tr>
<tr>
<td>HIV infection</td>
<td>1 (9.1)</td>
</tr>
<tr>
<td>AIDS</td>
<td>0</td>
</tr>
<tr>
<td>Pregnant</td>
<td>0</td>
</tr>
<tr>
<td>Paxlovid use†</td>
<td>1 (9.1)</td>
</tr>
<tr>
<td>Remdesivir use</td>
<td>3 (27.3)</td>
</tr>
<tr>
<td>Tocilizumab use</td>
<td>1 (9.1)</td>
</tr>
<tr>
<td>Dexamethasone use</td>
<td>4 (36.4)</td>
</tr>
<tr>
<td>Death</td>
<td>1 (9.1)</td>
</tr>
<tr>
<td>Vaccines and serology</td>
<td></td>
</tr>
<tr>
<td>Complete vaccination schedule</td>
<td>8 (72.7)</td>
</tr>
<tr>
<td>Incomplete vaccination schedule</td>
<td>1 (9.1)</td>
</tr>
<tr>
<td>Unvaccinated</td>
<td>2 (18.2)</td>
</tr>
<tr>
<td>Previous positive serology for SARS-CoV-2</td>
<td>3 (27.3)</td>
</tr>
<tr>
<td>Previous negative serology for SARS-CoV-2</td>
<td>2 (18.2)</td>
</tr>
<tr>
<td>Serology not available</td>
<td>6 (54.5)</td>
</tr>
</tbody>
</table>

*Values are no. (%) except as indicated. COPD, chronic obstructive pulmonary disease; ICU, intensive care unit.†Illness severity was defined according to the following criteria: mild, general unrest, cough, diarrhea, cephalgia, fever, anosmia, myalgias, rhinorrhea; moderate, previous symptoms plus dyspnea, mild respiratory failure, or unilateral pneumonia; severe, previously listed symptoms plus bilateral pneumonia or severe respiratory failure.‡Nirmatrelvir/ritonavir.
variants capable of causing immediate reinfection of patients newly recovered from COVID-19 (9). However, because of our nontargeted WGS-based design, we were able to identify not only early reinfections involving non-Omicron followed by Omicron variants but also reinfections with different Omicron lineages, different sublineages belonging to the same Omicron lineage, and even different strains from the same sublineage that were missed in other studies that used indirect inference methods. Our findings support reformulating the assumption that early infections are mainly restricted to a non-Omicron–Omicron alternation, because of the lack of cross-protection caused by major Omicron genetic differences.

Among the 4 probable early reinfections in our study, 3 cases involved 2 strains from the same sublineage. One case (case 23) constituted one of the shortest time intervals between episodes, 21 days apart, which contrasts with other studies that only found reinfections with the same variant for episodes ≥90 days apart. This probable early reinfection showed 8 SNVs between strains from the same lineage in the 2 separate episodes. In addition, several observations led us to reinforce its assignment as an early reinfection. First, the patient had 3 RT-PCR–negative specimens between the 2 RT-PCR–positive specimens 21 days apart, which sustains the hypothesis of early reinfection versus the alternative explanation of persistence. Second, the Ct value of the second specimen was 16, whereas the Ct of the first specimen was 31. We generally expect an increased Ct value, or reduced viral load, for a second specimen in cases of persistence, but a new reinfection should correspond to a lower Ct value, as noted in that case. Third, for persistence we expect a sequential acquisition of SNVs from the first strain during the persistence period. To the contrary, in that case, when we analyzed the distribution of the 8 SNVs identified between the 2 sequential specimens, 4 SNVs were only identified in the first specimen and another 4 were identified only in the second specimen, which is more consistent with the involvement of 2 independent strains, each with 4 proper SNVs.

The robustness of our assignation of early reinfections is supported by the precautionary consideration of the possibility of specimens belonging to different persons could be mishandled or misclassified, thereby leading to erroneous assignment as reinfections (13). However, we confirmed the hosts in all our reinfections by performing host analysis. Most of the literature focused on COVID-19 reinfections, with just a few exceptions (5,13,14), lacks host control.

We identified no common clinical pattern among early reinfection cases by sex, age, risk factors, or clinical conditions. Although we did not achieve strong statistical support because of our small sample size, we observed a tendency for the second episode in early reinfections to be equally or less severe than the previous episode. Of note, more than half (63.6%) of the reinfections were cases with no clinical history, which means that we need to broaden the circumstances for suspecting early reinfections.

In our analysis, despite the efforts to minimize the interference of persistence in case selection by ruling out cases with positive PCRs between episodes and patients with immunosuppression, we still identified 11 cases in which the same strain was found in the 2 sequential episodes, even though 27.3% of those cases had no clinical history to justify persistence. Although those were cases of short-term persistence, our findings could help expand clinical patterns to consider unexpected persistence, which is different from long-term persistence that occurs mainly in immunosuppressed persons (15,16). Despite the short-term nature of such persistence, the findings could still be relevant, depending on clinical interpretations and isolation measures.

Our data fill a gap in observations of the time range between sequential COVID-19 episodes that has generally been missing from the literature. In addition, our study period covered the 6th, most recent, COVID-19 wave, to provide new information on reinfections in a scenario in which SARS-CoV-2 VOCs are emerging and the population has extensive vaccine coverage. To reinforce the robustness of our findings, we also provided additional analytical rigor and refinement by including host genetic analysis in the assignation of reinfection.

In conclusion, our study provides new data on early reinfections involving Omicron and other variants. These findings shorten the time between episodes in which reinfection can occur and broaden the clinical profile for reinfection beyond unvaccinated young persons. We showed that early reinfections are not exclusively associated with the impaired protection expected of a non-Omicron to Omicron sequence but also can involve very similar strains. Because early reinfection can occur in various clinical and epidemiologic circumstances, guidelines for assigning reinfection to only ≥90 days between sequential SARS-CoV-2–positive PCRs should be reevaluated.

Additional members of Gregorio Marañón Microbiology-ID COVID 19 Study Group: Teresa Aldámiz, Ana Álvarez-Uría, Elena Bermúdez, Emilio Bouza, Sergio Buenestado-Serrano, Almudena Burillo, Raquel Carrillo, Emilia...
Cercenado, Alejandro Cobos, Cristina Diez, Pilar Escribano, Chiara Fanciulli, Alicia Galar, Mª Dolores García, Paloma Gijón, Helmut Guillén, Jesús Guinea, Álvaro Iriygen, Martha Kestler, Juan Carlos López, Marina Machado, Mercedes Marín, Pablo Martín-Rabadán, Pedro Montilla, Belén Padilla, María Palomo, María Jesús Pérez-Granda, Leire Pérez, Elena Reigadas, Cristina Rincón, Belén Rodríguez, Sara Rodríguez, Adriana Rojas, María Jesús Ruiz-Serrano, Carlos Sánchez, Mar Sánchez, Julia Serrano, Francisco Tejerina, Maricela Valerio, Mª, Lara Vesperinas, Teresa Vicente, and Sofia de la Villa.

Acknowledgments
We thank the Genomics Unit of Gregorio Marañon University Hospital for support in the sequencing runs. We thank Janet Dawson for her help in editing and proofreading.

This work was supported by Instituto de Salud Carlos III (project no. PI21/01823) together with the FEDER fund “A way of making Europe,” and by the European Centre for Disease Prevention and Control (project no. 2021/PHF/23776), and Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. Ms. Rodríguez-Grande is a PhD candidate at Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.

About the Author
Ms. Rodríguez-Grande is a PhD candidate at Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. Her research interests include molecular and genomic epidemiology of tuberculosis and SARS-CoV-2.

References

Address for correspondence: Laura Pérez-Lago or Darío García de Viedma; Hospital General Universitario Gregorio Marañón, Dr. Esquerdo 46, Madrid 28007, Spain; email: lperezg00@gmail.com or dgviedma2@gmail.com

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 29, No. 6, June 2023

1161
Until February 2022, Western Australia (WA), Australia, successfully delayed sustained transmission of SARS-CoV-2 by using rigorous international quarantine and state border entry restrictions, supported by comprehensive local outbreak control measures when breaches occurred. Data corroborating no substantive community transmission of SARS-CoV-2 in WA until February 2022 include the incidence of reported laboratory-confirmed SARS-CoV-2 infections (Figure 1) and serologic testing of blood donors. By the time WA lifted restrictions and experienced the first wave of SARS-CoV-2 infection, >90% of the state’s residents ≥16 years of age had received ≥2 doses of a SARS-CoV-2 vaccine (1). The WA public health laboratory, PathWest Laboratory, determined which SARS-CoV-2 variants were circulating in the state during the first pandemic wave. During the study period (February 1–May 31, 2022), all 2,695 specimens for which lineage could be assigned were the Omicron variant, of which 2,668 (99%) were designated as BA.1 or BA.2 sublineage (Figure 2).

This unique pandemic experience enabled real-world assessment of vaccine effectiveness (VE) without potential bias caused by population-level background immunity resulting from prior infection. With this study, we assessed VE for mRNA vaccines and viral-vectored SARS-CoV-2 vaccines against laboratory-confirmed infection and severe illness caused exclusively by the Omicron variant in a SARS-CoV-2-naive population. This work was approved by the WA Department of Health Human Research Ethics Committee (RGS0000005522).

Methods

Study Design
We used a test-negative case-control design to compare persons ≥16 years of age who had positive PCR SARS-CoV-2 test results with matched controls who were SARS-CoV-2 negative. We compared the odds of vaccination among those with PCR-confirmed SARS-CoV-2 infection or severe COVID-19 with the odds of vaccination among matched PCR-confirmed negative controls.

Data Linkage
In early 2020, WA created a statewide linked data repository to collect information essential for public health
management of the pandemic, including SARS-CoV-2 vaccinations that began in February 2021 (2). In brief, COVID-19 vaccination data from the Australian Immunisation Register (AIR; Appendix, https://wwwnc.cdc.gov/EID/article/29/6/23-0131-App1.pdf) were linked to existing WA Department of Health data collections, including statewide hospital admission data, mortality data, and SARS-CoV-2 pathology test results.

Ascertainment of Infection

All persons with ≥1 SARS-CoV-2 PCR tests performed within the study period were eligible for inclusion. We included in the analysis only a person’s first positive or negative PCR test result during the study period. Persons who initially tested negative but subsequently tested positive during the study period were removed from the negative test pool and reclassified as a case-patient (i.e., each person appeared once in the dataset, as either a case-patient or a control). Because the reason for SARS-CoV-2 testing was not recorded in the data repository, we excluded persons with >20 test results reported during January 2020–May 2022 because those persons were probably subjected to regular asymptomatic screening for employment purposes. We also excluded persons with only SARS-CoV-2 rapid antigen test (RAT) results because negative RAT results were not required to be reported and compliance with mandatory reporting of positive RAT results is unknown.

Vaccination Data

For this analysis, we established vaccination status at the time of the person’s eligible SARS-CoV-2 PCR test result by linking the person to their respective SARS-CoV-2 immunization history in AIR. We included in our analysis persons who received any dose of vaccine ≥14 days before the eligible PCR result and excluded persons who had received a vaccine dose <14 days before the eligible PCR result. We defined unvaccinated persons as those who had no record of receiving a SARS-CoV-2 vaccine dose before their linked PCR test result.

The vaccines analyzed were the adenovirus-vectored vaccine produced by AstraZeneca (ChAdOx1, https://www.astrazeneca.com) and the mRNA vaccines produced by Pfizer-BioNTech (BNT162b2, https://www.pfizer.com) and Moderna (mRNA-1273, https://www.modernatx.com). We defined a homologous 3-dose vaccination schedule as 2 doses of an mRNA vaccine and an mRNA booster dose, regardless of brand/manufacturer, and a heterologous 3-dose vaccination schedule as 2 doses of ChAdOx1 followed by an mRNA booster dose, regardless of brand/manufacturer. Matched pairs in which the case-patient or control had received a protein-based SARS-CoV-2 vaccine, a ChAdOx1 booster dose, or a mixed 2-dose primary schedule (ChAdOx1 and an mRNA vaccine) were few; we excluded those pairs from subanalysis examining heterologous and homologous vaccine combinations.

Hospitalization and Mortality Data

During the study period, we extracted data from the WA Hospital Morbidity Data Collection (3) and linked them to all SARS-CoV-2 test results for specimens collected. We defined a SARS-CoV-2 hospitalization as ≥1 inpatient admissions 0–7 days after the date of a positive PCR result. To reduce potential bias
that might be introduced through routine preadmission SARS-CoV-2 screening, we excluded admissions for patients indicated by the specialty of the admitting clinician to be unlikely to have been hospitalized for treatment of COVID-19 and for patients admitted for boarding purposes (Table 1). We also performed supplementary sensitivity analyses, which included all hospital admissions regardless of admitting clinician specialty or those defined as a COVID-19 hospitalization on the basis of select codes from the International Statistical Classification of Diseases and Related Health Problems, Tenth Revision, Australian Modification (ICD-10-AM).

The WA Registry of Births, Deaths and Marriages (https://www.wa.gov.au), the mandatory repository for death reports in WA, provided mortality data. We defined SARS-CoV-2-associated deaths as death from any cause 0–30 days after an eligible PCR test and included those cases in the analysis. We defined severe disease as SARS-CoV-2 hospitalization, an associated death, or both.

To identify pre-existing medical conditions that could potentially increase a person’s risk for SARS-CoV-2 infection or severe disease, we reviewed any hospital admissions in the 24 months before their eligible PCR test. We selected 14 diagnostic categories and the ICD-10-AM codes used to define them, based on previous literature (Table 2) (4). If a person had any of the ICD-10-AM codes listed as either a principal or secondary diagnosis for an admission in the 24 months before their eligible PCR test, they were assigned a score of 1 for the corresponding diagnostic category. We then summed the total number of unique diagnostic categories assigned a score of 1 for each person, yielding a score of 0–14 (0 if there had been no admissions or only admissions that did not include any of the selected ICD-10-AM codes). We used this aggregate comorbidity score as a proxy index of underlying conditions and controlled for it in the analyses.

Statistical Analyses

We assessed VE by using conditional logistic regression of matched case–control pairs. We calculated adjusted odds ratios (aORs) by using the clogistic function in the Epi package in R version 4.1.0 (The R Foundation for Statistical Computing, https://www.r-project.org). Vaccine effectiveness was defined as $(1 - \text{aOR}) \times 100$ and is presented with 95% CIs. We assessed differences between odds ratios by calculating the absolute difference between the log odds and the SEs of the difference. We calculated p values by using z-scores; to account for multiple testing, we considered p<0.01 significant.

Case-patients and controls were matched on week of eligible PCR test, age group (16–19 years, then 10-year intervals thereafter), sex, Aboriginality (defined as Aboriginal and/or Torres Strait Islander ancestry), Index of Relative Socioeconomic Advantage and Disadvantage decile (5) (a score of 1 demonstrating relatively greater disadvantage and a score of 10 indicating a relative lack of disadvantage), and comorbidity score using by the MatchIt package (6) on a 1:1 basis. We randomly sorted all eligible case-patients and controls by using the sample function before matching.

We calculated effectiveness by comparing unvaccinated persons with those who had received either 2 or 3 doses of vaccine. We also performed subanalyses to examine VE for breakthrough infection by time since last vaccine dose and between the homologous and heterologous 3-dose vaccination schedule. Analysis of VE against severe disease included positive case-patients (by PCR) with severe disease.
who, along with their matched controls, received 2 or 3 vaccine doses.

Results

A total of 1,306,453 PCR tests were reported for specimens collected during February 1, 2022–May 31, 2022, from which 188,950 positive case-patients and 188,950 negative matched controls were eligible for inclusion in the analysis (Table 3; Figure 3). Of the 377,900 study participants, 30,420 (8%) were unvaccinated at the time of testing, 84,237 (22%) had received 2 doses, and 263,243 (70%) had received 3 doses.

VE against Breakthrough Infection of Any Severity

Overall, in adjusted analyses comparing those who were unvaccinated with those who had received 2 vaccine doses, VE for preventing PCR-confirmed infection of any severity was 24.9% (95% CI 21.2%–28.4%), increasing to 42.0% (95% CI 40.2%–43.6%) for persons who had received 3 doses (Table 4). Breakthrough infection of any severity waned notably after a booster dose. For those who had received a booster dose 15–29 days before testing, VE was 70.7% (95% CI 67.4%–73.7%) but fell to 13.5% (95% CI 5.6%–20.8%) for those whose booster was administered >120 days before testing (Figure 4). The median time between the most recent vaccine dose and PCR test date was 21 days longer for persons who received 2 doses (101 days) than for those who received 3 doses (80 days); given the waning immunity after 3 doses, it is possible that increased time since vaccination contributed to lower VE estimates for 2 versus 3 doses.

VE against Severe Disease

Hospitalizations and deaths in the study cohort were rare. Among the 188,950 matched case-patients, there were 264 deaths within 30 days of testing and 1,456 hospital admissions within 7 days, excluding persons admitted under clinician specialties (Table 1).

Overall, VE against severe disease for 2 doses of vaccine was 41.9% (95% CI 34.8%–48.5%) and increased to 81.7% (95% CI 73.9%–87.2%) for 3 doses (Table 5). The number of case-patients with severe disease in individual time strata was insufficient to permit meaningful VE estimates to be generated by time since last vaccination.

VE for Homologous versus Heterologous 3-Dose Series

Our analysis of VE by different vaccine series was restricted to 100,142 case-patients who received either a homologous or heterologous series of 3-dose vaccination (Table 6), as defined previously, and their underlying conditions were categorized using ICD-10-AM codes (Table 2).

Table 1. Clinician specialties for which hospital admissions were excluded from the analysis of SARS-CoV-2 vaccine effectiveness, Western Australia, Australia, February 1, 2022–May 31, 2022

<table>
<thead>
<tr>
<th>Specialty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child psychiatry/psychology</td>
</tr>
<tr>
<td>In vitro fertilization</td>
</tr>
<tr>
<td>Gynecology oncologist</td>
</tr>
<tr>
<td>Oncology</td>
</tr>
<tr>
<td>Psychogeriatrics</td>
</tr>
<tr>
<td>Psychiatry</td>
</tr>
<tr>
<td>Radiology</td>
</tr>
<tr>
<td>Nephrology/dialysis</td>
</tr>
<tr>
<td>Obstetrics</td>
</tr>
<tr>
<td>Burns</td>
</tr>
<tr>
<td>Dental surgery</td>
</tr>
<tr>
<td>Gynecology</td>
</tr>
<tr>
<td>Ophthalmology</td>
</tr>
<tr>
<td>Oral surgery</td>
</tr>
<tr>
<td>Orthopedics</td>
</tr>
<tr>
<td>Plastic and reconstructive surgery</td>
</tr>
<tr>
<td>Renal transplant surgery</td>
</tr>
<tr>
<td>Spinal surgery</td>
</tr>
<tr>
<td>Radiation oncology</td>
</tr>
<tr>
<td>General practitioner obstetrics</td>
</tr>
</tbody>
</table>

Table 2. ICD-10-AM hospital admission codes used to identify and categorize underlying conditions and construct a comorbidity score for each person included in a study of SARS-CoV-2 vaccine effectiveness, Western Australia, Australia, 2022*

<table>
<thead>
<tr>
<th>Underlying condition category</th>
<th>ICD-10-AM codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory disease</td>
<td>J40–J47; J81; J84; E84</td>
</tr>
<tr>
<td>Diabetes</td>
<td>E10–E14</td>
</tr>
<tr>
<td>Anemia/splenic issues</td>
<td>D50–D58; D60–D63; D73</td>
</tr>
<tr>
<td>Down syndrome</td>
<td>Q90</td>
</tr>
<tr>
<td>Cancer</td>
<td>C00–C09 excl C44</td>
</tr>
<tr>
<td>Kidney disease</td>
<td>N18–N19; N00–N16; N25–N29</td>
</tr>
<tr>
<td>Immunocompromise</td>
<td>D80–D89; B24</td>
</tr>
<tr>
<td>Dementia</td>
<td>F00–F03; G30</td>
</tr>
<tr>
<td>Cardiac disease incl hypertension and</td>
<td>I20–I28; I05–I10; I47–I50</td>
</tr>
<tr>
<td>arrhythmia</td>
<td>G45; H34; I60–I69</td>
</tr>
<tr>
<td>Stroke/TIA</td>
<td>K71–K77</td>
</tr>
<tr>
<td>Liver disease</td>
<td>E66</td>
</tr>
<tr>
<td>Obesity</td>
<td>M05–M06</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>K50–K51</td>
</tr>
</tbody>
</table>

match controls. Persons who were vaccinated according to the heterologous versus homologous schedule were older (median age at test 65 vs. 38 years), more likely to be male, and more likely to have >1 comorbidity (Table 7).

VE was higher, although not significantly, up to 60 days after administration of the booster dose among persons who received the homologous or heterologous 3-dose vaccination series. However, VE was significantly higher among those who received a heterologous 3-dose vaccination series 60 days through <120 days of follow-up (Figure 5).

Restricting the samples to those <60 years of age to account for differences in behavior that may contribute to differential breakthrough infection rates yielded similar results. We observed the same pattern of waning immunity in the homologous and the heterologous groups, and protection was significantly higher from 60 to <120 days of follow-up (data not shown) for those on the heterologous schedule.

Consistent with the results for breakthrough infection, VE against severe disease was ≈10% higher for those on the heterologous schedule (85.7%, 95% CI 73.1%-92.4%) than on the homologous mRNA schedule (75.8%, 95% CI 61.5%-84.8%), although that difference was not statistically significant in the context of a relatively small number of severe outcomes (p = 0.19). Low numbers of severe outcomes also precluded further analysis of effectiveness by time since vaccination.

Sensitivity Analyses

We performed sensitivity analyses to explore the potential effects of measurement bias, including the effect of using different options for defining disease severity and selecting covariates for matching case-patients to controls. We found no statistically significant effect on VE for severe disease when we restricted hospitalizations to those likely to be for COVID-19 by selecting specific ICD-10-AM codes used for the primary diagnosis instead of the specialty of the admitting clinician (point estimates for VE after 3 doses changed from 79.2% when restricted by primary diagnosis instead of the specialty of the admitting clinician to 81.7% when restricted by admitting clinician specialty). In addition, we explored using

| Table 3. Demographic characteristics of matched samples for analysis of SARS-CoV-2 vaccine effectiveness, Western Australia, Australia, January 1–May 31, 2022* |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Characteristic | Unvaccinated, no. (%), n = 30,420 | Two doses, no. (%), n = 84,237 | Three doses, no. (%), n = 283,243 | Total, no. (%), n = 377,900 |
| Age group, y | | | | |
| 16–19 | 1,470 (4.8) | 13,645 (16.2) | 14,451 (5.5) | 29,566 (7.8) |
| 20–29 | 9,851 (32.4) | 28,569 (33.9) | 50,886 (19.3) | 89,306 (23.6) |
| 30–39 | 9,083 (29.9) | 20,395 (24.2) | 58,914 (22.4) | 88,392 (23.4) |
| 40–49 | 4,294 (14.1) | 11,672 (13.9) | 58,712 (22.3) | 74,678 (19.8) |
| 50–59 | 2,519 (8.3) | 5,709 (6.8) | 42,446 (16.1) | 50,674 (13.4) |
| 60–69 | 1,646 (5.4) | 2,517 (3.0) | 21,903 (8.3) | 26,066 (6.9) |
| 70–79 | 849 (2.8) | 932 (1.1) | 9,577 (3.6) | 11,358 (3.0) |
| >80 | 708 (2.3) | 798 (0.9) | 6,354 (2.4) | 7,860 (2.1) |
| Sex | | | | |
| F | 14,180 (46.6) | 40,940 (48.6) | 144,180 (54.8) | 199,300 (52.7) |
| M | 15,972 (52.5) | 43,143 (51.2) | 118,699 (45.1) | 177,814 (47.1) |
| Unspecified | 268 (0.9) | 154 (0.2) | 364 (0.1) | 786 (0.2) |
| Aboriginal Status | | | | |
| Non-Aboriginal | 29,367 (96.5) | 80,418 (95.5) | 259,701 (98.7) | 369,486 (97.8) |
| Aboriginal | 1,053 (3.5) | 3,819 (4.5) | 3,542 (1.3) | 8,414 (2.2) |
| No. comorbidities | | | | |
| 0 | 29,269 (96.2) | 80,583 (95.7) | 246,896 (93.8) | 356,748 (94.4) |
| 1 | 221 (0.7) | 852 (1.0) | 3,929 (1.5) | 5,002 (1.3) |
| 2 | 596 (2.0) | 2,046 (2.4) | 9,008 (3.4) | 11,650 (3.1) |
| 3 | 46 (0.2) | 120 (0.1) | 778 (0.3) | 944 (0.2) |
| 4 | 195 (0.6) | 404 (0.5) | 1,815 (0.7) | 2,414 (0.6) |
| >5 | 93 (0.3) | 229 (0.3) | 817 (0.3) | 1,142 (0.3) |
| IRSAD | | | | |
| 1 | 345 (1.1) | 390 (0.5) | 515 (0.2) | 1,250 (0.3) |
| 2 | 2,090 (6.9) | 5,893 (7.0) | 12,425 (4.7) | 20,408 (5.4) |
| 3 | 658 (2.2) | 2,242 (2.7) | 5,636 (2.1) | 8,536 (2.3) |
| 4 | 2,893 (9.5) | 9,375 (11.1) | 24,962 (9.5) | 37,230 (9.9) |
| 5 | 2,649 (8.7) | 9,784 (11.6) | 26,867 (10.2) | 39,300 (10.4) |
| 6 | 3,446 (11.3) | 9,734 (11.6) | 25,666 (9.8) | 38,846 (10.3) |
| 7 | 3,296 (10.8) | 10,479 (12.4) | 28,123 (10.7) | 41,898 (11.1) |
| 8 | 3,967 (13.0) | 13,371 (15.9) | 39,974 (15.2) | 57,312 (15.2) |
| 9 | 6,186 (20.3) | 13,719 (16.3) | 51,589 (19.6) | 71,494 (18.9) |
| 10 | 4,890 (16.1) | 9,250 (11.0) | 47,486 (18.0) | 61,626 (16.3) |

*IRSAD, Index of Relative Socioeconomic Advantage and Disadvantage.
different time frames to capture hospitalizations after a positive PCR, specifically 0–14, 2–14, and 2–9 days. VE estimates for severe disease did not differ significantly when we varied the window for hospitalization from 0–7 days to these alternate time frames.

Last, we re-ran the analyses while individually and sequentially adding covariates of interest to the matching algorithm to explore potential effects of confounding. Matching by age group and week of PCR test was sufficient to produce stable VE estimates that were statistically similar to those observed when matching on the full set of covariates for infection of any severity and severe disease.

Discussion

The ability of WA to limit the introduction of SARS-CoV-2 and prevent sustained local transmission 2 years into the pandemic provides a rare opportunity to assess VE in a population without potential confounding from prior asymptomatic or undiagnosed infection, factors that could affect VE assessments performed in almost all other settings. An assessment of VE in Sydney, New South Wales, Australia, also cited low rates of SARS-CoV-2 background infections in its study population, but WA and metropolitan Sydney have had different pandemic experiences (4). Cohort follow-up for the New South Wales study

Table 4. Vaccine effectiveness against breakthrough SARS-CoV-2 infection of any severity, 2 or 3 doses versus unvaccinated, Western Australia, Australia, February 1, 2022–May 31, 2022*

<table>
<thead>
<tr>
<th>Case-patients</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccinated</td>
<td>Unvaccinated</td>
</tr>
<tr>
<td>16,306</td>
<td>6,060</td>
</tr>
<tr>
<td>103,741</td>
<td>14,299</td>
</tr>
</tbody>
</table>

*Case-patient (SARS-CoV-2 positive) and control (SARS-CoV-2 negative) pairs (infection status determined by PCR) matched by age group, sex, Aboriginality, testing week, Index of Relative Socioeconomic Advantage and Disadvantage decile and comorbidities.
†Vaccine effectiveness = 1 – adjusted odds ratio (ascertained by using conditional logistic regression of matched pairs).
began in January 2022, by which time 157,880 SARS-CoV-2 infections had been reported in the Sydney metropolitan area, largely the result of a protracted outbreak of the Delta variant in 2021 (7). Given that an estimated 40% of all SARS-CoV-2 infections are thought to be asymptomatic (8) and that the degree of underascertainment of those with mild illness who do not seek testing is unknown, it is difficult to quantify with certainty the extent of prior SARS-CoV-2 infection in the Sydney cohort. In contrast, the very low number of locally acquired infections identified before mid-February 2022 in WA (in the context of high rates of testing and robust contact tracing) and the extremely low rate of nucleocapsid antibody positivity among WA blood donor specimens collected during late February–early March 2022 (9) provide convincing evidence that prior SARS-CoV-2 infection was close to negligible among the population used for our analysis.

Most of our key findings are consistent with those from previous studies (10–12). First, overall VE against breakthrough infection of any severity across the full study period for persons who received 2 doses of vaccine was low (24.9% vs. 42.0% for those who received 3 doses). Subanalyses demonstrated that for those who received a booster dose, VE against any infection was near 71% at 15–29 days after vaccination but declined to <14% by 120 days.

Second, protection against severe disease after 3 vaccine doses was much higher than that after 2 doses; overall VE was estimated to be >80%. This finding is relevant because there has been concern that the level of protection afforded by vaccines based on the spike protein of the ancestral strain would be inadequate against Omicron variants, necessitating development of new bivalent vaccines designed to enhance the immune response to Omicron-specific epitopes (10). This study showed considerable protection from monovalent vaccines against clinically severe illness during an exclusively Omicron wave among a population with negligible background immunity from exposure to the ancestral lineage or previous variants of concern. Our study definitively demonstrates that ancestral strain vaccines still provide substantial protection against severe disease caused by newer variants among a population free from potential confounding of previous immunity conferred by natural infection with an earlier variant.

<table>
<thead>
<tr>
<th>Vaccination status</th>
<th>Case-patients, hospital admission or death</th>
<th>Controls</th>
<th>Vaccine effectiveness, % (95% CI)†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vaccinated</td>
<td>Unvaccinated</td>
<td>Vaccinated</td>
</tr>
<tr>
<td>Two doses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three doses</td>
<td>131</td>
<td>69</td>
<td>148</td>
</tr>
</tbody>
</table>

*Severe disease was defined as hospitalization for SARS-CoV-2 infection with 7 d of positive SARS-CoV-2 PCR results and/or death from any cause.
†Vaccine effectiveness calculated with conditional logistic regression by using case–control pairs matched by week of testing, age group, sex, Aboriginality, Index of Relative Socioeconomic Advantage and Disadvantage, and comorbidity score.
Vaccine-derived cross-protection observed in our setting may have implications for SARS-CoV-2 vaccine science going forward, specifically for assessing the need to continually design new variant-specific vaccines as the virus evolves. Although greater follow-up time is needed, these data support the hypothesis that vaccine effectiveness against severe disease caused by Omicron is likely to be substantially higher than the estimates against symptomatic disease, as has been observed for previous variants of concern (13–15).

We observed that a heterologous schedule consisting of 2 primary doses of ChAdOx1 followed by a booster dose of an mRNA vaccine provided significantly greater protection against infection >60 days after the last dose, compared with a homologous 3-dose schedule.

Table 6. Dosing schedule for case-patients and controls included in the heterologous versus homologous 3-dose vaccination schedule analysis of SARS-CoV-2 vaccine effectiveness, Western Australia, Australia, February 1, 2022–May 31, 2022*

<table>
<thead>
<tr>
<th>Dose 1</th>
<th>Dose 2</th>
<th>Dose 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homologous 3-dose vaccination schedules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNT162b2 mRNA</td>
<td>BNT162b2 mRNA</td>
<td>BNT162b2 mRNA</td>
</tr>
<tr>
<td>BNT162b2 mRNA</td>
<td>mRNA-1273</td>
<td>mRNA-1273</td>
</tr>
<tr>
<td>mRNA-1273</td>
<td>mRNA-1273</td>
<td>mRNA-1273</td>
</tr>
<tr>
<td>mRNA-1273</td>
<td>mRNA-1273</td>
<td>BNT162b2 mRNA</td>
</tr>
<tr>
<td>mRNA-1273</td>
<td>mRNA-1273</td>
<td>mRNA-1273</td>
</tr>
<tr>
<td>mRNA-1273</td>
<td>BNT162b2 mRNA</td>
<td>mRNA-1273</td>
</tr>
<tr>
<td>BNT162b2 mRNA</td>
<td>mRNA-1273</td>
<td>mRNA-1273</td>
</tr>
<tr>
<td>BNT162b2 mRNA</td>
<td>mRNA-1273</td>
<td>BNT162b2 mRNA</td>
</tr>
</tbody>
</table>

Heterologous 3-dose vaccination schedules

<table>
<thead>
<tr>
<th>ChAdOx1</th>
<th>ChAdOx1</th>
<th>BNT162b2 mRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>mRNA-1273</td>
<td>mRNA-1273</td>
<td>mRNA-1273</td>
</tr>
</tbody>
</table>

*BNT162b2, Pfizer-BioNTech (https://www.pfizer.com); ChAdOx1, AstraZeneca (https://www.astrazeneca.com); mRNA-1273, Moderna (https://www.modernatx.com).

Table 7. Demographic characteristics of matched pairs for analysis for homologous versus heterologous 3-dose schedule SARS-CoV-2 vaccine effectiveness subanalysis, Western Australia, Australia, February 1, 2022–May 31, 2022

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Homologous schedule, no. (%)</th>
<th>Heterologous schedule, no. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age group, y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16–19</td>
<td>8,409 (5.4)</td>
<td>0 (0.2)</td>
</tr>
<tr>
<td>20–29</td>
<td>33,199 (23.5)</td>
<td>249 (6.8)</td>
</tr>
<tr>
<td>30–39</td>
<td>42,223 (29.0)</td>
<td>268 (6.0)</td>
</tr>
<tr>
<td>40–49</td>
<td>44,699 (28.4)</td>
<td>291 (2.7)</td>
</tr>
<tr>
<td>50–59</td>
<td>17,565 (11.3)</td>
<td>4,449 (16.8)</td>
</tr>
<tr>
<td>60–69</td>
<td>1,442 (1.2)</td>
<td>10,897 (38.4)</td>
</tr>
<tr>
<td>70–79</td>
<td>370 (0.3)</td>
<td>5,923 (21.0)</td>
</tr>
<tr>
<td>>80</td>
<td>1,244 (0.9)</td>
<td>2,109 (8.0)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>84,961 (55.8)</td>
<td>11,458 (46.2)</td>
</tr>
<tr>
<td>M</td>
<td>63,950 (43.9)</td>
<td>12,706 (53.4)</td>
</tr>
<tr>
<td>Aboriginal Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Aboriginal</td>
<td>147,475 (98.7)</td>
<td>24,069 (99.2)</td>
</tr>
<tr>
<td>Aboriginal</td>
<td>1,676 (1.3)</td>
<td>117 (0.8)</td>
</tr>
<tr>
<td>No. comorbidities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>143,910 (96.6)</td>
<td>19,940 (85.0)</td>
</tr>
<tr>
<td>1</td>
<td>1,656 (1.0)</td>
<td>780 (2.7)</td>
</tr>
<tr>
<td>2</td>
<td>2,997 (1.9)</td>
<td>2,284 (8.0)</td>
</tr>
<tr>
<td>3</td>
<td>153 (0.1)</td>
<td>258 (0.9)</td>
</tr>
<tr>
<td>4</td>
<td>337 (0.2)</td>
<td>624 (2.3)</td>
</tr>
<tr>
<td>>5</td>
<td>98 (0.1)</td>
<td>300 (1.1)</td>
</tr>
<tr>
<td>IRSAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>306 (0.3)</td>
<td>31 (0.5)</td>
</tr>
<tr>
<td>2</td>
<td>6,641 (4.7)</td>
<td>1,024 (4.7)</td>
</tr>
<tr>
<td>3</td>
<td>3,074 (2.1)</td>
<td>561 (2.3)</td>
</tr>
<tr>
<td>4</td>
<td>12,710 (8.6)</td>
<td>2,649 (10.7)</td>
</tr>
<tr>
<td>5</td>
<td>14,401 (9.4)</td>
<td>2,756 (10.5)</td>
</tr>
<tr>
<td>6</td>
<td>14,992 (10.2)</td>
<td>1,846 (8.4)</td>
</tr>
<tr>
<td>7</td>
<td>15,669 (10.5)</td>
<td>2,268 (9.5)</td>
</tr>
<tr>
<td>8</td>
<td>23,381 (15.4)</td>
<td>2,825 (11.7)</td>
</tr>
<tr>
<td>9</td>
<td>30,236 (20.4)</td>
<td>4,827 (20.4)</td>
</tr>
<tr>
<td>10</td>
<td>27,741 (18.5)</td>
<td>5,399 (21.4)</td>
</tr>
</tbody>
</table>

*IRSAD, Index of Relative Socioeconomic Advantage and Disadvantage.
series of mRNA-based vaccines (mostly 3 doses of BNT162b2). This finding is unlikely to be explained by recipients of the heterologous vaccine schedule being inherently less prone to COVID-19 because after the association between ChAdOx1 and thrombotic events was identified, ChAdOx1 was almost entirely administered to persons >60 years of age across Australia. However, in accordance with guidance in Australia about brand-based differences for recommended first- and second-dose intervals, the median time between 2 doses of an mRNA primary series in our cohort was 27 days; for a ChAdOx1 primary series, it was 84 days. It is therefore possible that the longer interval between doses contributed to the more durable protection we observed with the heterologous schedule.

A study of Omicron infections in England found that VE against symptomatic illness was similar between those who received 2 doses of either ChAdOx1 or BNT162b2 followed by a booster dose of BNT162b2, specifically 62.4% and 67.2% given 2–4 weeks after the booster, falling to 39.6% and 45.7%, respectively, after ≥10 weeks (10). One key difference between our setting and that of the study in England is that in late 2020, the United Kingdom began recommending up to 12 weeks between the first and second doses of BNT162b2, a practice uncommon in the WA cohort, and a longer interval between BNT162b2 doses has been shown to enhance immunogenicity (13).

Alternatively, the superior performance of the heterologous schedule in protecting against Omicron infection in WA may be a real phenomenon, unmasked without interference from substantial levels of background immunity caused by prior infections with earlier variants. The enhanced immune response, and in some instances clinical protection against non-Omicron variants, produced by heterologous vaccination schedules has been documented in a variety of settings (14,15).

Among the limitations of our study, our analysis was restricted to using PCR test results from licensed laboratories to determine a person’s status as a case-patient or control and excluded self-administered RATs reported by the general public. This approach was necessary because RAT results were not systematically linked to other datasets used in this analysis. However, even if possible, including RAT results in our setting would have been methodically undesirable because reporting of negative RAT results is not mandatory and the degree of underreporting of positive RAT results by the public is not quantifiable. Furthermore, because there may be relevant differences between those who seek PCR testing and those who choose to self-administer a RAT, including only positive RAT results would have the potential to introduce significant bias when using a VE study design that explicitly relies on matching test-positive case-patients to similar test-negative controls.

Another limitation is that although we attempted to control for relevant confounders, we were limited by the information available in the data repository, and the potential for residual confounding remains. For example, without knowing the reasons for obtaining a PCR test, we could not exclude tests performed for asymptomatic screening, perhaps before an elective hospital admission or for work requirements. Instead, to account for this limitation, we created a surrogate by excluding all tests for persons with >20 tests over the study period and admissions to hospital
services not likely to be treating COVID-19. Likewise, because we were not able to directly access information about a person’s comorbidities, we created a comorbidity score based on hospital ICD-10-AM codes accumulated in the previous 2 years. Although we believe those strategies reduced confounding, they are probably imperfect proxies.

Among the strengths of this study, first, the entire cohort of persons ≥16 years of age who were tested for SARS-CoV-2 by PCR was eligible for inclusion, which resulted in a large sample, probably representative of the population at risk during the study period. Second, we accessed all SARS-CoV-2 PCR results from every private and public clinical laboratory in the state notified to the WA Department of Health as required by law. Third, we used a comprehensive linked data collection, which included hospitalization data from public and private hospitals and mortality data for the entire state. Fourth, vaccination status was obtained from a population-based, whole-of-life, mandatory national immunization register. AIR data are generally considered to be of good quality (16), and there was a strong incentive for persons to be sure that their COVID-19 vaccination record was accurate and up to date because activities such as employment and attending public venues were dependent on vaccination status (17). Last, the pandemic experience in WA enabled assessment of VE in a SARS-CoV-2 infection-naive cohort, which eliminated potential interference from non-vaccine-derived prior immunity.

In summary, as a result of a sustained, concerted effort to prevent introduction and spread of SARS-CoV-2 during the first 2 years of the pandemic, WA was in a unique position to evaluate, on the basis of the ancestral spike protein, the effectiveness of vaccines to prevent unique position to evaluate, on the basis of the ancestral spike protein, the effectiveness of vaccines to prevent SARS-CoV-2 transmission. We demonstrated that infection and severe disease caused by the Omicron (B.1.1.529) variant. N Engl J Med. 2022;386:1532–46.

About the Author

Dr. Bloomfield is a communicable disease epidemiologist with the Immunisation Program in the WA Department of Health, and a senior lecturer for Population and Preventive Health, School of Medicine (Fremantle), University of Notre Dame Australia.

References

Address for correspondence: Paul V. Effler, Immunisation Program, Communicable Disease Control Directorate, WA Department of Health, 189 Royal St, East Perth, WA 6004, Australia; email: paul.effler@health.wa.gov.au

etymologia revisited

Salmonella [sal′mo-nel′ә]

Named in honor of Daniel Elmer Salmon, an American veterinary pathologist, Salmonella is a genus of motile, gram-negative bacillus, nonspore-forming, aerobic to facultatively anaerobic bacteria of the family Enterobacteriaceae. In 1880, Karl Joseph Eberth was the first to observe Salmonella from specimens of patients with typhoid fever (from the Greek typhōdes [like smoke; delirious]), which was formerly called Eberthella typhosa in his tribute. In 1884, Georg Gaffky successfully isolated this bacillus (later described as Salmonella Typhi) from patients with typhoid fever, confirming Eberth’s findings. Shortly afterward, Salmon and his assistant Theobald Smith, an American bacteriologist, isolated Salmonella Choleraesuis from swine, incorrectly assuming that this germ was the causative agent of hog cholera. Later, Joseph Lignières, a French bacteriologist, proposed the genus name Salmonella in recognition of Salmon’s efforts.

References:
Increased Incidence of Legionellosis after Improved Diagnostic Methods, New Zealand, 2000–2020

Frances F. Graham, David Harte, Jane Zhang, Caroline Fyfe, Michael G. Baker

Legionellosis is caused by the gram-negative bacterium Legionella. This infection is predominantly the consequence of an environmental exposure to legionellae, which are ubiquitous in water and moist soil ecosystems. Incidence and seroprevalence studies show that the infection has a global distribution (1,2). The severity of disease varies from mild febrile illness (Ponziac fever, incubation period commonly 24–48 hours) (3) to serious and sometimes fatal pneumonia (Legionnaires’ disease, incubation period commonly 2–10 days) (4). Recognized infection risk factors for legionellosis include smoking, chronic obstructive pulmonary disease, diabetes, various conditions associated with immunodeficiency, male sex, and increasing age (4).

Disease surveillance for legionellosis began in New Zealand (Aotearoa) in 1979 with the collection of laboratory-based data (cases positive for Legionella species); additional data were available starting in June 1980, when the disease became notifiable (5). A review of national surveillance data for 1979–2009 showed that the annual incidence rate for laboratory-identified cases was 2.5 cases/100,000 persons and 1.4 cases/100,000 persons for notified cases (6); the disparity was caused by not all laboratory-identified cases being notified.

Inhalation of aerosolized bacteria from an environmental source is the usual means of Legionella transmission. Environmental surveillance shows that Legionella species are widely distributed in New Zealand (7). Commonly identified sources are engineered environments, such as wet cooling towers and water distribution systems, which can be reservoirs and amplifiers of the bacteria, particularly L. pneumophila (1). Aerosolized dust inhalation from handling compost and potting mix materials is most probably a major transmission route contributing to the cases of legionellosis caused by L. longbeachae (8), which is the predominant species that causes disease in New Zealand (9).

During 1980–2000, all cases of legionellosis were diagnosed in New Zealand by using traditional laboratory methods, notably culture isolation and direct fluorescent-antibody staining of respiratory tract specimens, and serology by immunofluorescent antibody testing. During that period, the Legionella urinary antigen test (UAT), followed by nucleic acid amplification test (NAAT), became established diagnostic tools. Since 2000, there has been an increasing shift toward NAATs, primarily PCR testing, and this method has dominated from 2015 onward.

The aims of this study were to provide an updated analysis of the epidemiology of legionellosis.
in New Zealand, focusing on differences between 2 periods (2000–2009 and 2010–2020); examine the influence of changing diagnostic methods on the temporal and geographic distribution of notified and laboratory-identified legionellosis cases; and review changes in the causative species. Our findings are intended to be used to improve surveillance, prevention, and management of legionellosis.

Methods

Surveillance Data and Case Definitions
We used 2 data sources to describe the epidemiology of legionellosis (including Legionnaires’ disease and Pontiac fever) in New Zealand: notifiable disease data and laboratory-based surveillance data (Appendix, https://wwwnc.cdc.gov/EID/article/29/6/22-1598-App1.pdf). We analyzed all reported cases of Legionnaires’ disease and Pontiac fever. Pontiac fever cases are a small proportion of legionellosis notifications (3 cases, 0.1% during 2000–2020), possibly because Pontiac fever is a milder and self-resolving illness, which consequently is mostly untested and therefore unreported (6).

A confirmed case of legionellosis requires a clinically compatible disease with ≥1 form of laboratory evidence: Legionella culture isolated from a clinical specimen; a ≥4-fold increase in immunofluorescent antibody titer against Legionella spp. to ≥256 between acute-phase and convalescent-phase paired serum samples tested in parallel by using pooled antigen at the same reference laboratory; and detection of L. pneumophila serogroup 1 by antigen in urine or positive NAAT result (10). A probable case is defined as a clinically compatible disease with laboratory evidence of Legionella infection showing ≥1 antibody titers ≥512 but without a demonstrated 4-fold titer increase.

Statistical Analysis
We used Poisson regression to estimate the incidence rates, age-standardized to 2013 New Zealand census population age-structure, for legionellosis over 2 periods: 2000–2009 (preceding a major shift to NAAT) and 2010–2020 (after the effect of a shift to NAAT and change in diagnostic criteria/case definition). The null hypothesis was that there was no change in the rates of legionellosis cases in these time periods. We calculated the annual incidence rate (legionellosis cases/100,000 population) by dividing reported cases by each mid-year census estimate and multiplying by 100,000. We did not calculate rates when a category had <5 notified cases. We performed statistical analysis by using SAS version 9.4 (SAS Institute, https://www.sas.com).

Results

Case Incidence and Temporal Trends
A total of 2,628 legionellosis cases were notified during 2000–2020, an overall mean annual incidence rate of 2.7 cases/100,000 population. The mean annual incidence rate increased from 1.6 cases/100,000 population in 2000–2009 to 3.9 cases/100,000 population in 2010–2020 (Figure 1). We observed marked increases in legionellosis cases in 2003, 2010, and 2015 and decreases in the periods between those years (Appendix Table 1).

A total of 2,675 laboratory-identified cases that fit the case definition were reported during the study period. Of the laboratory-identified cases that met the case definition, 1,942 (72.6%) were confirmed and 733 (27.4%) were probable. The incidence rate for laboratory-identified cases (confirmed and probable cases combined) averaged 2.8 cases/100,000 population/year (range 1.3 cases/100,000 population in 2002 and 2006 to 5.4 cases/100,000 population in 2015) (Figure 1).

Figure 1. Notification and laboratory-identified case numbers and incidence rates (cases/100,000 population), by year, in study of increased incidence of legionellosis after improved diagnostic methods, New Zealand, 2000–2020.
Increased Incidence of Legionellosis, New Zealand

Causative Legionella Species
We grouped the number of Legionella species identified through laboratory-based surveillance during 2000–2020 as L. longbeachae, L. pneumophila, or other (Figure 2; Appendix Table 2). L. longbeachae was identified as the causative agent for 51.0% of all legionellosis cases over the 21-year period (Appendix Table 2). L. pneumophila accounted for 31.2% of all cases, followed by other Legionella spp. (13.5%) and unidentified Legionella spp. (4.3%) (Appendix Table 2).

During 2000–2009, the annual laboratory-identified clinical case numbers caused by L. pneumophila infection were similar to those caused by L. longbeachae (L. pneumophila, 26.4 cases/year; L. longbeachae, 25.2 cases/year). During 2010–2020, L. longbeachae case numbers increased 4-fold to average 101.3 cases/year (55.6%, 1,114/2,002 cases), compared with a doubling in L. pneumophila case numbers to an average of 51.8 cases/year (28.5%, 571/20,02 cases). We found a marked increase in the number of L. longbeachae cases in which the serogroup was unidentified (32 cases in 2010 increasing to 61 cases in 2020); those cases were identified by using a molecular method that did not differentiate between L. longbeachae serogroups 1 and 2. (Appendix Table 2).

Method of Case Identification
The method of initial diagnosis that gave a positive Legionella result changed over time (Figure 3; Appendix Table 3). The number of cases diagnosed by using PCR increased progressively from 2010 onward, whereas the number of cases diagnosed by traditional methods of serology and culture detection decreased.
isolation alone decreased. This observation is reinforced (Appendix Table 3) and shows a major increase in cases diagnosed by using molecular methods between the 2 10-year periods compared with more traditional methods (culture, serology, and UAT).

Demographic Characteristics
Except for 2003, legionellosis incidence and age-standardized rates were highest in adults ≥60 years of age, followed by adults 40–59 years of age and children and younger adults (0–39 years of age) (Table 1; Figure 4). Compared with 2000–2009, legionellosis incidence and age-standardized rates were much higher in 2010–2020. Rates increased across all age, sex, and ethnic groups (Table 1; Appendix Tables 4, 5). The association of age with the incidence of legionellosis demonstrates increasing incidence with age for all *Legionella* species, especially in the population ≥60 years of age (Table 1). During 2000–2020, the number of notified cases (n = 2,628) was also higher for male (62.7%) than female (37.1%) patients, an overall ratio of 1.7:1.

We recorded ethnicity for 2,508 (95.4%) notified cases during 2000–2020 and compiled age-stratified and age-standardized rates of legionellosis for European, Māori, Pacific Peoples, and other ethnicities (Appendix Tables 4, 5). Focusing on age-standardized rates for the 2010–2020 period, the European ethnic group had the highest notification rate (3.9 cases/100,000 population), followed by Pacific Peoples (3.1 cases/100,000 population), Māori (2.8 cases/100,000 population), and other ethnic group persons (1.7 cases/100,000 population). The age-standardized rates increased for all ethnicities over the 2 time periods. A notable change in the second time period (2010–2020) was that the ethnic gradient toward higher rates in Europeans was reduced because rates had increased more markedly for Māori, Pacific Peoples, and other ethnic groups over that observation period (Table 1).

Regional Distribution
We compiled the rates of legionellosis incidence calculated for each district health board (DHB) area that had ≥5 diagnosed cases (divided into quintiles based on mean rate/100,000 population) for 2000–2009 and 2010–2020 (Figure 5; Appendix, Appendix Table 6). The two highest quintiles were well above the mean national notifiable incidence rate of 2.7 cases/100,000 population. In the South Island, large changes in the legionellosis rate were observed on the West Coast (2.0 cases/100,000 population in 2000–2009 and 10.6 cases/100,000 population in 2010–2020), partly influenced by the small population size. The Canterbury DHBs of the South Island showed consistently high rates (9.1 cases/100,000 population in 2000–2009 and 9.8 cases/100,000 population in 2010–2020). In the North Island, large changes in the incidence rate were observed in Northland, with an observed increase in mean annual incidence from 2.0 cases/100,000 population in 2000–2009 to 6.0 cases/100,000 population in 2010–2020. Conversely, a decrease in incidence rates was observed across the 3 Auckland DHBs; the Central Auckland DHB had the largest decrease in mean annual incidence, from 5.5 cases/100,000 population in 2000–2009 to 3.3 cases/100,000 population in 2010–2020. Conversely, a decrease in incidence rates was observed across the 3 Auckland DHBs; the Central Auckland DHB had the largest decrease in mean annual incidence, from 5.5 cases/100,000 population in 2000–2009 to 3.3 cases/100,000 population in 2010–2020.

Case Outcome
The hospitalization status was recorded on EpiSurv (https://surv.esr.cri.nz) for 95.8% (2,518/2,628) notified cases during 2000–2020. Of those case-patients, most (82.0%, 2,066/2,518) were hospitalized; 90 (3.6%) recorded unknown hospitalization status. The risk for hospitalization decreased over time: 91.4% (588/643 case-patients) were hospitalized during 2000–2009 but only 74.5% (14,78/1,985 case-patients) during 2010–2020. The highest percentage of hospitalized case-patients was ≥60 years of age for both periods, 82.3% (375 cases) in 2000–2009 and 81.1% (1,308 cases) in 2010–2020. The rate of hospitalization for legionellosis increased from 14.2 cases/100,000 population in 2000–2009 to 31.4 cases/100,000 population in 2010–2020.

A total of 61 deaths attributed to legionellosis were reported during 2000–2020, giving an overall case-fatality risk (CFR) of 2.7% (range 0.4%–8.9%). The CFR decreased from 4.0% (26 deaths/643 notified cases) during 2000–2009 to 1.8% (35 deaths/1985 notified cases) in 2010–2020. Throughout the study period, an increased CFR was consistently associated with advanced age and male sex. The increase in cases was associated with a marked decrease in CFR for *L. longbeachae* but little change for *L. pneumophila* (Appendix Table 7). The increase in case detection during 2010–2020 identified a larger number of less severe cases, which effectively increased the denominator of nonfatal cases and decreased the observed CFR by ≈60%. This effect was particularly marked...
for *L. longbeachae*, for which the CFR has decreased by 80% and is now markedly less than that observed for *L. pneumophila* (Appendix Table 7). The legionellosis mortality rate increased slightly between study periods, from 0.6 deaths/100,000 population in 2000–2009 to 0.7 deaths/100,000 population in 2010–2020.

Risk Factors

The surveillance system routinely collects data on a range of environmental exposures reported by cases along with key host factors that are known to predispose to legionellosis (Table 2). An environmental exposure risk was reported for 1,744 (68.4%) of laboratory-identified cases recorded in the EpiSurv

<table>
<thead>
<tr>
<th>Table 1. Characteristics of notified cases by patient age group, sex, ethnicity, and Legionella species, New Zealand, 2000–2020*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
</tr>
<tr>
<td>No. cases</td>
</tr>
<tr>
<td>Age group, y</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td><1–39</td>
</tr>
<tr>
<td>40–59</td>
</tr>
<tr>
<td>≥60</td>
</tr>
<tr>
<td>Sex</td>
</tr>
<tr>
<td>Male (M)</td>
</tr>
<tr>
<td>Female (F)</td>
</tr>
<tr>
<td>Unknown</td>
</tr>
<tr>
<td>Ethnicity</td>
</tr>
<tr>
<td>European</td>
</tr>
<tr>
<td>Māori</td>
</tr>
<tr>
<td>Pacific Peoples</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Unknown</td>
</tr>
<tr>
<td>Laboratory status</td>
</tr>
<tr>
<td>Confirmed</td>
</tr>
<tr>
<td>Probable</td>
</tr>
<tr>
<td>Legionella pneumophila</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td><1–39</td>
</tr>
<tr>
<td>40–59</td>
</tr>
<tr>
<td>≥60</td>
</tr>
<tr>
<td>Legionella longbeachae</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>1–39</td>
</tr>
<tr>
<td>40–59</td>
</tr>
<tr>
<td>≥60</td>
</tr>
<tr>
<td>Other species</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td><1–39</td>
</tr>
<tr>
<td>40–59</td>
</tr>
<tr>
<td>≥60</td>
</tr>
<tr>
<td>Unknown</td>
</tr>
</tbody>
</table>

*Crude rate is cases per 100,000 population. ASR, age-standardized rate; IRR, incidence rate ratio; NA, not applicable.
†Age standardized to the New Zealand population age structure at the 2013 census.
RESEARCH database during 2000–2020. More detailed exposure data were available for the second decade and showed that 1,054 (41.4%) case-patients reported contact with compost/potting mix or soil during their incubation period (Table 2). A total of 155 (6.2%) of the number of reported notified case-patients had a history of overseas travel during the incubation period. Smoking and an immunosuppressive or debilitating condition were commonly reported by notified case-patients (Table 2).

Discussion
This study provides a comprehensive analysis of the epidemiology of legionellosis over the 21-year period of 2000–2020 in New Zealand by using notifications and national laboratory-based surveillance of Legionella cases. The study period saw a large increase in disease incidence driven by several factors that we investigated.

A major finding is the marked increase in the reported incidence of legionellosis from 2010 onward (Figure 1; Appendix Table 1). This increase is associated with improved case ascertainment, likely driven by increased clinical awareness of legionellosis and increased availability of specific laboratory testing for legionellosis. The marked increase in legionellosis notifications during 2015 and 2016 was caused by the LegiNZ prospective study, which provided a 12-month period (May 2015–May 2016) of intensified surveillance (11). During that study, all lower respiratory samples from hospitalized notified-case patients who had suspected pneumonia were tested for Legionella spp. by PCR. An increase in case detection in 17 regions (Figure 5) was expected, with the national 86% increase more likely caused by historical underdiagnosis of the disease, rather than an increase in disease burden (12). For that reason, the legionellosis rate of 3.9 cases/100,000 during 2010–2020 probably provides a more valid estimate of the true population rate than seen previously; the higher rate of 5.4 cases/100,000 population detected by the LegiNZ study is likely to be particularly robust. Those rates put New Zealand above an estimated global mean rate of 2.8 cases/100,000 population (95% CI 2.7–2.9 cases/100,000 population) derived from the reported contribution of Legionella species to community-acquired pneumonia in multiple countries (1). The relatively small increase in the mortality rate of legionellosis during this period (from 0.6 deaths/100,000 population in 2000–2009 to 0.7 deaths/100,000 population in 2010–2020) is also consistent with the conclusion of greater case ascertainment of less severe cases being the main driver of the apparent increase in disease incidence during this period.

Unlike jurisdictions outside New Zealand that observed a temporary decrease in legionellosis at the beginning of the COVID-19 pandemic (13), rates for New Zealand did not appear to have been affected in 2020 (Figure 1). This finding suggests that environmental exposures to Legionella species may not have changed in New Zealand during this period, which could reflect the COVID-19 elimination strategy that enabled ordinary life to continue for most of that year, with only a few weeks under lockdown (14). The pandemic and its response had complex effects on the epidemiology of many infectious diseases and their surveillance. For example, studies undertaken in other jurisdictions outside New Zealand have identified greatly increased Legionella microbial contamination in building water systems (cooling towers) linked to extreme water stagnation caused by prolonged closures of...
commercial buildings, reinforcing the need for monitoring water and air conditioning systems (15).

The findings of this study have shown the dramatic shift in legionellosis diagnosis during a period when traditional techniques were largely replaced by molecular methods and UAT. However, a key limitation of UAT is that it cannot detect organisms other than *L. pneumophila* serogroup 1 (16); some authors have suggested that a total dependence on this diagnostic assay may miss up to 40% of legionellosis cases (17). Another limitation of UAT is that it does not generate material that can be used for typing methods. In New Zealand, the *Legionella* UAT has been used by several laboratories since 1998 but has decreased utility because of the high proportion of legionellosis caused by non-*L. pneumophila* species, such as *L. longbeachae* (Figure 3; Appendix Table 3). In this setting, a negative UAT result does not exclude legionellosis and necessitates further testing to elucidate either exclusion or inclusion. Because only 20.3% of the 2,675 cases diagnosed during the study period were caused by *L. pneumophila* serogroup 1 infection (Appendix Table 2), potentially 80% of cases could be missed if only UAT were used. A recent evaluation of the UAT for the diagnosis of *L. longbeachae* infection indicated a sensitivity of 59.1% and specificity of 82.2% (18). Further development of the assay should improve sensitivity to strengthen its application as a useful diagnosis tool, particularly in laboratories in which there is limited molecular testing capacity and because of the ease of specimen collection and rapidity of diagnosis (18).

During the 1990s, the drive for better diagnostic methods led to development of several PCRs. However, a combination of factors, including test cost, reagent quality issues, contamination problems, and the lack of trained and skilled staff, resulted in the initial slow adoption of molecular diagnostics for legionellosis (19). The technology has now matured, and since 2010, when some laboratories in New Zealand began routine molecular diagnostic testing for legionellosis, it has now become the method of first choice. This change was caused by the availability of more robust and sensitive assays for the detection of many difficult to diagnose diseases, in addition to legionellosis, and the overall reduction in test costs.

Molecular testing for legionellosis has also been driven by its superior diagnostic utility compared with traditional methods because it enables detection of all *Legionella* species and can obtain a result within hours of sample collection (20).

The shift in laboratory methods during 2000–2020 has influenced the ability of routine surveillance to detect the contribution of species and serogroups. We observed a marked increase in *L. longbeachae* cases compared with other species, such as *L. pneumophila*, since 2010 (Figure 2; Appendix Table 2). We also observed a decrease in the identification of the serogroup for *Legionella* species caused by reductions in the use of the traditional methods, namely culture and serology, which risks gaps in surveillance information and can hinder cluster analysis and source tracking (Appendix Table 2) (21). This trend was caused by increased use of PCR testing alone that identifies the species, but not the serogroup of the *Legionella* species. No single laboratory test combines both optimal diagnostic accuracy with the ability to epidemiologically type the causative agent. To achieve this feature, a combination of molecular testing supported by culture, serologic testing, or both is required (19). In recent years, whole-genome sequencing has emerged as a major tool to support epidemiologic investigation (suspected clusters and outbreaks) of Legionnaires’ disease and for characterization of new strains, but this method still requires the culture isolation of the bacterium.

The results of this study show that the rates of legionellosis were highest in adults >60 years of age and in male notified case-patients, consistent with previously reported research (6). As the population ages in New Zealand, the burden of legionellosis is likely to continue to increase in the absence of effective measures to prevent or adequately control the risk for infection. Legionellosis rates were higher in persons from Europe compared with Māori, Pacific Peoples, and persons of other ethnicities during 2000–2009, even after age standardization. Those differences largely disappeared during 2010–2020, corresponding with increased case ascertainment. This pattern is different from that seen for other serious infectious diseases, for which rates are markedly higher for Māori and Pacific Peoples (22). Those unexpected differences need further investigation to see if there is systematic underdiagnosis of legionellosis across ethnic groups or if differences in exposure might explain the pattern seen.

This analysis found that infections caused by *L. longbeachae* increasingly dominated over those caused by *L. pneumophila* (Figure 2; Appendix Table 2). The largest contribution to this increase in *L. longbeachae* cases came from persons ≥60 years of age (Table 1). Early spring–summer clusters of *L. longbeachae* infections are seen each year and might be linked to increased gardening activity in warmer months, which has been shown to provide several psychological, physical, and social benefits for older persons (23). In contrast, *L. pneumophila* infections appear to be spread evenly throughout the year, and transmission by aerosols containing contaminated water from cooling towers was the most identified source from outbreak investigations in New Zealand. Decreased incidence rates observed across the 3 Auckland DHBs between decades might reflect introduction of a bylaw in 2015 requiring owners to register their industrial wet cooling tower systems annually and monitor *Legionella* bacteria levels (24). In contrast, higher incidence rates in the Northland region might reflect the readiness of clinicians to consider testing for *Legionella* species in response to the national surveillance study (11).

Our study also provides data on major risk factors, exposures, and potential transmission settings. Few cases were classified as hospital acquired. A small percentage (6.2%) were classified as travel-associated, based on having a history of overseas travel during the incubation period. That percentage is lower than that for Europe, where 14.7% of detected Legionnaires’ disease cases in 2019 were linked to travel.
abroad, of which 79% were linked to overnight stays in hotels (25). This difference is observed despite New Zealand having among the highest per capita international travel rates in the world, with >3 million residents departing New Zealand in 2019 (26).

Our study has several limitations associated with the use of routinely collected surveillance data. The most critical limitation is the long-term underascertainment of legionellosis. This limitation has been partially corrected by using more sensitive molecular testing, resulting in a marked increase in measured rates of legionellosis during the 2010–2020 period. A further limitation is the incomplete reporting of some variables.

More research on the epidemiology of legionellosis in New Zealand is warranted. The high percentage of hospitalizations (82.0%) reported during the study period means that those data can be analyzed to provide a useful basis to identify emerging issues and determine priorities for prevention. For example, the discharge data could be used to estimate the economic cost of hospitalized cases of legionellosis in New Zealand. It would also be useful to investigate the contribution of Legionella infection to the burden of community-acquired pneumonia of mild-to-moderate severity, which will often be treated empirically outside the hospital setting without any etiologic diagnosis. Proposed interventions to reduce the effect of legionellosis in New Zealand should also be evaluated after they are implemented to determine their efficacy.

Acknowledgments
We thank Yvonne Galloway for providing assistance with legionellosis surveillance data and the technical staff of the Legionella Reference Laboratory, Environmental Science and Research for providing scientific analyses. The surveillance data underlying the results presented in this study are available from the Institute of Environmental Science and Research, which contributes to the New Zealand public health surveillance effort under contract with the New Zealand Ministry of Health.

About the Author
Dr. Graham recently received a doctoral degree in public health focusing on the environmental epidemiology of legionellosis in New Zealand at the University of Otago, Wellington, New Zealand. Her primary research interests are infectious disease epidemiology and surveillance and infection prevention and control with a focus on legionellosis.

References
5. Graham FF. The mysterious illness that drove them to their knees—Ah, that Legionnaires’ disease—a historical reflection of the work in Legionnaires’ disease in New Zealand (1978 to mid-1990s) and the ‘One Health’ paradigm. One Health. 2020;10:100149. https://doi.org/10.1016/j.jonehlt.2020.100149

Address for correspondence: Frances F. Graham, Department of Public Health, University of Otago, PO Box 7343, Wellington South 6242, New Zealand; email: grafr148@student.otago.ac.nz

January 2023

Vectorborne Infections

- Comprehensive Review of Emergence and Virology of Tickborne Bourbon Virus in the United States
- Multicenter Case-Control Study of COVID-19–Associated Mucormycosis Outbreak, India
- Role of Seaports and Imported Rats in Seoul Hantavirus Circulation, Africa
- Risk for Severe Illness and Death among Pediatric Patients with Down Syndrome Hospitalized for COVID-19, Brazil
- Molecular Tools for Early Detection of Invasive Malaria Vector *Anopheles stephensi* Mosquitoes
- Integrating Citizen Scientist Data into the Surveillance System for Avian Influenza Virus, Taiwan
- Genomic Confirmation of *Borrelia garinii*, United States
- Seroepidemiology and Carriage of Diphtheria in Epidemic-Prone Area and Implications for Vaccination Policy, Vietnam
- Risk for Severe COVID-19 Outcomes among Persons with Intellectual Disabilities, the Netherlands
- Bourbon Virus Transmission, New York, USA
- *Akkermansia muciniphila* Associated with Improved Linear Growth among Young Children, Democratic Republic of the Congo
- High SARS-CoV-2 Seroprevalence after Second COVID-19 Wave (October 2020–April 2021), Democratic Republic of the Congo
- Human Immunity and Susceptibility to Influenza A(H3) Viruses of Avian, Equine, and Swine Origin
- *Genomic Epidemiology Linking Nonendemic Coccidioidomycosis to Travel*
- Widespread Exposure to Mosquitoborne California Serogroup Viruses in Caribou, Arctic Fox, Red Fox, and Polar Bears, Canada
- Effects of Second Dose of SARS-CoV-2 Vaccination on Household Transmission, England
- COVID-19 Booster Dose Vaccination Coverage and Factors Associated with Booster Vaccination among Adults, United States, March 2022
- Pathologic and Immunohistochemical Evidence of Possible Franciscellaceae among Aborted Ovine Fetuses, Uruguay
- Genomic Microevolution of *Vibrio cholerae* O1, Lake Tanganyika Basin, Africa
- *Plasmodium falciparum* pfhrp2 and pfhrp3 Gene Deletions in Malaria-Hyperendemic Region, South Sudan
- Burden of Postinfectious Symptoms after Acute Dengue, Vietnam
- Detection of Monkeypox Virus DNA in Airport Wastewater, Rome, Italy
- Successful Treatment of *Balamuthia mandrillaris* Granulomatous Amebic Encephalitis with Nitroxoline

To revisit the January 2023 issue, go to: https://wwwnc.cdc.gov/eid/articles/issue/29/1/table-of-contents
Shiga toxin–producing *Escherichia coli* (STEC) causes acute diarrheal illness. To determine risk factors for non-O157 STEC infection, we enrolled 939 patients and 2,464 healthy controls in a case–control study conducted in 10 US sites. The highest population-attributable fractions for domestically acquired infections were for eating lettuce (39%), tomatoes (21%), or at a fast-food restaurant (23%). Exposures with 10%–19% population attributable fractions included eating at a table service restaurant, eating watermelon, eating chicken, pork, beef, or iceberg lettuce prepared in a restaurant, eating exotic fruit, taking acid-reducing medication, and living or working on or visiting a farm. Significant exposures with high individual-level risk (odds ratio >10) among those >1 year of age who did not travel internationally were all from farm animal environments. To markedly decrease the number of STEC-related illnesses, prevention measures should focus on decreasing contamination of produce and improving the safety of foods prepared in restaurants.
persons ≥18 years of age and parents or legal guardians of children <18 years of age and verbal assent (in addition to parent or guardian consent) from children 12–17 years of age.

Methods

During 2012–2015, FoodNet conducted active, population-based surveillance for laboratory-diagnosed STEC infections in 10 sites, covering an estimated 49 million persons (15% of the US population in 2014). The catchment area included Connecticut, Georgia, Maryland, Minnesota, New Mexico, Oregon, and Tennessee and selected counties in California, Colorado, and New York. We recruited patients from each site for a consecutive 36-month period during July 1, 2012–September 1, 2015. We defined a case as isolation of non-O157 STEC from a clinical specimen of an ill person residing in a FoodNet site. We excluded cases in which a pathogen other than non-O157 STEC was detected in a non-O157 STEC–positive specimen, or the patient was lost to follow-up, did not speak English or Spanish, was part of an outbreak (except for the index patient in each site), or was not the first case in their household. We attempted to enroll 3 controls per case, matched on county and stratified by age groups: 0–1, 2–5, 6–17, 18–39, 40–59, or ≥60 years. We selected controls in all except the youngest age group from commercially available lists of residential telephone numbers, by county, that included age ranges. We selected controls <2 years of age from birth registries. We enrolled controls within 60 days after the matched case-patient’s specimen collection date. We excluded controls who did not speak English or Spanish.

We interviewed patients and controls or their guardians by telephone using a standard questionnaire that covered 385 variables and had sections on health, travel, water, animals, foods, and demographics. Most exposures, including international travel, were for the 7 days before illness began; controls were asked about exposures during the same period as case-patients. The questionnaire defined fast-food restaurants as places where food is ordered and paid for at a counter or drive-through and table-service restaurants as all sit-down or table-service restaurants.

Clinical laboratories submitted specimens that had Shiga toxin (determined by immunosassay) or Shiga toxin genes (determined by PCR) to state public health laboratories. State public health laboratory staff identified non-O157 specimens and submitted them to CDC for serologic testing to determine O and H antigens. CDC used whole-genome sequencing to confirm the absence of O157 genes on rough isolates. We included all enrolled participants in descriptive analyses. International travel was examined in univariable analysis. Those reporting international travel were excluded from other risk factor analyses, which were conducted separately for infants <1 and persons ≥1 years of age. To control for confounding in the main risk factor analysis, we rematched controls with cases using the nearest-neighbors approach (13). For a given exposure, we calculated Gower distance on the basis of age, sex, state, and all exposures except the one under consideration (14). Using logistic regression, we established an overall threshold for Gower distance at which it was more likely that a matched control was a patient’s nearest neighbor than a randomly selected control. We matched up to 20 controls within the Gower distance with the nearest case-patient and ensured that each control was matched to only 1 case-patient. Of note, distance between 85% of patient–control pairs matched during recruitment exceeded that threshold. We excluded case-patients without matches within the threshold from the analysis for the exposure under consideration. After rematching patients with controls, information was available for patients for all but 5 exposures in at least 92% of cases: municipal water away from home (89%), private well water away from home (85%), spring water away from home (85%), prepackaged iceberg lettuce (84%), and prepackaged romaine lettuce (87%). Information was available for all except 4 exposures for at least 92% of controls: municipal water away from home (91%), contact with someone with diarrheal illness (90%), private well water away from home (82%), and spring water away from home (81%). We did not conduct imputation because results were unlikely to be affected by the low rates of missing data.

For our analyses, we calculated odds ratios (ORs) and population attributable fractions (PAFs) to identify both individual risk and percentages at which illnesses in the population could be decreased. Because prevalence of some exposures was low among case-patients, controls, or both, we applied Firth bias-reduced penalized-likelihood logistic regression to estimate ORs and 95% CIs for each exposure, after adjusting for the matched strata generated by the nearest-neighbors approach. We calculated and adjusted p values for multiple testing using the Benjamini-Yekutieli method (15). We considered associations statistically significant if adjusted p was <0.05 and 95% CIs did not include 1.0. We calculated PAF using a method described elsewhere (16) and calculated 95% CIs for PAFs using the 95% confidence limits of ORs. We did not assess the overall statistical significance of our logistic regression models because each included only the ex-
Risk Factors for Non-O157 STEC, United States

Results

We identified 1,988 non-O157 STEC case-patients and 2,464 controls meeting inclusion criteria; we excluded 324 of the case-patients according to exclusion criteria (Figure). Of the 1,644 eligible patients remaining, 407 could not be reached and 318 refused to participate, leaving 939 (56.4%) total cases in the study. Nine serogroups accounted for 83% of isolates from enrolled case-patients: O26 (263, 28%), O103 (216, 23%), O111 (135, 14%), O121 (46, 5%), O118 (37, 4%), O186 (23, 2%), O5 (22, 2%), O145 (21, 2%), and O45 (21, 2%) (Table 1, https://wwwnc.cdc.gov/EID/article/29/6/22-1521-T1.htm). The remainder of the results is limited to enrolled case-patients.

Nearly all patients (99%) reported diarrhea (median duration 7 days, interquartile range 5-10 days) (Table 1). Other common signs and symptoms were abdominal pain (89%), fatigue (71%), bloody feces (58%), and nausea (53%). Seventeen percent of patients were hospitalized, and 8 (1%) had hemolytic uremic syndrome develop.

International travel was significantly associated with infection in univariable analysis; 138/939 (15%) patients reported international travel, compared with 31/2,464 (1%) controls (matched OR 14.2, 95% CI 9.0-23.3) (Table 1). The most common destination among patients traveling internationally was Mexico (68, 49%). The rank order of non-O157 STEC serotypes among international travelers was similar to that for domestic cases except for the absence of O121. O186 (11/23, 48%) and O118 (11/37, 30%) were the serogroups with the highest percentages of patients who had recently traveled internationally.

Most patients (801/939) and controls (2,433/2,464), including 27 infant case-patients and 68 infant controls, had not recently traveled internationally. Patient median age was 18 years (interquartile range 4-35 years); 57% were female, 90% White, and 17% of Hispanic ethnicity (Table 2). Median age was significantly lower for patients (18 years) than for controls (22 years). Patients were also more likely than controls to be White (90% vs. 87%) and of Hispanic ethnicity (17% vs. 10%) and less likely to be Black (5% vs. 7%). Among FoodNet sites, the most cases were in Minnesota (226, 28%), followed by Tennessee (107, 13%), Oregon (91, 11%), Georgia (88, 11%), California (61, 8%), New York (58, 7%), Colorado (54, 7%), Connecticut (46, 6%), New...

Figure. Flowchart for inclusion/exclusion in study of risk factors for non-O157 STEC infections, United States. *Campylobacter, n = 11; Salmonella, n = 8; Cryptosporidium, n = 17; STEC O157, n = 7; C. difficile, n = 2; Giardia, n = 2; Cryptosporidium and Giardia, n = 1; norovirus, n = 1; Shigella, n = 1. †An additional 3 infants who traveled internationally were included in the Traveled internationally box above. STEC, Shiga toxin–producing Escherichia coli.
Mexico (40, 5%), and Maryland (30, 4%). International travel was the only factor significantly associated with infection among 3/30 (10%) infants, compared with none among 68 controls (OR 32.8, 95% CI 1.5–4,607.2). No food, environmental, water, or other exposure was examined among infants who had not traveled internationally was significantly associated with illness (Appendix Table 1).

Among persons ≥1 year of age who had not traveled internationally, significant PAFs (>20%) were largest for eating lettuce (PAF 39.3%; OR 2.6), tomatoes (PAF 21.3%; OR 1.7), or at a fast-food restaurant (PAF 22.5%; OR 1.7) (Table 3, https://wwwnc.cdc.gov/EID/article/29/6/22-1521-T3.htm). Other produce exposures with high PAFs (10%–19%) were eating watermelon (PAF 19.0%; OR 2.4), including prepared inside the home (PAF 10.9%; OR 1.7); eating tomatoes prepared in a restaurant (PAF 13.7%; OR 2.5); eating exotic fruit, such as kiwi, avocado, or mango (PAF 13.2%; OR 1.7); and eating iceberg lettuce prepared in a restaurant (PAF 12.9%; OR 2.7). The highest ORs among fruit and vegetable exposures were for raspberries (PAF 2.2%; OR 7.7), cantaloupe (PAF 3.2%; OR 4.3), exotic fruit (PAF 5.8%; OR 3.9), and pineapple (PAF 3.8%; OR 3.6) prepared in a restaurant. However, <8% of patients had exposure to any 1 of those.

Eating at a table service restaurant also had a high PAF (19.4%; OR 1.7). Of the 24 food-related risk factors identified, 17 were related to preparation in a restaurant and 1 to preparation inside the home; the other 6 did not specify a place of preparation. The other 6 did not specify a place of preparation. Meats with significant high PAFs (10%–19%) were chicken prepared in a restaurant (PAF 16.3%; OR 1.6), pork prepared in a restaurant (PAF 10.2%; OR 2.9), and beef prepared at a table-service restaurant (PAF 10.1%; OR 2.1). The highest OR among meat and seafood products was for eating pink hamburger from a table-service restaurant (PAF 3.4%; OR 9.0). Eating ground beef hamburger (PAF 5.8%; OR 2.4) at a table-service restaurant was also a significant risk factor. However, 9 of 21 factors significantly associated with lower risk of illness were related to beef (Appendix Table 2).

Although living or working on or visiting a farm, petting zoo, or fair (PAF 14.7%; OR 8.0) was the only significant environmental exposure with a PAF ≥10%, many significant animal environment-associated exposures had ORs >10. Those included exposures to calves, chickens, cows, goats, horses, pigs, and sheep. Taking stomach acid-reducing medications in the 4 weeks before illness (PAF 11.3%; OR 2.1) was the only other significant risk factor with PAF ≥10% or OR >10.

Among the 5 risk factors for STEC O26 infection, only 1, contact with someone with diarrheal illness (PAF 10.8%, OR 5.7), had a PAF ≥10%; the other 4, all with ORs ≥10, were animal environment exposures. Among the 7 risk factors associated with STEC O103 infection, 3 had PAFs ≥10% and the other 4 had ORs >14. The highest PAFs were for living or working on, or visiting a farm, petting zoo, or fair (PAF 22.0%, OR 7.2) and for eating iceberg lettuce in a restaurant (PAF 20.1; OR 4.5). One risk factor was identified for STEC O111: living or working on, or visiting a farm, petting zoo, or fair (PAF 20.3%; OR 15.4) (Table 4).

Table 2. Demographic characteristics of case-patients with non-O157 Shiga toxin–producing Escherichia coli infection and controls without international travel, FoodNet case–control study, United States, 2012–2015*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Case-patients, n = 801</th>
<th>Controls, n = 2,433</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y median (IQR)</td>
<td>18 (4–35)</td>
<td>22 (6–39)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>457/801 (57)</td>
<td>1,425/2,410 (59)</td>
</tr>
<tr>
<td>M</td>
<td>344/801 (43)</td>
<td>982/2,410 (41)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>667/739 (90)</td>
<td>2,016/2,310 (87)</td>
</tr>
<tr>
<td>Black</td>
<td>35/739 (5)</td>
<td>167/2,310 (7)</td>
</tr>
<tr>
<td>Asian</td>
<td>15/739 (2)</td>
<td>46/2,310 (2)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>133/789 (17)</td>
<td>236/2,399 (10)†</td>
</tr>
</tbody>
</table>

*Values are no. positive/no. for whom data were available (%) except as indicated.
†p<0.05 compared with case-patients.

Discussion

We found non-O157 STEC infections were associated with international travel and domestic exposure to a wide variety of foods and animal environments. Among 18 food consumption risks with site of consumption indicated, 94% were in restaurants. The wide variety of foods implicated suggests that sources of infection, and thus control measures, for non-157 STEC are more similar to those for *Salmonella* than to those for STEC O157 (17). Control measures focused on improving the food safety system, in particular for produce and restaurants, are likely to decrease illness the most.

Our finding of large population-level risks attributable to eating at restaurants is notable because most food is consumed at home (18). FoodNet studies also identified restaurants as risks for STEC O157 (19) and *Campylobacter* (20) infections. A study from Australia linked non-O157 STEC illnesses to catered meals (21). In a review of US restaurant outbreaks, food handling and preparation practices were implicated in about half and food contaminated before entering the restaurant in about one quarter of *Salmonella* outbreaks (data for STEC not provided) (22,23). Policies that help promote a culture of food safety for restaurants include...
Risk Factors for Non-O157 STEC, United States

Table 4. Risk factors associated with domestically acquired non-O157 Shiga toxin–producing Escherichia coli infections by serogroup, FoodNet case–control study, United States, 2012–2015

<table>
<thead>
<tr>
<th>Serogroup and exposure†</th>
<th>Case-patients</th>
<th>Controls</th>
<th>Multivariable analysis</th>
<th>p value§</th>
</tr>
</thead>
<tbody>
<tr>
<td>O26, n = 231</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Live or work on, or visit a farm, petting zoo, or fair</td>
<td>16/122 (13)</td>
<td>11/370 (3)</td>
<td>5.7 (2.4–14.4)</td>
<td>10.8 (7.6–12.2)</td>
</tr>
<tr>
<td>With chickens present</td>
<td>11/143 (8)</td>
<td>1/410 (0)</td>
<td>35.5 (6.9–319.6)</td>
<td>7.5 (6.6–7.7)</td>
</tr>
<tr>
<td>With cows present</td>
<td>11/140 (8)</td>
<td>4/399 (1)</td>
<td>13.6 (3.6–62.0)</td>
<td>7.3 (5.7–7.7)</td>
</tr>
<tr>
<td>With cows or calves present</td>
<td>11/141 (8)</td>
<td>5/394 (1)</td>
<td>13.7 (3.5–65.5)</td>
<td>7.2 (5.6–7.7)</td>
</tr>
<tr>
<td>Visit a farm with chickens present</td>
<td>7/139 (5)</td>
<td>1/421 (0)</td>
<td>24.3 (4.7–172.0)</td>
<td>4.8 (4.0–5.0)</td>
</tr>
<tr>
<td>O103, n = 179</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Live or work on, or visit a farm, petting zoo, or fair</td>
<td>24/94 (26)</td>
<td>22/315 (7)</td>
<td>7.2 (2.9–19.4)</td>
<td>22.0 (16.6–24.2)</td>
</tr>
<tr>
<td>With chickens present</td>
<td>12/95 (13)</td>
<td>6/334 (2)</td>
<td>24.9 (5.3–169.3)</td>
<td>12.1 (10.2–12.6)</td>
</tr>
<tr>
<td>With calves present</td>
<td>7/97 (7)</td>
<td>2/330 (1)</td>
<td>60.8 (6.7–2615.0)</td>
<td>7.1 (6.1–7.2)</td>
</tr>
<tr>
<td>Live on a farm</td>
<td>11/101 (11)</td>
<td>5/328 (2)</td>
<td>15.8 (3.8–77.8)</td>
<td>10.2 (8.1–10.8)</td>
</tr>
<tr>
<td>Contact with wild deer or elk or their droppings</td>
<td>9/98 (9)</td>
<td>2/327 (1)</td>
<td>14.6 (3.7–69.1)</td>
<td>8.6 (6.7–9.1)</td>
</tr>
<tr>
<td>Visit a farm with horses present</td>
<td>5/93 (5)</td>
<td>1/316 (0)</td>
<td>60.1 (6.4–5983.0)</td>
<td>5.3 (4.5–5.4)</td>
</tr>
<tr>
<td>Fruits and vegetables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceberg lettuce prepared outside the home</td>
<td>24/93 (26)</td>
<td>37/290 (13)</td>
<td>4.5 (2.1–9.9)</td>
<td>20.1 (13.7–23.2)</td>
</tr>
<tr>
<td>O111, n = 104</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Live on, visit, or work on a farm, petting zoo, or fair</td>
<td>13/60 (22)</td>
<td>11/190 (6)</td>
<td>15.4 (4.1–73.9)</td>
<td>20.3 (16.3–21.4)</td>
</tr>
</tbody>
</table>

*Values are numbers/expressions, for whom data were available (%) except as indicated. OR, odds ratio; PAF, population attributable fractions.
†In the 7 d before illness unless otherwise specified. Interviewers told respondents to consider foods prepared at any home to be prepared at home and foods prepared at a restaurant or commercial food service establishment to be prepared outside the home.
‡All cases included were in nontravelers >1y old; each serogroup-specific analysis had 2,365 noninfant, nontraveler controls. The overall number of cases for each serogroup-specific analysis is listed in the respective section header. During nearest-neighbors matching, cases and controls without a match were excluded for the exposure under consideration. Thus, the numbers of cases and controls that were matched and included in the analysis of each exposure is smaller than the total.
§p adjusted for multiple testing using Benjamini-Hochberg-Yekutieli method.

Our analysis indicated that eating lettuce, tomatoes, and other produce commonly consumed raw accounts for a large proportion of illnesses. One review of STEC found that row crop vegetables were associated with more outbreaks than any other food and significantly more non-O157 outbreaks than beef (12). Produce also transmits a high proportion of foodborne illnesses caused by other pathogens (17,23–25). Identifying particular growing areas and farms as sources of produce associated with outbreaks would provide a more efficient targeted process for preventing contamination before produce arrives at restaurants or stores (26). Produce growers, suppliers, sellers, and commercial establishments should adhere to guidelines to assure that produce is safe when purchased. The Food and Drug Administration is charged with implementing the Produce Safety Rule, part of the Food Safety Modernization Act, which includes requiring routine inspections of large produce farms. Best practice standards for biosecurity and water management should recognize the risk from environmental contamination caused by wildlife and from the use of untreated water contaminated with fecal matter from food-producing animals on crops (26,27). Preventing cross-contamination of produce from meat in restaurants and homes is also essential.

Further regulatory measures could decrease transmission of non-O157 STEC. In 2012, similar to the practice for STEC O157 since 1994, the Food Safety and Inspection Service named the 6 non-O157 STEC serogroups (O26, O103, O111, O121, O145, and O45) most frequently linked to human illness as adulterants in raw, nonintact beef products (28). Although we observed inverse associations for some beef exposures, the consumption of any beef at a table service restaurant had a PAF of 10.1% and pink ground beef hamburger had an OR of 9, indicating those are high-risk exposures. We found eating ground beef hamburgers from fast-food restaurants was not associated with illness, similar to the finding of a FoodNet study of STEC O157 infections conducted during 1996–1997 (19). Those findings suggest that standard hamburger cooking procedures in fast-food restaurants are effective. PAFs of 16% for chicken and 10% for pork prepared in a restaurant suggest that those meats might transmit non-O157 STEC. US outbreaks caused by O157 but not non-O157 STEC have been linked to those foods (29).
We identified a wide variety of risky exposures related to infection from animals; visiting, living on, or working on a farm, petting zoo, or fair had the highest PAF (14.7%). Visiting (PAF 8.2%) and living on (PAF 5.2%) a farm each conferred risk. The study implicated specific animal types, including calves, chickens, cows, goats, horses, pigs, or sheep, as well as contact with horse feed and with wild deer or elk or their droppings. Contact with farm animals, particularly but not exclusively ruminants, or their environments is a known risk factor for both non-O157 (20,21,27,30) and O157 STEC infections (19,32,33). Handwashing is essential for preventing infections in these settings. Guidelines have been published for behaviors in public settings with animals (34); development of guidelines for nonpublic settings could help avert infections.

Although risk factors that have high PAFs provide the largest opportunities for reducing illnesses, many exposures had significantly high ORs, particularly animal contact and environmental exposures, which also signal potential targets for reducing infections. Very high ORs (6.8–66.9) indicating high individual-level risk were identified for exposure to environments with calves, cows, chickens, goats, horses, pigs, and sheep. Other exposures with high ORs (4.3–7.7) were, in descending order, eating raspberries in a restaurant, drinking untreated water, and eating cantaloupe in a restaurant. Drinking untreated water was also identified as a risk factor for O157 STEC infection in another FoodNet case-control study (22).

The similarity of serotypes in our study to those more recently causing illness indicates that the most notable risk factors we found likely remain current. The top 4 serogroups in our study, which accounted for 70% of isolates, were the same as the top 4 named adulterants in 2012. They were also the top 4 non-O157 STEC isolates reported to national surveillance during the study period (74% of isolates) and in the years with the most recently validated data, 2016–2018 (78% of isolates) (S. Browning, Centers for Disease Control and Prevention, December 18, 2020 email). The next 5 most common serogroups in our study were all among the top 11 serogroups nationally during the study period and 2016–2018. Regional variations in sources may influence serotype frequency but variations in laboratory practices may also affect frequency data (35,36). For example, some public health laboratories attempt to identify only the 3 most common serogroups, others test for the top 6, and others routinely send all isolates to CDC for serogrouping. It is possible that our study protocol requiring that all non-O157 STEC isolates be sent to CDC for serotyping resulted in recognition of illnesses caused by less common serogroups.

Nearest-neighbor matching approaches have a solid theoretical basis in epidemiologic research (37–39), but applying this method to matching in case-control studies of enteric diseases is recent (13). Although it is impossible to account for every possible confounder when selecting controls, this approach allows the most closely matched controls to be selected for each case. The nearest-neighbor approach permitted better control of confounding and would be expected to produce less-biased estimates than our original scheme that matched only on age, sex, and geography. One apparent benefit of our study approach was that we did not observe the large number of spurious inverse effects for vegetable and fruit items that have been seen in other studies (20,31,41).

Our study was limited to cases reported to public health departments and thus dependent on infected persons seeking health care and providers obtaining fecal specimens, so data may not be representative of all non-O157 STEC illnesses (40). We only enrolled patients residing in the FoodNet catchment area, which is not completely representative of the US population (41). In addition, patients were significantly more likely than controls to be Hispanic, possibly because controls were selected from purchased commercial lists of telephone numbers that included only landlines; persons of Hispanic ethnicity were more likely than others to live in households with only cellular telephones during the study (42). As in any case-control study, there were probably nondifferential information biases (e.g., differences in the way patients remember and report exposures compared with controls). Finally, unlike in outbreak investigations, in which a particular exposure can be confirmed as the source, associations in studies of sporadic infections do not confirm a particular source because of the possibility of residual confounding. Although we used an advanced method to control for confounding, residual confounding for some associations and for common coexposures was still likely. For example, many salads include both lettuce (PAF = 39.3%) and tomato (PAF = 21.3%); eating a tomato might be associated with illness only because it is consumed with contaminated lettuce. However, a major strength of studies of sporadic cases is that, unlike outbreak investigations, they can identify the exposures associated with the most illnesses in a population; conclusions about associations can be bolstered by information from outbreaks and microbiologic studies of sources. Studies such as ours can be used to target interventions that reduce the most illnesses in a population and evaluate the effectiveness of the intervention.
In conclusion, sporadic non-O157 STEC infections were associated with a wide variety of food and farm animal environment-associated exposures, reflecting widespread carriage by animals. As for *Salmonella*, non-O157 STEC are a diverse group of organisms, widely distributed in food-producing and wild animals; many foods contaminated with animal feces transmit these pathogens. Therefore, non-O157 STEC infections might best be prevented by widespread improvements in food safety systems. To have the greatest effect in reducing the incidence of these infections, control measures should focus on decreasing contamination of produce consumed raw, especially lettuce, as well as improving the safety of food consumed in restaurants and decreasing transmission from animal environments. Such measures would also decrease illnesses caused by other enteric pathogens (30,32). Control measures that could be effective include decreasing carriage of pathogens by food animals, decreasing contamination of farm environments with food animal fecal matter, and decreasing contamination of foods of animal origin at slaughter. Transmission directly from farm animal environments could be decreased by improving hand hygiene; for example, by designing systems in which handwashing is the default behavior after exposure to those environments.

Acknowledgments

We thank Ruth Luna-Gierke, Raj Mody, Mary Patrick, Rebecca Lindsey, Haley Martin, Devon Stoneburg, Nancy Strockbine, Aimee Geissler, Danielle Tack, Beth Karp, and Kristin Holt for helpful contributions. We recognize epidemiologists and laboratory partners in FoodNet sites for providing data.

Funding was provided by the Emerging Infections Program, CDC; Food Safety and Inspection Service, US Department of Agriculture; and the Center for Food Safety and Applied Nutrition, US Food and Drug Administration.

About the Author

Dr. Marder is a senior epidemiologist at the Washington State Department of Health, where she works on COVID-19 surveillance. Previously, Dr. Marder was a surveillance epidemiologist with the Foodborne Diseases Active Surveillance Network, where she conducted epidemiologic studies and analyses of enteric illnesses.

References

Address for correspondence: Ellyn P. Marder, Washington State Department of Health, 1610 NE 150th St, Shoreline, WA 98155, USA; email: Ellyn.Marder@doh.wa.gov
The continuous evolution of avian influenza viruses (AIVs) of subtype H3 in China and the emergence of human infection with AIV subtype H3N8 highlight their threat to public health. Through surveillance in poultry-associated environments during 2009–2022, we isolated and sequenced 188 H3 AIVs across China. Performing large-scale sequence analysis with publicly available data, we identified 4 sublineages of H3 AIVs established in domestic ducks in China via multiple introductions from wild birds from Eurasia. Using full-genome analysis, we identified 126 distinct genotypes, of which the H3N2 G23 genotype predominated recently. H3N8 G25 viruses, which spilled over from birds to humans, might have been generated by reassortment between H3N2 G23, wild bird H3N8, and poultry H9N2 before February 2021. Mammal-adapted and drug-resistance substitutions occasionally occurred in H3 AIVs. Ongoing surveillance for H3 AIVs and risk assessment are imperative for potential pandemic preparedness.

Avian influenza viruses (AIVs) of subtype H3 are highly prevalent among waterfowl globally, causing mild or no apparent signs of illness in birds (1–5). H3 AIV has shown the potential for cross-species transmission and was the origin of other animal influenza viruses, which caused epidemics in horses, dogs, seals, and pigs (6–9). In 1968, H3 AIV contributed its hemagglutinin (HA) gene to the human influenza (H3N2) pandemic viruses, and it is still unknown whether an intermediate host was involved (10). In April 2022, the first human infection with AIV (H3N8) was reported; the case was in a 4-year-old boy whose family reared chickens and silky fowls in Henan Province, China (11). After infection, the patient exhibited recurrent fever and severe pneumonia. In May 2022, a second case was identified in 5-year-old boy with mild influenza symptoms, who had visited the live poultry market (LPM) in Hunan Province, China (12). Those cases raised concern over whether H3N8 AIVs will cause a major public health threat (13).

In China, H3 AIVs have been dynamically circulating in poultry and wild birds across multiple regions (14). H3 combinations with multiple neuraminidase (NA) subtypes (N1–N8) were reported, among which H3N2 and H3N8 predominated (14–16). Phylogenetically, those viruses belonged to the Eurasian lineage, which is widespread in wild birds across Eurasia (3,14,17,18). Reassortment events often occurred at LPMs (16,19–22). During 2009–2022, we conducted country-level AIV surveillance in poultry-associated environments and performed a large-scale genetic analysis to provide a comprehensive picture of the evolution of H3 AIVs in China.

Methods
During January 2009–June 2022, we collected environmental samples monthly from avian-linked environments across 31 provinces in the China mainland according to AIV surveillance guideline of Chinese Center for Disease Control and Prevention. We isolated and sequenced 188 H3 viruses (32 have been previously published [15]). The sequences were deposited in the GISAID EpiFlu database (https://www.gisaid.org; accession nos. EPI2210281–1516) (Appendix Table 1, https://wwwnc.cdc.gov/EID/article/29/6/22-1786-App1.pdf).

DOI: https://doi.org/10.3201/eid2906.221786
We performed sequence alignments with available sequences from the GISAID EpiFlu database as of June 25, 2022, by using MAFFT version 7.222 (23). We reconstructed maximum-likelihood phylogenies of all segments by using FastTree version 2.1.11 (24). The resulting trees were classified into divergent lineages or sublineages. Genotypes were assigned by the combination of lineages for each segment of full-genome viruses.

To estimate the time to the most recent common ancestor (tMRCA) of H3N8 viruses of humans, we used Bayesian Markov chain Monte Carlo analyses for each gene in BEAST version 1.10.4 (25). We then generated maximum clade credibility trees (Appendix).

Results

Isolation and Sequencing of H3 AIVs

During January 2009–June 2022, we isolated 188 H3 AIVs from the poultry-associated environmental samples: 167 H3N2, 7 H3N3, 3 H3N6, 10 H3N8, and 1 H3 with NA unknown (Appendix Table 1). The H3N2 AIVs were widely distributed across 15 provinces, mainly in southern China (Figure 1, panel A). We isolated H3 AIVs with other NA subtypes (N3, N6, and N8) in 2–8 provinces. More than three quarters of the H3 viruses (149/188, 79.3%) were isolated from the samples collected from LPMs (Appendix Table 2). Before 2014, we isolated and sequenced <6 strains of H3 AIVs per year (Figure 1, panel B). Since 2014, we obtained more isolates, most (48) in 2018. All H3 isolates were sequenced, and we recovered the full genomes from 185 of the isolates (Appendix Table 1).

Evolution of H3 Genes in China

To elucidate the evolution of H3 AIVs in China, we performed a phylogenetic analysis of HA genes of the H3 AIVs sequenced in this study, along with sequences available from the GISAID EpiFlu Database (Figure 2). The HA genes of all viruses in this study were grouped into the Eurasian lineage, sharing a nucleotide homology of 79.2%–100.0%. In brief, the major branch of Eurasian avian H3 lineage containing viruses in recent decades could be further classified into 10 sublineages (named by the geographic distributions: China-1, China-2, China-3, China-4, Asia, Europe-Asia, worldwide-1, worldwide-2, North America-1, and Korea); other minor branches at the bottom of the phylogenetic tree included the North America-2 sublineage and early strains sampled during 1972–1992 (Figure 2; Appendix Figure 1). H3 AIVs collected from wild birds, poultry, or poultry-associated environments in China in recent decades were distributed in 8 sublineages, except sublineages North America-1, North America-2, and Korea, which were only identified in North America and South Korea.

Sublineages China-1, China-2, China-3, and China-4 consisted of AIVs almost all collected from poultry or poultry-associated environments in China in addition to a few viruses from Vietnam (18) and Cambodia (1) (Appendix Figure 1). Domestic ducks acted as the main host for China-1 (48/166), China-2 (63/111), China-3 (80/110), and China-4 (15/23).

Figure 1. Spatial and temporal distribution of avian influenza virus subtype H3 isolated from poultry-associated environments, China, 2009–2022. A) Spatial distribution of environmental H3 subtype viruses. One H3 isolate without neuraminidase (NA) subtype was designated as H3Nx. Provinces where human infections with H3N8 were reported are noted. B) Number of environmental H3 subtype isolates per year. This figure includes all H3 isolates sequenced by the Chinese National Influenza Center. Additional metadata are available in Appendix Table 1 (https://wwwnc.cdc.gov/EID/article/29/6/22-1786-App1.pdf).
Evolution of Avian Influenza Virus (H3), China

(Appendix Table 3). Each sublineage comprised various NA subtypes (Appendix Figure 1). The most common subtype was H3N2 (270), followed by H3N8 (41), H3N6 (19), H3N3 (12), and H3N9 (1), except for 67 H3 AIVs with NA unknown. A high proportion (397/410, 96.8%) of these viruses have been sampled since 2009, whereas recent isolates were primarily consolidated in the China-1 and China-2 sublineages (Figure 2).

The China-1 sublineage had evolved into 3 distinct subgroups, with prevalence spanning different times. Most of our isolates (101/185, 54.6%) fell into the China-1.1 subgroup, which circulated during...
2008–2022. Of note, 3 H3N8 strains sampled in Fujian (2) and Guangxi (1) Provinces in 2022 had a close relationship with 2 human H3N8 strains and together formed a miniature phylogenetic group (Appendix Figure 1). The China-1.2 subgroup was detected during 2009–2016 and the China-1.3 subgroup during 2013–2015 (Figure 2; Appendix Figure 1).

The China-2 and China-3 sublineages have evolved into 3 subgroups, and the China-2.2 subgroup mainly comprised environmental H3 viruses (29/31, 93.5%) sequenced in this study during 2015–2021 (Figure 2; Appendix, Appendix Figure 1). H3 viruses of sublineages Asia, Europe-Asia, worldwide-1, and worldwide-2 were occasionally detected in poultry and wild birds in China, but no stable cluster was established (Appendix, Appendix Figure 1).

Reassortment with NA Genes

We detected multiple NA subtypes in each H3 sublineage. We performed phylogenetic analyses for 4 major NA subtypes: N2, N3, N6, and N8. Almost all NA genes of H3 AIVs in our study were clustered within the Eurasian lineage, and 8 H3N8 AIVs had NA genes derived from the North American lineage (Appendix Figure 2, panels A–D).

The N2 genes of AIVs in the Eurasian lineage could be further classified into sublineages, and most H3N2 viruses in this study were clustered in the Eurasian-2 sublineage (Appendix). We also found H3N3 strains closely related to the human-origin influenza (H10N3) virus and H3N6 closely related to highly pathogenic AIV (HPAIV) subtype H5N6 (Appendix).

Most NA genes of H3N8 viruses (43/59) from China belonged to the North American lineage, closely related to AIVs from different regions (e.g., Russia, Vietnam, South Korea, and North America). Of note, the NA genes of human H3N8 and H10N8 viruses belonged to distinct groups (Figure 3), and 3 environmental strains sequenced in this study were highly homologous to the human H3N8 viruses. Few H3N8 strains from China fell into the Eurasian lineage (Figure 3).

Reassortment with Internal Genes

In the phylogenetic tree of each internal gene, a large proportion of H3 AIVs in China belonged to the Eurasian wild bird reservoir (Appendix Figure 3). Some H3 AIVs had internal genes derived from ZJ-5 sublineage (of the wild bird viruses), poultry H5N1/H5N6 sublineage, poultry H9N2 ZJ-HJ/07 sublineage, or waterfowl H6 sublineage (Appendix). Each internal gene has only 1 or 2 virus sequences that belong to the H9N2 ZJ-HJ/07 sublineage. In 2022, a total of 3 environmental and 2 human H3N8 viruses contained all internal genes belonging to the H9N2 ZJ-HJ/07 sublineage.

Emergence of Multiple Genotypes

Assessment of the diversity of genome constellations indicated that prolific reassortments of the H3 AIVs had occurred in China in past decades. On the basis of the sublineage classification of all 8 gene segments, we identified 126 genotypes among 284 full-genome H3 viruses sampled in China during 2009–2022 (Appendix Figure 4). We found evidence of dynamic emergence for 73 genotypes (G1–G73) from 212 H3N2 genomes, 11 genotypes (G1–G11) from 14 H3N3, 17 (G1–G17) from 25 H3N6, and 25 (G1–G25) from 33 H3N8 (Appendix). H3N2 G23 had been detected in multiple years and provinces during 2014–2022 (Appendix Figure 4, panel A, Figure 5, panel A). H3N8 G25, which had been detected in both environmental and human viruses in 2022, acquired HA genes from the China-1 H3 sublineage, NA genes from the North American N8 lineage, and all 6 internal gene from poultry H9N2 ZJ-HJ/07 sublineage viruses (Appendix Table 4).

Emergence of H3N8 G25 Viruses

We further traced the origin of the H3N8 G25 viruses. When we compared the genetic diversity of G25 genotype viruses, the results showed that these viruses shared a higher similarity in HA (98.4%–99.1%) and NA genes (98.8%–99.3%) and a lower similarity in other internal genes (polymerase basic [PB] 2, 93.9%–100.0%; PB1, 91.6%–99.9%; polymerase acidic [PA], 93.4%–99.6%; nucleocapsid, 94.5%–99.9%; matrix (M), 95.3%–100.0%; and non-structural, 97.0%–98.7%). This finding indicated that after the emergence of prior H3N8 G25 virus, dynamic reassortment might occur between H3N8 and poultry H9N2 viruses.

To elucidate the timing of H3N8 G25 virus emergence, we performed coalescent analyses and calculated the estimated tMRCA of all 8 segments (Appendix Figures 6–13). The median tMRCA among the HA genes was estimated to be February 2021 (95% highest posterior density [HPD] October 2020–May 2021). The HA genes closely related to those of H3N8 G25 viruses were from H3N2 G23 AIVs isolated from Guangxi and Guangdong Provinces, particularly A/environment/Guangxi/44461/2019 (H3N2), sampled in December 2019 (Figure 4, panels A, C). The median tMRCA among the NA genes of the H3N8 G25 viruses was estimated to be August 2020 (95% HPD November 2019–March 2021). H6N8
Figure 3. Maximum-likelihood phylogenetic tree of avian influenza virus subtype N8 genes from China (n = 1,106) and reference sequences from GISAID (https://www.gisaid.org). Blue tree sections indicate sequences of H3 subtype viruses reported in this study; red tree sections indicate other H3 subtype viruses from China. For of clarity, some clades are collapsed. Representative clusters are indicated in shaded boxes and magnified on the right. Violet arrows indicate human H3N8 viruses; purple solid circle indicates human H10N8 virus. The phylogenetic tree of N8 genes with more complete information is shown in Appendix Figure 2, panel D (https://wwwnc.cdc.gov/EID/article/29/6/22-1786-App1.pdf). Scale bar indicates nucleotide substitutions per site.
Figure 4. Bayesian time-resolved phylogenetic tree of hemagglutinin (HA) genes from avian influenza subtype H3 viruses and neuraminidase (NA) genes from subtype N8 viruses from China and reference sequences from GISAID (https://www.gisaid.org). A) Maximum clade credibility tree of HA genes of the China-1.1 H3 subgroup (n = 122). Tip points are colored by provinces (corresponding to the fill color in the map). Violet triangles indicate human H3N8 viruses. The lineage origins of each gene segment of H3 AIVs are represented by different colored tiles adjacent to the tree; the tile is blank if the sequence is unavailable. H3N2 G23 viruses are indicated with arrows. H3N8 G25 viruses are indicated within the bracket. The fully resolved tree with detailed information is depicted in Appendix Figure 6 (https://wwwnc.cdc.gov/EID/article/29/6/22-1786-App1.pdf). B) Maximum clade credibility tree of N8 genes (n = 202). Tip points are colored by region. Violet triangles indicate human H3N8 viruses; purple triangle indicates human H10N8 virus. Virus names of the representative cluster (in the dashed box) are shown in panel C. The fully resolved tree with detailed information is depicted in Appendix Figure 7. C) Clades in the dashed box in panels A and B. Trees are drawn to the same scale. Blue indicates H3 avian influenza viruses sequenced in this study; violet indicates human H3N8 viruses. For HA (top) and NA (bottom) genes, branch tips are colored as in panels A and B. Blue node bars correspond to the 95% credible intervals of node heights. Arrows indicate the most recent common ancestors of HA and NA genes of H3N8 G25 viruses.
Evolution of Avian Influenza Virus (H3), China

AIV isolated in Japan and H3N8 AIV isolated in the Russian Far East during 2019–2020 were closely related to H3N8 G25 viruses, specifically A/common teal/Sakhalin/OD17/2019 (H3N8) virus (Figure 4, panels B, C).

The internal genes of the H3N8 G25 viruses showed earlier tMRCAs than that estimated for HA and NA genes (Appendix Figure 8–13). The internal genes of H3N8 G25 viruses scattered within different subclades without forming a cluster alone. The closest H9N2 viruses to the human H3N8 viruses also differed. For example, the common ancestry of PB1 genes of the H3N8 G25 viruses could be dated back to March 2008 (95% HPD March 2007–May 2009). A/Fujian-siming/1348/2020 (H9N2) was closely related to human H3N8 virus A/Henan/4-10CNIC/2022, and A/Hunan/34179/2018 (H9N2) was close to human H3N8 virus A/Changsha/1000/2022 (Figure 5). Other internal genes of the H3N8 G25 viruses had been estimated to have tMRCAs tracing back to 2010–2018 (Appendix Figure 8–13). Those results further indicate that H3N8 G25 viruses dynamically reassorted with H9N2 viruses.

Molecular Characterization of the H3 AIVs

We investigated the molecular markers of H3 AIVs in China (Appendix Table 5). One human H3N8 isolate, A/Henan/4-10CNIC/2022, had 228G/S in the receptor binding site, which might alter the binding preference to human-type receptors (26). Three H3 AIVs previously sampled from poultry in 2014 had an aspartic acid at position 190, which might alter receptor specificity (26).

Figure 5. Bayesian time-resolved phylogenetic tree of polymerase basic 1 genes (n = 60) from avian influenza viruses subtype H3 from China and reference sequences from GISAID (https://www.gisaid.org). Violet indicates human H3N8 viruses; blue indicates H3N8 G25 AIVs sequenced in this study; black indicates the closest strains to human H3N8 viruses. Blue node bars correspond to the 95% credible intervals of node heights. Arrow indicates the most recent common ancestor of H3N8 G25 viruses. The fully resolved tree with detailed information is depicted in Appendix Figure 9 (https://wwwnc.cdc.gov/EID/article/29/6/22-1786-App1.pdf).
Key molecular markers associated with increased capacity for receptor binding, viral replication, and pathogenicity in mammals were found in the internal gene segments of avian H3 viruses in China (Appendix Table 5). E627K and E627V in PB2 genes were exclusively detected in human H3N8 viruses, suggesting adaptation of these viruses to mammals. Other mutations such as R389K, I292V, and A588V in PB2, which might be associated with increased polymerase activity and replication in mammalian and avian cells (27,28) and virulence in mice (29), were also found in 2 human isolates and several avian H3 viruses. All H3 AIVs contained N30D, T215A, and P41A in the M1 genes, which might alter the virulence in mice (30) and affect growth and transmission in the guinea pig model (31).

We identified host signature amino acids in PB2 and PA genes (PB2-702R, PA-356R, PA-409N) (32) in human H3N8 isolates and few H3 AIVs, except for A/Changsha/1000/2022, which had PB2-702K (Appendix Table 5, Figure 14). We also analyzed the substitutions related to antiviral drug resistance (Appendix Table 5). Two human H3N8 viruses contained an S31N mutation in the M2 gene, suggesting resistance to amantadine and rimantadine (33). In the M2 protein, 26 of 337 H3 AIVs contained drug-resistance mutation V27I/A and 15 contained S31N. Mutations, such as E119V/A/D and H274Y (N2 numbering) were not identified in NA gene, suggesting that all H3 viruses might be sensitive to NA inhibitors (e.g., oseltamivir) (34); however, 3 H3 AIVs possessed Q136L, E119G, or H274R, which might affect their drug sensitivity.

Discussion

The natural reservoir for AIVs is waterfowl; the viruses are spread worldwide by wild bird migration and introduced to domestic poultry across the wild bird–poultry interface (35). H3 AIVs have continuously circulated in poultry and wild birds across China (14). In China, 4 sublineages (China-1, China-2, China-3, and China-4) of HA genes evolved from the Eurasian lineage and became established in poultry, especially in domestic ducks, after introduction in recent decades. Currently, H3 viruses in China-1 and China-2 sublineages are cocirculating in poultry, with the China-1 sublineage predominating. Although frequent introductions from wild birds to poultry have been observed in other sublineages (e.g., worldwide-1), it is inevitable that continuous introductions will result in new sublineages in poultry (36). Our surveillance results also showed that H3N2 predominated among H3 AIVs in poultry-associated environments during 2009–2022. Consistent results for birds were revealed by the available avian strains in GISAID (Appendix Figure 15), although most were collected during 2013–2015 because of strengthened surveillance during the influenza (H7N9) outbreak (37–39).

Phylogenetic analyses revealed intense reassortment of the H3 AIVs, generating multiple genotypes. On the basis of the sublineage classification, we identified 126 genotypes from 284 H3 AIVs during 2009–2022. Most were transient, and the H3N2 G23 genotype seems to have stabilized in recent years, predominating in southern China. The H3N8 G25 viruses, which had caused human infection, contained complete internal gene cassettes originating from poultry H9N2 ZJ-HJ/07 sublineage, which has persistently circulated in chickens in China and named G57 genotype H9N2 AIVs (40). Similar to the pattern of H7N9 AIVs (41), H3N8 G25 AIVs might be adapted in chickens rather than ducks.

The H3N8 G25 viruses exhibited distinct tMRCA among 8 segments. Molecular dating of HA and NA genes of the H3N8 G25 viruses implied that the ancestral virus might have been generated through reassortment between the H3N2 G23 virus and wild bird H3N8 virus before February 2021 (95% HPD October 2020–May 2021). However, the internal genes of the H3N8 G25 viruses showed much earlier tMRCA than those of HA and NA, indicating that sequential reassortments underlie the emerging of H3N8 G25 viruses.

H3 AIVs have existed for a long time, but to our knowledge, no human infection had been reported until 2022. After reassortment with 6 internal genes of H9N2, current H3N8 AIVs seem to have the advantage of infecting humans (42). Ongoing adaptation in mammals after continuous human infections may underlie emergence of pandemic strains. The H3N8 G25 viruses had acquired human-adapted mutations after infecting humans (Appendix Figure 14), such as 228G/S in the HA gene and E627K/V in the PB2 gene, which were also present in 1968 H3N2 pandemic strains (43). This finding indicates the pandemic potential of the newly emerged H3N8 AIVs.

For risk assessment of the pandemic potential, human population immunity to a newly emerged animal virus is a critical parameter. HA inhibition assays among poultry workers (12) and the general population (44) showed seropositivity for the human seasonal H3N2 virus but very low seroprevalence against the newly emerged H3N8 virus. Those results suggest little antigenic cross-reactivity between human seasonal H3N2 virus and the current H3N8
virus and that the human population has little or no preexisting immunity to emerging H3N8 viruses. No drug-resistance mutation to NA inhibitors was observed in H3N8 G25 viruses; therefore, vaccine and drug stockpiles are needed for the potential pandemic preparation.

H3 AIVs have been isolated from asymptomatic ducks (45). Recent studies indicate that the newly emerged H3N8 AIVs are pathogenic to chickens (12,46). Our samples were collected exclusively from avian-linked environments (including LPMs, poultry farms, backyards, and slaughterhouses), according to surveillance guidelines. Thus, we were unable to link the isolated H3 AIVs to specific host information. Poultry sampling might provide helpful information about H3 AIV activity in China. The species of poultry in the LPMs might be confounding factors for the spatiotemporal differences. In this study, the sampling sites were geographically dispersed, and the data were collected from a small number of LPMs. Considering the large number of LPMs in China, especially in rural areas, representativeness of the data might be biased.

AIV surveillance has greatly improved since HPAIV H5N1 infected humans in Hong Kong in 1997 (47). However, gaps still exist, and new virus is unpredictable. The AIVs circulating and evolving in poultry might have a preferential ability to transmit to humans directly across the poultry–human interface (48). The H3N8 G25 viruses, with increased human receptor binding and low population immunity (12), had raised concern for pandemic potential. Dual receptor-binding profiles (49,50) and mutations associated with enhanced virus replication and pathogenicity in mammals were also found in many H3 AIVs. Surveillance and research of H3 AIVs, as well as the drugs and vaccine capacity, should be strengthened for pandemic preparedness.

Acknowledgments
We thank the authors and laboratories for sharing the AIVs sequences in the GISAID database.

This study was supported by the National Key Research and Development Program of China (2022YFC2303800, 2021YFC2300100) and the National Nature Science Foundation of China (81961128002, 31970643).

The opinions expressed by authors contributing to this journal do not necessarily reflect the opinions of the Chinese Center for Disease Control and Prevention or the institutions with which the authors are affiliated.

About the Author
Dr. J. Yang studies in the Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and the School of Public Health (Shenzhen). Shenzhen campus of Sun Yat-sen University. Her research interests include epidemiology and evolutionary analysis of influenza viruses.

References

Evolution of Avian Influenza Virus (H3), China

Address for correspondence: Dayan Wang, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Changping District, Beijing 102206, China; email: wangdayan@ivdc.chinacdc.cn; Yuelong Shu, School of Public Health (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China; email: shuyulong@mail.sysu.edu.cn

In 2014, the first case of tickborne Bourbon virus (BRBV) was identified in a man in Bourbon County, Kansas. Since its initial identification, at least 5 human cases of BRBV-associated disease have been confirmed in the Midwest region of the United States. Because little is known about BRBV biology and no specific treatments or vaccines are available, further studies are needed.

In this EID podcast, Dr. Christopher Stobart, a microbiologist and associate professor at Butler University in Indianapolis, Indiana, discusses the emergence and virology of tickborne Bourbon virus in the United States.

Visit our website to listen: https://bit.ly/3w0vefK
Members of the poxvirus subfamily *Chordopoxvirinae* (family *Poxviridae*) infect vertebrates, such as birds, reptiles, and a broad spectrum of mammals. Although some chordopoxviruses have a narrow host range, several can easily jump species barriers and cause severe disease (1). Considering the potential zoonotic and epizootic potential of chordopoxviruses, constant monitoring and adaptation of diagnostic procedures are essential. With the advent of metagenomic sequencing, novel chordopoxviruses have been identified that are genetically diverse and were not readily detectable by using established PCR-based diagnostics (2–4).

We report a case of a poxvirus infection in a gray seal (*Halichoerus grypus*) from the North Sea near Germany. We identified a novel chordopoxvirus that was phylogenetically divergent from other known poxviruses of gray seals.

Case Study

In June 2020, a juvenile gray seal was nursed at a rehabilitation center in Friedrichskoog, Germany (Appendix Figure 1, https://wwwnc.cdc.gov/EID/article/29/6/22-1817-App1.pdf) and was about to be released back into the wild when staff noticed pox-like lesions on its hind flipper (Appendix Figure 2). The seal’s overall health condition deteriorated over the next 3 weeks, and it had dyspnea, vomiting after feeding, and apathy; it was humanely euthanized. At necropsy, the seal was in good body condition (abdominal blubber ≈35 mm, reference >30 mm). We noted 2 prominent verrucous nodules on the right hind flipper (Appendix Figure 2). We also found severe emphysema of the mediastinum and a focal, adhesive pleuritis. No other organs had lesions. Histologic examination of both nodules (Appendix) revealed severe papillary epithelial hyperplasia, acanthosis, ballooning degeneration, large eosinophilic cytoplasmatic inclusion bodies in the stratum spinosum, moderate hyperkeratosis, and severe ulceration with hemorrhages (Figure 1, panels A, B). In addition, we observed multifocal severe infiltrations of neutrophils. In the liver, we detected a focally necrotizing hepatitis with ballooning degeneration of nuclei and a focal granulomatous subcapsular hepatitis with intraslesional parasites and calcification. We found further inflammatory changes in the lungs (Figure 1, panel C), which had multifocal moderate pneumonia with infiltration of mononuclear cells and neutrophils; the heart had focal severe mononuclear myocarditis; and the duodenum had moderate diffuse lymphoplasmacellular enteritis. We also observed depletion of lymphocytic organs, including a severe atrophy of the thymus.

Results of quantitative PCRs (qPCRs) specific for orthopoxvirus (5) and parapoxvirus (6), canine alphaherpesvirus 1, influenza A virus, canine morbillivirus, and *Brucella* sp. were negative for lung and skin lesion tissue. We isolated an *Escherichia coli* strain from lung, mediastinum, liver, kidney, and intestines.

We used electron microscopy to analyze lung tissue and detected typical poxvirus-like virions, which were ovoid in shape and ≈250 nm long and ≈200 nm wide (Figure 1, panel D). The surface structures resembled typical orthopox-like randomly arranged tubular...
units. However, the virion morphology did not enable assignment to a poxvirus genus.

We isolated DNA from a pool of lung and skin lesion tissue and sequenced DNA using Ion Torrent S5XL (Thermo Fisher Scientific, https://www.thermofisher.com) (7), NovaSeq (Illumina, https://www.illumina.com), and MinION Mk1C (Oxford Nanopore Technologies, https://nanoporetech.com) sequencing technologies (Appendix). We combined the reads in a hybrid assembly, which resulted in a complete poxviral genome (mean coverage ≈650). We were able to confirm completeness of the genome because the terminal repeats contained the terminal hairpin region.

We screened several organs by using 2 different virus-specific qPCRs (Appendix). Results from both qPCR panels were consistent and we detected the highest viral loads in the skin lesion and parts of the lung (Table).

We tentatively named the poxvirus Wadden Sea poxvirus (WSPV) to reflect the geographic origin of the infected gray seal, which was found in the Wadden Sea, an intertidal zone in the southeastern part of the North Sea, Germany (Appendix Figure 1). We submitted the annotated WSPV genome sequence to the International Nucleotide Sequence Database Collaboration (https://www.insdc.org; accession no. OP810554).

WSPV had one of the smallest genomes (124,614 bp) and lowest guanine-cytosine content (≈22.5%) described so far among chordopoxviruses. The unique core genome of 117,842 bp was flanked by 2 inverted terminal repeats of 3,386 bp each. We identified 124 unique potential open reading frames (ORFs), of which 3 were duplicated in the inverted terminal repeats. BLASTp (https://blast.ncbi.nlm.nih.gov/Blast.cgi) identified 111 ORFs representing orthologs of poxvirus proteins. Nine ORFs encoded proteins that were not related to known poxvirus proteins but showed sequence similarity to eukaryote proteins, and 4 ORFs remained unclassified.

Figure 1. Histopathology and electron microscopy of nodules and lung tissue from a gray seal (Halichoerus grypus) with novel poxvirus, North Sea, Germany. A) Histopathology of nodules shows severe papillary epithelial hyperplasia with infiltration of neutrophils. Scale bar indicates 200 μm. B) Histopathology of ballooning degeneration of epithelial cells. Arrows indicate large eosinophilic intracytoplasmic inclusion bodies. Scale bar indicates 50 μm. C) Histopathology of the lung shows multifocal moderate pneumonia with infiltration of mononuclear cells and neutrophils with proliferation of pneumocytes type II and intra-alveolar histiocytosis, severe atelectasis, and hyperemia. Scale bar indicates 100 μm. D) Negative-contrast electron microscopy of lung tissue. Microscopy revealed poxvirus-like viral particles. Scale bar indicates 300 nm. Inset: closeup of poxvirus-like particles, which had an oval shape ≈250 nm × ≈200 nm and an irregular surface with randomly arranged tubular structures; scale bar indicates 100 nm.

Table. Quantitative PCR detection of novel poxvirus from different tissues of a gray seal (Halichoerus grypus), Germany*

<table>
<thead>
<tr>
<th>Sample</th>
<th>Panel 1, viral DNA polymerase</th>
<th>Panel 2, viral RNA polymerase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin lesion</td>
<td>9.1</td>
<td>8.9</td>
</tr>
<tr>
<td>Lung 1</td>
<td>18.2</td>
<td>18.2</td>
</tr>
<tr>
<td>Lung 2</td>
<td>32.3</td>
<td>31.3</td>
</tr>
<tr>
<td>Lymph nodes</td>
<td>25.0</td>
<td>24.6</td>
</tr>
<tr>
<td>Uterus</td>
<td>26.5</td>
<td>26.2</td>
</tr>
<tr>
<td>Spleen</td>
<td>27.2</td>
<td>27.2</td>
</tr>
<tr>
<td>Kidney</td>
<td>28.8</td>
<td>28.8</td>
</tr>
<tr>
<td>Blood, EDTA</td>
<td>32.2</td>
<td>31.5</td>
</tr>
<tr>
<td>Brain</td>
<td>32.9</td>
<td>33.7</td>
</tr>
<tr>
<td>Liver</td>
<td>33.7</td>
<td>32.7</td>
</tr>
</tbody>
</table>

*Novel virus is tentatively named Wadden Sea virus.
For phylogenetic classification, we compared the amino acid sequences encoded by 15 poxvirus core genes from WSPV with the respective homologs from 47 representative poxviruses (Appendix). WSPV formed a separate phylogenetic branch that did not fall within any of the established genera (Figure 2) and likely is a new species within a novel genus of the subfamily Chordopoxvirinae. Of note, a sequence comparison of the predicted WSPV DNA polymerase protein to the nonredundant BLAST database revealed a 96.3% sequence identity with a partial sequence from a Steller sea lion poxvirus (GenBank accession no. AAR06586.1), but other poxviruses had a sequence identity <77%.

Conclusions

Infections with poxviruses have been reported from gray seals and harbor seals (*Phoca vitulina*), both of which live in the North Sea, Germany. Poxviruses have also been reported in other pinniped species and infections are usually associated to subclades of parapoxviruses, called sealpox or sea lion pox virus (8–10). Ulcerative to proliferative, nodular, cutaneous, and mucosal lesions have been found in seals infected with parapoxviruses (10–12). The nodules usually heal spontaneously, but healing lasts from several weeks up to a few months. The illness rate is high, but death rates are low (13). Rarely, nodules in...
the oral cavity can lead to problems during feeding, and secondary bacterial infection can fatally impair respiratory functions (14). However, in the case we report, we could not link the animal’s overall deteriorating health condition and severe pneumonia to oral lesions. We considered the cultured E. coli strain a facultative pathogen that might have been involved in disease; however, postmortem contamination might be more likely.

We did not detect any parapoxvirus DNA, but sequencing revealed WSPV, a novel poxvirus that is phylogenetically distinct from any other members of the subfamily Chordopoxvirinae. The high loads of viral DNA in several organs (Table), and the observed histopathologic changes suggested a generalized infection with systemic pathology. Lesion-associated detection of high viral loads (cycle quantification [cq] values for skin cq ≈9, for lung cq ≈18) indicated that the WSPV infection was likely responsible for the seal’s disease and severe pneumonia. However, other factors might have been involved, and the source of infection, the potential natural reservoir, and the zoonotic potential of WSPV are unknown. None of the contact animals within the rehabilitation center had similar lesions develop and so far, no further cases have been reported.

Sequence comparison of WSPV showed that a close relative of this novel poxvirus has been detected in a cutaneous lesion of a young Steller sea lion (Eumetopias jubatus) from Prince William Sound, Alaska, USA (15). This finding suggests a geographically wide distribution of WSPV or WSPV-related viruses and the potential to infect other pinnipeds. As noted in the case we describe, WSPV can cause severe disease. Therefore, future diagnostic considerations for pox-like lesions of pinniped species should include WSPV.

Acknowledgments
We gratefully acknowledge Patrick Zitzow for excellent technical assistance with metagenomic sequencing and Mandy Jörn for the graphic design of electron microscope pictures.

About the Author
Dr. Pfaff is a biotechnologist and the head of the Laboratory for Applied Bioinformatics and Sequencing of Viral Genomes and Transcriptomes at the Friedrich-Loeffler-Institut, Greifswald, Germany. His main research interests are discovery, characterization, and classification of viruses using high-throughput sequencing and bioinformatics.

References

Address for correspondence: Martin Beer, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Süduper 10, Greifswald 17493, Germany; email: Martin.Beer@fli.de
Tanapox is a rarely diagnosed zoonosis known to be endemic to equatorial Africa. All previously reported human cases were acquired within 10° north or south of the Equator, most recently 19 years ago. We describe a human case of tanapox in South Africa (24° south of the Equator). Expanded surveillance for this pathogen is warranted.

Tanapox is a rarely diagnosed zoonosis endemic to equatorial Africa. Only 4 exported cases from Africa involving either human or nonhuman primates have been reported (Table). Initial human outbreaks, in 1957 and 1962, were recorded from the Tana River Valley of Kenya, and the etiologic agent was subsequently isolated and described as Tanapox virus (TANV) (genus Yatapoxivirus, family Poxviridae) in 1965 (1). Subsequently, the occurrence of tanapox in research laboratory primates imported into the United States (2,3) led to a serologic survey of 12 nonhuman primate species from Kenya, Ethiopia, Cameroon, Côte d’Ivoire, Liberia, and Senegal; seropositivity was detected in all species surveyed in those countries (8). Therefore, nonhuman primates across equatorial Africa were surmised to be the natural reservoirs of TANV and humans incidental hosts (3,8). On the basis of the overlap between human tanapox cases and the geographic ranges of selected nonhuman primates, an ecologic niche model predicted that tanapox could be found from Somalia to Senegal, with the most southerly range above the Tropic of Capricorn (9).

The epidemiology and natural ecology of tanapox is largely unknown, but previous reports indicate that all infected humans are equally affected, regardless of age group and sex. Serologic surveys conducted in Tana River communities indicated 16.3% prevalence in 1971 and 9.2% in 1976 (10). Human-to-human transmission is rare, and although transmission from nonhuman primates to humans by contact or inoculation has been noted under laboratory conditions, natural human infections are more likely to be acquired by mechanical transmission from contaminated mouthparts of hematophagous arthropods (2–4). This vector theory arose because of the synchronicity between tanapox outbreaks and the increased arthropod activity associated with seasonal high temperatures, high rainfall, and flooding in the riparian areas in which surveillance was done (1,3,9).

The similarities in the distribution and incidence of TANV and West Nile virus antibodies in serum samples collected in the Tana River Valley in 1971 led to the suggestion that both viruses are transmitted in the same way (i.e., by a culicine mosquito, probably a species of Mansonia) (1,3).

In humans, tanapox typically manifests with 1 or 2 characteristic, nodular skin lesions that are large, raised, umbilicated, and painful and generally ulcerate without becoming pustular (in contrast to lesions observed in most other poxvirus infections) (1,3,7). The lesions may be associated with localized lymphadenopathy, and their gradual development is preceded by a mild, short-lived febrile illness, with possible pruritus and myalgia leading to prostration and headaches (1–3,5,6). Histologically, lesions are restricted to the epithelial layers, with cells containing eosinophilic cytoplasmic inclusions and vacuolated nuclei (1,2,7). TANV virions are poxlike but cannot be distinguished microscopically from the other species in the genus (e.g., Yaba monkey tumor virus) or

1These first authors contributed equally to this article.
from Orthopoxvirus virions (3,7). Clinical differential diagnoses have included cutaneous anthrax, other poxvirus infections, sporotrichosis, Mycobacterium marinum infection, spotted fever group rickettsial infections, tropical ulcers, insect bites, and scabies (3,7,9). The disease is self-limiting, with no recorded fatalities (3). We describe a case of tanapox in South Africa, 19 years after the last published report of human tanapox (7).

The Study
We obtained written consent from the patient in this study and received ethics clearance from the Faculty of Health Sciences of University of the Witwatersrand, Johannesburg (approval no. M210752). During February 2–6, 2022, a 61-year-old woman served as a volunteer in Kruger National Park (KNP), South Africa. She stayed in a tented bush camp along the banks of the Sand River, ≈20 km from the town of Skukuza (24°59′43″ S, 31°35′34″E) (Figure 1; Appendix Figure 1, https://wwwnc.cdc.gov/EID/article/29/6/23-0326-App1.pdf). The woman noted large numbers of arthropods (e.g., spiders, insects, and ticks) around the camp site and reported being bitten on several occasions on various body parts (especially on her hands, shoulders, arms, and back). Because of heavy

Table. History of recorded tanapox cases in humans and nonhuman primates, 1957–2004

<table>
<thead>
<tr>
<th>Year</th>
<th>Location of exposure</th>
<th>Epidemiologic description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1957</td>
<td>Ngau, Kenya (Tana River Valley)</td>
<td>Several Wapakomo school children diagnosed with tanapox</td>
<td>(1)</td>
</tr>
<tr>
<td>1962</td>
<td>Between Garissa and Garsen, Kenya (Tana River Valley)</td>
<td>About 50 case-patients from the Wapakomo tribe</td>
<td>(1)</td>
</tr>
<tr>
<td>1965–1966*</td>
<td>Holding facilities of primate supplier, USA</td>
<td>Infected macaques from the same supplier, distributed to 3 primate research centers in Oregon, California, and Texas, USA</td>
<td>(2–4)</td>
</tr>
<tr>
<td>1966–1968†</td>
<td>Laboratory-acquired</td>
<td>Several laboratory workers in Oregon and California became infected after handling of laboratory macaques</td>
<td>(2–4)</td>
</tr>
<tr>
<td>1971†</td>
<td>Laboratory-acquired</td>
<td>Human volunteer was inoculated with tanapox virus, and clinical progression of the disease was monitored and recorded</td>
<td>(1)</td>
</tr>
<tr>
<td>1979–1983</td>
<td>Mongala, Democratic Republic of Congo (then Zaire)</td>
<td>A total of 357 cases reported, of which 264 were confirmed by laboratory testing</td>
<td>(3)</td>
</tr>
<tr>
<td>1999</td>
<td>Bagamoyo, Tanzania</td>
<td>Traveler from Germany diagnosed with tanapox upon return from Tanzania</td>
<td>(5)</td>
</tr>
<tr>
<td>2002†</td>
<td>Sierra Leone</td>
<td>Person from Sierra Leone admitted to hospital in New York, USA, 2 weeks after arrival from Sierra Leone</td>
<td>(6)</td>
</tr>
<tr>
<td>2004</td>
<td>Republic of Congo</td>
<td>Volunteer working with chimpanzees has onset of tanapox; only diagnosed after return to USA</td>
<td>(7)</td>
</tr>
</tbody>
</table>

*Initially identified as Yaba-like disease virus; subsequent research indicated homology with Tanapoxvirus.
†Date of report (date of actual case not published).

Figure 1. Geographic distribution of recorded human cases of tanapox. A) Locations of previous tanapox cases reported in the literature. Red dots indicate cases acquired locally; red outlines indicate regions of countries visited by travelers to Africa. B) Location of the case acquired in Kruger National Park, South Africa, 2022. Green shading shows the park’s location; black triangle indicates town of Skukuza.
rains, trails were overgrown, so bushwalks resulted in scratches on her arms, and many ticks were found on her clothing. During February 7–9, she continued her visit to KNP as a guest in air-conditioned accommodation and had no further direct contact with vegetation. She reported no direct contact with primates, although vervet monkeys (Chlorocebus pygerythrus) are seen near the camps.

Two days after her return to urban Johannesburg, she experienced pruritus at the base of her thumb on the dorsal side of her right hand and noticed a pale blister forming there, followed 2 days later by another blister on the side of her left hand. Initially, both papules were round and white with erythematosus edges (Appendix Figure 2, panel A), but they became dome-shaped, firm, smooth, umbilicated nodules 12–15 mm in size (Appendix Figure 2, panels B, C). A third lesion formed on the woman’s mid-upper back but was perforated through chafing from clothing. About 3 days after the appearance of the first lesion, the woman reported feeling unwell, fatigued, and feverish and had severe headaches. No lymphadenopathy was recorded. The lesions were persistently painful and hypersensitive, but none were cystic or became pustular. Instead, they became ulcerated, open, and dry (Appendix Figure 2, panel D), and all 3 resolved over a period of 6 weeks, leaving slight discoloration. After discovering the third lesion, the woman sought medical attention. Differential diagnoses included allergies, cellulitis, erysipelas, pyoderma gangrenosum, or granulomas caused by foreign bodies or insect bites (e.g., mango fly bites).

Histopathologic examination of a lesion biopsy indicated a possible pox infection, given the presence of acidophilic intracytoplasmic inclusion bodies and cellular vacuolation (Figure 2, panel A). The lesion was confined to the epithelial layers with many cells that had vacuolated nuclei, and we observed ballooning cells in the deeper epithelial layer (Figure 2, panel B). Subsequently, we took an additional biopsy for electron microscopy and 2 lesion swab specimens for molecular characterization. After routine processing (Appendix), we observed numerous brick-shaped virions 287 nm x 221 nm with distinct surface tubules and generally an outer membrane layer (capsular form) (Figure 2, panel C). We used 1 dry swab sample for PCR analysis (Appendix), and partial sequence analysis indicated clustering with available TANV sequences (Appendix Figure 3). Attempts at full genomic sequencing and virus isolation (from the second swab specimen) were unsuccessful, possibly because of the limited clinical material available.

Recent surveys of the mosquito distribution in southern Africa have found that 2 culicine genera (Culex and Mansonia) comprise 91% of the mosquito population in the town of Skukuza (11). Weather conditions at the time of the case exposure were conducive to vector replication; recent rainfall was up to 147% higher than the average annual cumulative total (12), and ambient temperatures were 100°F–104°F (38 °C–40°C) (13). In terms of virus reservoirs, a limitation of Monroe et al.’s model (9) was that the restricted range of recorded human cases determined the exclusion of many other primates with extensive geographic ranges. Our report extends this range beyond the most southerly predictions of the model, which increases the pool of potential reservoir hosts.

Figure 2. Diagnostic light and electron microscopy of tanapox lesion biopsies from a case-patient, South Africa, 2022. A) High-power photomicrograph of initial skin biopsy, showing prominent vacuolation of epidermal keratinocytes, granular intracytoplasmic inclusions, and intranuclear pseudo-inclusions. Hematoxylin and eosin stain; original magnification ×400. B) Low-power photomicrograph of initial skin biopsy, showing a superficially eroded hyperplastic epidermis, with cytoplasmic pallor and a dense underlying superficial dermal lymphoid infiltrate. Hematoxylin and eosin stain; original magnification ×40. C) Negatively stained tanapox virus virion with surface tubules evident beneath the remains of the surrounding membrane. Virion dimensions were 159–327 nm x 186–289 nm. Scale bar indicates 100 nm.
Conclusions
The clinical findings for this reported case were in keeping with previous clinical reports of tanapox, and the diagnosis was supported by histopathology, electron microscopy, and molecular analyses. The importance and continuing relevance of histopathology and microscopy to the diagnosis and investigation of zoonotic disease were clearly illustrated. Given that tanapox is a vectorborne disease, many drivers, including anthropogenic destruction of wildlife habitats, environmental instability, and global climate change, may influence its emergence (14). Improved surveillance, including studies relating to the ecology and epidemiology of TANV in vectors, hosts, and humans, is warranted.

Acknowledgments
We thank Nosihle Msomi for her support in sequencing and sequencing analysis performed in this study.

About the Author
Dr. Birkhead is a medical scientist in the electron microscopy laboratory of the National Institute for Communicable Diseases, a division of the National Health Laboratory Service, in Johannesburg, South Africa. Her primary research interests include the use of ultrastructural information for diagnoses of and research on human infectious diseases.

References

Address for correspondence: Monica Birkhead, National Institute for Communicable Diseases, Private Bag X4, Sandringham, 2192, South Africa; email: monicab@nicd.ac.za
Replication of Novel Zoonotic-Like Influenza A(H3N8) Virus in Ex Vivo Human Bronchus and Lung

Kenrie P.Y. Hui, John C.W. Ho, Ka-Chun Ng, Samuel M.S. Cheng, Ko-Yung Sit, Timmy W.K. Au, Leo L.M. Poon, John M. Nicholls, Malik Peiris, Michael C.W. Chan

Human infection with avian influenza A(H3N8) virus is uncommon but can lead to acute respiratory distress syndrome. In explant cultures of the human bronchus and lung, novel H3N8 virus showed limited replication efficiency in bronchial and lung tissue but had a higher replication than avian H3N8 virus in lung tissue.

Avian influenza viruses (AIVs) with reassortments between AIVs from domestic poultry and wild birds sporadically cross species barriers, leading to human infections. Viruses with internal genes of H9N2, hemagglutinin, and neuraminidase acquired from wild birds constitute the zoonotic H5N1, H7N9, and H10N8 viruses (1–3) and can lead to severe influenza.

In 2022, two human infections with novel influenza A(H3N8) viruses were reported in Henan and Hunan Province, China (4,5). The first case was identified in a 4-year-old boy with acute respiratory distress syndrome, and the second case occurred in a 5-year-old boy with mild disease. Phylogenetic analysis revealed that the novel H3N8 viruses were triple reassortments containing the Eurasian avian H3 gene of wild-bird origin, the North American avian N8 gene derived from the wild bird AIV, and G57 genotype H9N2 internal genes from AIVs found in poultry in China (6,7). H3N8 viruses that are genetically similar to the zoonotic H3N8 viruses reported in China (4,5) have been isolated in poultry markets in Hong Kong, China (8). Those novel avian H3N8 viruses are antigenically distant from contemporary human influenza A(H3N2) viruses, and little cross-reactive immunity to these chicken H3N8 viruses exists in the human population (8). We assessed the replication of the novel influenza A(H3N8) virus in human ex vivo bronchus and lung tissues (Appendix, https://wwwnc.cdc.gov/EID/article/29/6/22-1680-App1.pdf).

The Study

The viruses used in this study were H9N2/Y280, pH1N1, avH3N8/MP16, novel H3N8, and H5N1/483 (Appendix Table 1). The novel H3N8 virus was isolated from chickens and is genetically closely related to the virus causing zoonotic human disease in China (A/Henan/4-10CNIC/2022/H3N8) (8). Their hemagglutinin genes share a 99.1% similarity, and the neuraminidase genes share a 98.7% similarity. The avH3N8 virus was isolated from wild bird droppings in Mai Po, Hong Kong, and is genetically unrelated to the virus causing zoonotic disease in China. The novel H3N8 virus failed to propagate in Madin-Darby canine kidney (MDCK) cells but could be propagated in eggs and titrated in chicken embryo fibroblasts (DF-1), whereas the other strains could be propagated and titrated in MDCK cells. We performed titration in cells that support the replication of the influenza A viruses rather than in all DF-1 cells, because pH1N1 virus did not replicate in DF-1 cells. We investigated the virus replication kinetics by measuring viral matrix protein segment RNA in culture supernatants using real-time quantitative reverse transcription PCR and 50% tissue culture infectious dose (TCID50) assay for infectious virus titers (Figure 1).

In bronchial tissues, pH1N1 virus had a higher level of viral RNA than did avH3N8, novel H3N8, and H5N1, whereas levels of viral RNA of H9N2 virus were higher than those of avH3N8 and H5N1 viruses (Figure 1, panels A, C). The viral RNA levels of avH3N8, novel H3N8, and H5N1 virus were similar.
Figure 1. Comparative replication competence of zoonotic-like influenza A(H3N8) viruses isolated from chicken and other human and avian viruses in ex vivo cultures of human bronchus and lung tissue. Viral M segment RNA copies (A, B) and viral titers (E, F) in culture supernatants were collected at 1, 24, and 48 hours postinfection with H9N2/Y280, pH1N1, avH3N8/MP16, novel H3N8, or H5N1/483 viruses and measured by quantitative reverse transcription PCR (A, B) and TCID₅₀ (E, F). C, D) Viral load from panels A and B by virus strain. G, H) Viral titers from panels E and F by virus strain. Data are geometric mean ± SD. Statistical analysis was performed using 2-way (A, B, E, F) or 1-way (C, D, G, H) analysis of variance followed by Tukey posttest; p<0.05 was considered to be statistically significant. Detailed information on viruses used in study is provided in the Appendix (https://wwwnc.cdc.gov/EID/article/29/6/22-1680-App1.pdf). AUC, area under the curve; M, matrix; TCID₅₀, 50% tissue culture infectious dose.
The viral RNA level of H5N1 virus was the highest among all the tested strains in human lung tissues, followed by H9N2 (Figure 1, panels B, D). Viral RNA levels of novel H3N8 and pH1N1 viruses were higher than those of avH3N8 virus. Measurement of viral RNA using quantitative reverse transcription PCR is sensitive, but it cannot distinguish defective viral particles from infectious ones. Therefore, we performed the TCID\textsubscript{50} assay to monitor the infectious viral titers.

As expected, replication of pH1N1 virus was the highest among all tested strains in human bronchial tissues, in both viral titers and area under the curve values (Figure 1, panels E, G). The titers of H5N1 virus were similar to those of H9N2 virus, whereas H5N1 virus had higher replication competence than did avH3N8 and novel H3N8 viruses. We observed a discrepant trend between viral RNA copies and infectious titers for H9N2. Viral RNA levels of H9N2 were similar to those of pH1N1 (Figure 1, panels A, C), but the infectious titers of H9N2 virus were significantly lower than that of pH1N1 in bronchus (Figure 1, panels E, G).

In lung tissue, H5N1 virus had the highest replication of all strains tested (Figure 1, panels F, H). Similar to pH1N1 virus, H9N2 had higher titers than the 2 H3N8 viruses in lung tissues. avH3N8 had the lowest titer measured by TCID\textsubscript{50}. The novel H3N8 virus replicated poorly in mammalian MDCK cells but replicated efficiently in DF-1 avian cells (Appendix Figure). Those findings imply that the novel H3N8 virus has not yet adapted to mammal hosts, which was confirmed by limited replication in human bronchial and lung tissues (Figure 1, panels E, F).

We fixed infected tissues at 48 hours postinfection and stained them for influenza A nucleoprotein immunohistochemistry (Appendix). Consistent with TCID\textsubscript{50} findings, bronchial tissues infected with pH1N1 had the most extensive distribution of viral protein.
antigen, whereas we observed moderate levels of viral antigen staining in tissues infected with novel H3N8, H9N2, and H5N1 virus. No viral antigen staining was observed in tissues infected with avH3N8 (Figure 2, panel A). In the lung, H5N1 virus infection demonstrated the most extensive viral antigen staining, followed by infection with pH1N1, novel H3N8, and avH3N8 virus, which demonstrated the least extensive staining (Figure 2, panel B).

The discrepancy between the viral load in RNA copies and TCID₅₀ titers of H9N2 and avH3N8 infection suggests that infection with those viruses might produce high levels of defective particles that cannot be detected by TCID₅₀ assay. Immunohistochemistry staining of viral antigen serves as alternative evidence of virus replication in human tissues. The staining correlates more with TCID₅₀ results than with viral RNA analysis for all the viruses.

Amino acid comparisons of the novel H3N8 and avH3N8 viruses demonstrated that they shared the same stalk length in the NA gene but did not have the G228S mutation that enhances binding to mammalian receptors (Appendix Table 2). The internal genes of the novel H3N8 virus were reassorted from H9N2, whereas the internal genes of the avH3N8 came from H3N8, H6N1, H6N2, H3N8, H1N1, and H7N1 (Table). Neither virus had the E627K mutation in polymerase basic 2 that confers mammal adaptation, but avian H3N8 virus did not have this mutation. This difference might contribute to higher replication of the novel H3N8 virus in human bronchial tissue. The S31N mutation found in the matrix protein 2 of the novel H3N8 virus provided adamantane resistance.

Conclusions
Although zoonotic H3N8 viruses have a dual receptor-binding affinity of α-2,3 and α-2,6 receptors (7), our findings show that this factor does not confer an advantage for replication in human bronchial tissue.

Our findings demonstrated inefficient replication of the novel H3N8 virus in human bronchial tissues, which implies limited efficiency to transmit among humans. This finding is in line with a recent serologic surveillance study in which no poultry workers were positive for antibodies for the novel H3N8 virus (7), and only 2 human cases have been documented since April 2022 (4,5). The moderate replication ability of the novel H3N8 virus in human lung tissue suggests that the virus causes less severe disease than H5N1 virus.

In summary, our findings suggest that the zoonotic-like avian H3N8 virus has limited efficiency for human-to-human transmission and, at present, is unlikely to cause severe disease in humans. However, the limited cross-reactive immunity against this novel H3N8 virus in the human population (8) and the emergence of novel H3N8 viruses by continuous reassortment between AIVs in wild birds and poultry demonstrate that the zoonotic and pandemic potential of avian H3N8 viruses should be closely monitored.

Acknowledgments
We thank Jenny Chan, Rachel Ching, and Kevin Fung for technical support.

This work was supported by grants from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services (contract no. 75N93021C00016) and the Theme-Based Research Scheme (Ref: T11-712/19-N) under University Grants Committee of Hong Kong Special Administrative Region.

About the Author
Dr. Hui is an assistant professor in the School of Public Health at the University of Hong Kong. Her research interests include risk assessment, understanding the pathogenesis of emerging respiratory viruses, and the development of therapeutic options for severe influenza diseases and coronavirus infections.

References

Address for correspondence: Michael C.W. Chan, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China; email: mchan@hku.hk

March 2023
World TB Day

- Risk for Prison-to-Community Tuberculosis Transmission, Thailand, 2017–2020
- Multicenter Retrospective Study of Vascular Infections and Endocarditis Caused by Campylobacter spp., France
- Yellow Fever Vaccine–Associated Viscerotropic Disease among Siblings, São Paulo State, Brazil
- Bartonella spp. Infections Identified by Molecular Methods, United States
- COVID-19 Test Allocation Strategy to Mitigate SARS-CoV-2 Infections across School Districts
- Using Discarded Facial Tissues to Monitor and Diagnose Viral Respiratory Infections
- Postacutec Sequelae of SARS-CoV-2 in University Setting
- Associations of Anaplasma phagocytophilum Bacteria Variants in Ixodes scapularis Ticks and Humans, New York, USA
- Prevalence of Mycobacterium tuberculosis Complex among Wild Rhesus Macaques and 2 Subspecies of Long-Tailed Macaques, Thailand, 2018–2022
- Comparative Effectiveness of COVID-19 Vaccines in Preventing Infections and Disease Progression from SARS-CoV-2 Omicron BA.5 and BA.2, Portugal
- Clonal Dissemination of Antifungal-Resistant Candida haemulonii, China
- Clonal Expansion of Multidrug-Resistant Streptococcus dysgalactiae Subspecies equisimilis Causing Bacteremia, Japan, 2005–2021
- Extended Viral Shedding of MERS-CoV Clade B Virus in Llamas Compared with African Clade C Strain
- Seroprevalence of Specific SARS-CoV-2 Antibodies during Omicron BA.5 Wave, Portugal, April–June 2022
- SARS-CoV-2 Incubation Period during the Omicron BA.5–Dominant Period in Japan
- Risk Factors for Reinfection with SARS-CoV-2 Omicron Variant among Previously Infected Frontline Workers
- Genomic Analysis of Early Monkeypox Virus Outbreak Strains, Washington, USA
- Correlation of High Seawater Temperature with Vibrio and Shewanella Infections, Denmark, 2010–2018
- Tuberculosis Preventive Therapy among Persons Living with HIV, Uganda, 2016–2022
- Nosocomial Severe Fever with Thrombocytopenia Syndrome in Companion Animals, Japan, 2022
- Burkholderia leprae in Armadillo Tissues from Museum Collections, United States
- Reemergence of Lymphocytic Choriomeningitis Mammarenavirus, Germany
- Emergomyces pasteurianus in Man Returning to the United States from Liberia and Review of the Literature
- New Detection of Locally Acquired Japanese Encephalitis Virus Using Clinical Metagenomics, New South Wales, Australia
- Recurrent Cellulitis Revealing Helicobacter cinaedi in Patient on Ibrutinib Therapy, France
- Inquilinus limosus Bacteremia in Lung Transplant Recipient after SARS-CoV-2 Infection
- Sustained Mpox Proctitis with Primary Syphilis and HIV Seroconversion, Australia
- SARS-CoV-2 Infection in a Hippopotamus, Hanoi, Vietnam

To revisit the March 2023 issue, go to: https://wwwnc.cdc.gov/eid/articles/issue/29/3/table-of-contents
Infection with highly pathogenic avian influenza (HPAI) virus results in high mortality rates in chickens, gallinaceous birds, and some wild bird species (1). Potential for HPAI virus transmission and adaptation to human hosts poses a pandemic risk (2). In 2021, HPAI viruses belonging to influenza A(H5N1) clade 2.3.4.4b were detected worldwide in migrating birds and commercial poultry flocks (3). HPAI H5N1 viruses were first detected in the United States in January 2022 in hunter-harvested wild birds in North and South Carolina (4); reports of infected wild and domesticated birds in other states followed. Infection risk among persons exposed to birds with H5N1 clade 2.3.4.4b infection is unknown, although 2 human cases were reported in China, 1 in Chile, 1 in Ecuador, 2 in Spain, and 1 in the United Kingdom (5,6). Using active symptom monitoring of exposed persons in the United States during February 7–September 3, 2022, we estimated the risk for symptomatic H5N1 virus infection in humans and developed a surveillance protocol for monitoring asymptomatic infection by using serologic testing among persons exposed to H5N1-infected birds.

The Study

In the United States, the US Department of Agriculture is responsible for conducting surveillance for avian influenza in wild or domesticated birds (7). An outbreak of HPAI in domesticated or commercial flocks was defined as ≥1 case of laboratory-confirmed avian influenza in a bird. For persons exposed (e.g., flock owners, farm workers, and cullers) to commercial poultry, backyard flocks, wild birds, and the environments of birds infected with HPAI, the Centers for Disease Control and Prevention (CDC) recommended active symptom monitoring (conducted through a mixture of phone, email, and text contact based on the jurisdiction’s preference) by health departments for 10 days after their most recent exposure among persons who did not wear recommended personal protective equipment (PPE) or had a breach in PPE (8). State and local health departments used different criteria to determine whether a person met the criteria for active monitoring, and PPE use data may have been collected by state and local health departments.
but was not collected by CDC. Respiratory specimens (typically nasal or nasopharyngeal swabs) were collected from persons with symptoms compatible with influenza A(H5) virus infection within 10 days of their most recent exposure and tested for influenza A(H5) by real-time reverse transcription PCR (rRT-PCR) at state public health labs using the CDC Human Influenza Virus Real-Time RT-PCR Diagnostic Panel, Influenza A(H5) Subtyping Kit (9). Jurisdictions could also test persons without compatible symptoms at their discretion. Any influenza A(H5)-positive results from states were confirmed by testing at CDC. Confirmed diagnostic positive samples were characterized at CDC by using genomic sequencing and viral culture to determine if samples contained infectious influenza A(H5) virus. CDC collected aggregate data from state health departments, including the number of persons monitored and tested for influenza A(H5).

To assess the risk for asymptomatic human infection, alongside state and local health departments in Nebraska and Minnesota, CDC collected serum and respiratory specimens to detect influenza A(H5) virus infection among asymptomatic and symptomatic persons exposed to H5N1-infected poultry in commercial farms, backyard flocks, and wildlife rehabilitation centers experiencing animal outbreaks. All exposed persons were invited to participate in collection of acute respiratory specimens for rRT-PCR diagnostic testing of influenza A(H5) and paired acute and convalescent serum specimens collected 3–4 weeks apart for hemagglutination inhibition and microneutralization assays against A/American Wigeon/South Carolina/22-000345-001/2021 2.3.4.4.b A(H5N1) virus (10). Activities were conducted as part of a public health response and not considered human subjects research under federal human subject protection regulations.

During February 7–September 3, 2022, HPAI H5N1 virus infections were detected in 2,199 wild birds in 45 US states. The US Department of Agriculture’s National Veterinary Services Laboratory also confirmed H5N1 outbreaks in 200 commercial poultry farms and 229 backyard flocks in 39 states (Figure). Nationally, 4,351 persons were actively monitored after exposure to these birds, and 3,658 (84%) completed the 10-day monitoring period (Table). Among persons monitored for postexposure symptoms, 134 (3%) experienced onset of ≥1 symptoms compatible with influenza virus infection and had respiratory specimens collected for diagnostic testing. All 134 symptomatic persons reported mild illness.

Figure. Highly pathogenic avian influenza A(H5N1) virus infection outbreaks and human exposures, United States, February 7–September 3, 2022. A) Number of outbreaks in commercial poultry and backyard flocks and number of detections of H5N1 among wild birds. B) Number of persons exposed and meeting active monitoring criteria. C) Number of persons who were symptomatic during 10-day monitoring period and number of influenza A(H5N1) virus infection cases reported. D) Number of persons in Nebraska and Minnesota who expressed interest in asymptomatic and symptomatic serologic surveillance.
One person in Colorado with reported fatigue tested positive for A(H5) by rRT-PCR (11).

Twenty-six persons with exposure to H5N1-infected birds in 5 investigations in Nebraska and 1 investigation in Minnesota expressed interest in the additional serum and respiratory swab sample collection, including 11 (42%) persons who reported symptoms after contact with sick birds. Nasal swab samples and paired serum specimens were obtained from 17 persons, and nasal swab samples only were obtained from 5 persons; 4 persons had no specimens tested. All 22 persons with collected nasal swab samples tested negative for influenza viruses by rRT-PCR. The 17 persons with paired serum specimens demonstrated no increase in antibody titers to influenza A(H5) virus. Nineteen participants were present for culling of sick birds, and all reported PPE use of variable type and duration.

Conclusions

More than 4,000 persons exposed to HPAI H5N1-infected birds were monitored for symptomatic illness across the United States, and only 1 rRT-PCR-confirmed influenza A(H5) case was detected in a person. In addition, A(H5) serologic tests conducted in 2 states did not identify evidence of asymptomatic infection with influenza A(H5) 2.3.4.4b virus. Although some persons may have worn full PPE without breach, many probably had a PPE breach. Although the full extent of exposure among those monitored is unknown, our results are consistent with a low risk for avian-to-human transmission among persons exposed to wild and domesticated birds infected with influenza A(H5N1) clade 2.3.4.4b viruses detected in the United States.

Our findings are consistent with other reports. In previous years, US avian outbreaks with HPAI A(H5) viruses detected 0 human cases of infection with those viruses (12,13). In addition, no cases of human infection with H5N1 viruses were detected in Europe during 2016–2021, despite many avian H5N1 outbreaks (14,15).

At the time of this investigation, 7 persons exposed to the current H5N1 virus clade had H5N1 virus detected by rRT-PCR. Some of those cases were asymptomatic or mild and could represent contamination of the nasal mucosa instead of infection. Serologic testing of exposed persons in 2 states failed to find A(H5) in nasal mucosa or evidence of asymptomatic infection by antibody detection; however, the number of participants with serologic specimens was small, and a larger sample size is needed to confirm these findings.

One limitation of our study is that the number of persons exposed to H5N1-infected birds was underestimated because of underreporting and noncompliance with monitoring; however, jurisdictions requested employee lists and inquired about additional contacts to expand capture of those exposed. Detailed exposure information was not collected from all exposed persons, so we could not report on the influence of exposure duration or PPE use on infection risk.

Although we found that the risk for A(H5) virus transmission to the public appears to be low, close monitoring of these viruses and persons exposed to them is imperative. The virus is continuing to reassort with other North American avian influenza viruses.
increased A(H5) cases are occurring in mammals, and the risk profile could change at any moment. Influenza A(H5N1) viruses remain a potential pandemic threat, and limiting the incidence of human zoonotic infections and human-to-human transmission is critical.

Acknowledgments

We thank the state and local public health officials, particularly the members of the H5N1 Monitoring Team for their work monitoring persons exposed to birds that were infected with HPAI H5N1. We also thank the persons who participated in the active monitoring and voluntary expanded surveillance activities. We thank Crystal Holiday and Feng for their laboratory contributions.

Members of the H5N1 Monitoring Team: Carrie Edmonson and Martin Jones (Alaska Department of Health); Delhua Grant (Alabama Department of Public Health); Haytham Safi and Laura K. Rotherfield (Arkansas Department of Health); Erin L. Murray and Jennifer McNary (California Department of Public Health); Kristine Donschikowski and Amanda Brunner (Tuolomne County Public Health Department, June Nash and Jessica Guevara (Sacramento County Public Health); Catherine Blaser (County of San Diego Health and Human Services Agency); Laura Esbsenhade and Paula Ptomey (Tulare County Health and Human Services Agency); Lissett Padgett and Samer Al Saghbini (Fresno County Department of Public Health); Evonne Koo (Monterey County Health Department); Isaac Armistead, Shreya Khuntia, and Saumya Rajamohan (District of Columbia Department of Health); Camille Ayuk-Takor, Shreya Khuntia, and Saumya Rajamohan (Connecticut State Department of Public Health); Leslie Alyuk-Takor, Shreya Khuntia, and Saumya Rajamohan (District of Columbia Department of Health); Camille Moreno-Gorrin and Lisandra Clarke (Delaware Division of Public Health); Katherine Toothaker, Ashley Gent, Danielle Stanek, and Anna Pettit (Florida Department of Health); Amanda Feldpausch, Sayna Patel, and Katelin Reishus (Georgia Department of Public Health); Michelle Vien (Hawaii State Department of Health); Leslie Tengelsen (Idaho Department of Health and Welfare); Mallory Sinner, Connie Austin, and Melissa Cox (Illinois Department of Public Health); Layne Mounsey, Kira Richardson, Jennifer A. Brown, and Shawn M. Pence (Indiana Department of Health); Snehal Baxa and Erin Petro (Kansas Department of Health and Environment); Kelly Giesbrecht (Kentucky Department for Public Health); Alyssa McKenzie (Louisiana Department of Health); Joyce Cohen (Massachusetts Department of Public Health); David Crum and Evelyn Mahugu (Maryland Department of Health); Anna Krueger (Maine Center for Disease Control and Prevention); Sally Bidol, Anna Falkowski, James Barber, Meghan Burr-Martin, Eboné Colbert, Smeralda Bushi, Mat Myers, Sarah Pruett, and Rosalyn Schaefer (Michigan Department of Health and Human Services); Jeffrey Sanders, Joni Scheftel, Melissa McMahon, Carrie Klumb, Malia Ireland, Leah Bauck, and Maria Bye (Minnesota Department of Health); Kate Cleavinger and Molly Baker (Missouri Department of Health and Senior Services); Jennifer Anderson (Mississippi State Department of Health); Devon Cozart (Montana Department of Public Health and Human Services); Khalil Harbi (North Carolina Department of Health and Human Services); Levi Schlosser (North Dakota Department of Health and Human Services); John Dreisig (New Hampshire Department of Health and Human Services); Deepam Thomas and Darby McDermott (New Jersey Department of Health); Samuel Scherber (New Mexico Department of Health); B. Denise Stokich (Nevada Division of Public and Behavioral Health); Andie Newman (New York State Department of Health); Nic Fisher (Ohio Department of Health); Mike Mannell and Awa Keinde (Oklahoma State Department of Health); M. Andraya Hendrick (Oregon Health Authority, Public Health Division); Sameh Boktor (Pennsylvania Department of Health); Lindsey McAda (South Carolina Department of Health and Environmental Control); Vickie Horan (South Dakota Department of Health); Emilio Gonzales (Texas Department of State Health Services); Janelle Delgadillo (Utah Department of Health and Human Services); Lisa Sollot (Virginia Department of Health), Hilary Fannin, Natalie Kwit, and Laura Ann Nicolai (Vermont Department of Health); Anna Unutzer (Washington State Department of Health); Thomas Haupt, Ian Pray, and Agela Maxted (Wisconsin Department of Health Services); Jillian Jeffrey (West Virginia Department of Health and Human Resources, Bureau for Public Health); Allison Siu (Wyoming Department of Health).

About the Author

Ms. Kniss is a surveillance epidemiologist in the Influenza Division of CDC’s National Center for Immunization and Respiratory Diseases. Her primary interests include epidemiologic investigations, surveillance, and influenza.

References

A global outbreak of mpox was detected in May 2022 and declared a Public Health Emergency of International Concern on July 23 (1). We investigated how monkeypox virus (MPXV) cycle threshold (Ct) values, a proxy for viral loads, differed on the basis of specimen type and duration of illness among patients in Sweden. Ethics approval was deemed unnecessary because all analyses were based on anonymized laboratory data available from the Public Health Agency of Sweden.

We compared cycle thresholds from mpox skin lesions with other specimen sites and over time from onset of clinical signs among 104 patients in Sweden. Cycle thresholds differed by anatomic site. We identified 2 early mpox cases from anorectal swab specimens after skin samples were negative, indicating necessity of sampling multiple sites.

The Study

As of February 19, 2023, Sweden had 260 confirmed mpox cases; peak incidence was in August 2022. During the May 24–September 2 study period, most cases were diagnosed at the Public Health Agency of Sweden. As in other countries, most cases were found among men who have sex with men. In most cases, the disease has been self-limiting, and skin lesions are the most common clinical sign (2).

Samples were collected from all parts of the country from patients with suspected mpox disease based on clinical observation; for this study, we included 289 samples from 104 patients with ≥1 positive test.

We used in-house real-time PCR targeting the B21 gene of MPXV for diagnostic testing of all specimen types. Before setup, we tested analytic specificity in vitro against cowpox and vaccinia viruses and in silico against other orthopoxviruses.

For the analyses, we included specimen type, Ct value, and days since onset of clinical signs as variables for each sample. When multiple samples from the same patient, day, and sample site existed, we analyzed the sample with the lowest Ct. We tested Ct values from skin lesions compared with paired samples from other specimen sites from the same patient and date for statistical significance using Wilcoxon signed-rank test. We used R Core Team version 4.2.2 software (The R Project for Statistical Computing, https://cran.r-project.org) for statistical analyses and to generate graphs.

The World Health Organization recommends MPXV PCR testing primarily from skin lesions (3), which have higher sensitivity than other specimen types (4); skin lesions were the most common specimen type in our study. (Table 1). Previous studies comparing Ct from paired skin lesion and oropharyngeal samples have usually shown lower mean values in skin samples but lower values from the oropharynx in some individual cases (5). In our study, all but 1 skin lesion sample had lower Ct values than oropharyngeal samples taken on the same day (Figure 1). Semen was positive in 4/6 samples. Within the cohort of patients with same-day rectal and skin samples of which ≥1 was positive (n = 15), we found no significant difference in Ct values between samples from the 2 sites. This finding agreed with previous research (3), but only a minority of patients (n = 22) were tested, and those might have had prominent clinical signs from the rectal area (e.g., perianal lesions or proctitis).

Ct values were lowest from skin samples taken ≈1 week after onset of signs (Figure 2). Post hoc

doi:10.3201/eid2906.230253

1These authors contributed equally to this article.
analysis showed significantly higher Ct values from samples taken on days 1–5 after onset of signs (n = 36, median Ct = 28.2, interquartile range [IQR] 23.8–37.3) than on days 6–10 (n = 58, median = 23.2, IQR 20.7–28.3; p = 0.004), possibly because vesicular or pustular lesions that develop after a few days might have been easier to sample or have a higher actual viral load. After the initial decrease, Ct values from skin lesions increased over time (Figure 2). At 16 days after onset of signs, >50% of skin lesion samples were PCR negative. This period is in line with the clinical course documented elsewhere, in which infection usually resolves 2–4 weeks after the onset of rash (Z.M. Afshar et al., unpub data, https://doi.org/10.22541/au.165446104.43472483/v1), although cases of prolonged disease and PCR positivity have been described elsewhere (6). Previous research has also shown generally decreased viral loads 14 days after the first positive test (7).

Among 83 patients with skin lesion samples for whom data on onset of signs were available, 3 were negative based on first skin lesion samples. However, 2 of those patients were found positive from rectal samples taken the same days as the corresponding skin sample (days 3 and 4 after onset of signs) and 1 was positive in a serum sample (day of onset of signs). Those results suggest that rectal and serum testing may be more useful early in the disease course, when skin lesions are at an early stage. In addition, in 2 patients for whom dates of onset of signs were unavailable and who were found negative from first skin lesion samples, we found 1 was positive from a rectal sample and the other from a throat swab sample from the same days.

Conclusions

Our data on MPXV PCR tests during the mpox 2022 outbreak in Sweden indicate that viral levels peak in skin lesions 6–10 days after onset of signs and samples may test negative in early disease. Mpox detection rates might increase with complementary anorectal sampling in early disease or repeated skin lesion testing when patients with suspected lesions test negative soon after onset of signs. A strength of the study

Table. Mpox PCR tests, specimen types, and cycle threshold levels for 104 patient samples analyzed at the Public Health Agency of Sweden, May 24–September 2, 2022*

<table>
<thead>
<tr>
<th>Specimen type</th>
<th>Total no.</th>
<th>No. positive</th>
<th>Positive, %</th>
<th>Median Ct values of positive samples</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>25th percentile</td>
</tr>
<tr>
<td>Skin lesion</td>
<td>178</td>
<td>148</td>
<td>83.1</td>
<td>23.6</td>
<td>20.6</td>
</tr>
<tr>
<td>Rectum</td>
<td>22</td>
<td>21</td>
<td>95.5</td>
<td>23.0</td>
<td>21.0</td>
</tr>
<tr>
<td>Throat</td>
<td>16</td>
<td>10</td>
<td>62.5</td>
<td>30.9</td>
<td>27.5</td>
</tr>
<tr>
<td>Blood†</td>
<td>17</td>
<td>8</td>
<td>47.1</td>
<td>37.6</td>
<td>36.0</td>
</tr>
<tr>
<td>Semen</td>
<td>6</td>
<td>4</td>
<td>66.7</td>
<td>32.9</td>
<td>31.1</td>
</tr>
<tr>
<td>Nasopharynx</td>
<td>13</td>
<td>4</td>
<td>30.8</td>
<td>34.9</td>
<td>32.8</td>
</tr>
<tr>
<td>saliva</td>
<td>10</td>
<td>8</td>
<td>80.0</td>
<td>35.1</td>
<td>32.0</td>
</tr>
<tr>
<td>Sputum</td>
<td>8</td>
<td>5</td>
<td>62.5</td>
<td>31.2</td>
<td>30.2</td>
</tr>
<tr>
<td>Urine</td>
<td>7</td>
<td>2</td>
<td>28.6</td>
<td>30.3</td>
<td>28.6</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>1</td>
<td>50.0</td>
<td>20.6</td>
<td>20.6</td>
</tr>
<tr>
<td>Unknown</td>
<td>9</td>
<td>4</td>
<td>50.0</td>
<td>22.1</td>
<td>21.2</td>
</tr>
</tbody>
</table>

*Ct, cycle threshold.
†Blood includes whole blood, plasma, and serum samples.
was the national coverage, but because final Ct levels varied with sampling methods, extraction methods, and PCR targets, and detailed clinical data were missing in this study, our results need to be confirmed in other settings.

Acknowledgments
We thank the laboratory staff at the Public Health Agency for performing the PCR analyses.

About the Author
Dr. Edman-Waller is a resident physician in clinical microbiology and infection protection and control in western Sweden. He is pursuing a PhD in preventive strategies for Clostridiodes difficile infections.

References

Address for correspondence: Jon Edman-Waller, University of Gothenburg Sahlgrenska Academy – Biomedicine, Infectious Diseases, Postmästaregatan 10 C Mölndal 431 66, Sweden; email: jon.edman@vgregion.se
The World Organisation for Animal Health reported that 26 different animal species had been infected with SARS-CoV-2 by December 31, 2022; ≈30% (8/26) of the susceptible species are felids (1). Animal SARS-CoV-2 infections originating from anthropogenic transmission can lead to onward animal-to-animal transmission, as described previously in mink (2), hamsters (3), and white-tailed deer (4). There have also been reports of animal-to-human transmission of SARS-CoV-2 from farmed mink (2), pet hamsters (5), free-ranging white-tailed deer (6), and a pet cat (7).

It is unknown whether individual SARS-CoV-2 variants are more or less likely to be transmitted from humans to cats or whether infected cats are more or less likely to develop clinical signs. The aim of this study was to assess the seroprevalence of SARS-CoV-2 in cats during April 2020–February 2022 in the United Kingdom. We used a pseudotype-based neutralization assay (PVNA) to measure virus neutralizing antibody titers and a confirmatory ELISA that measured antibodies recognizing the receptor binding domain of the SARS-CoV-2 spike (S) protein. We measured neutralizing titers against a panel of viral pseudotypes based on a lentiviral (HIV) backbone and bearing the S proteins of the predominant circulating variants in the United Kingdom to investigate the specificity of the neutralizing response. The University of Glasgow Veterinary Ethics Committee granted approval for the study (EA27/20).

The Study
We screened residual blood samples from 2,309 cats by using PVNA at a final dilution of 1:100; the samples were submitted to the University of Glasgow Veterinary Diagnostic Services laboratory (VDS) during April 2020–February 2022 (Figure 1, panel A). The samples represented a cohort that was broadly representative of the domestic cat population in the United Kingdom, including samples from 112 of the 126 UK postcode areas (Appendix 1 Figure 1, https://wwwnc.cdc.gov/EID/article/29/6/22-1755-App1.pdf), although the samples had an uneven distribution unrelated to the local human population density. Overrepresented areas included Blackpool, Glasgow, Edinburgh, and Cambridge. The PVNA used HIV (SARS-CoV-2) pseudotypes bearing S proteins of SARS-CoV-2 ancestral D614G (B.1), Alpha (B.1.1.7), Delta (B.1.617.2) or Omicron (BA.1). Samples submitted early in the pandemic were tested against ancestral D614G (B.1) only, whereas new variants were included as they emerged (Appendix 2, https://wwwnc.cdc.gov/EID/article/29/6/22-1755-App2.xlsx). We estimated neutralization titers for positive samples by performing the PVNA with serially diluted samples.

Our results showed that SARS-CoV-2 seroprevalence in UK cats increased over time (Figure 1, panel B).
Overall, the seroprevalence during the study period was 3.2% (95% CI 2.56%–4.05%; 75/2,309). Seroprevalence was highest during September–November 2021 (5.3%, 95% CI 3.69%–7.23%; 35/666) and during December 2021–February 2022 (5.2%, 95% CI 3.09%–8.05%; 18/348).

When we analyzed individual samples, we observed differences in variant-specific potencies among titers against the different SARS-CoV-2 variants: 17/75 (22.7%) samples were B.1 dominant (i.e., they possessed higher titers against B.1 than against other variants); 31/75 (41.3%) were Alpha dominant, and 27/75 (36%) were Delta dominant. On average, Delta-dominant samples displayed higher neutralization titers (mean 760) against their dominant pseudotype compared with Alpha-dominant (488; p = 0.06) or B.1-dominant (329; p = 0.02) samples (Appendix 1 Figure 2). Throughout the study period (April 2020–February 2022), no Omicron-dominant seropositive samples were identified; we anticipated this finding because only a small proportion of samples were collected after the Omicron variant emerged.

We observed an association between the dominant variant in cats and the timeline of variant emergence in the human population. Detection of new dominant variants in cats trailed detection of the variant in the humans; however, we detected dominant titers against extinct variants even after human cases had declined, possibly indicating long-lasting humoral immunity (Figure 2). We observed 3 distinct patterns of neutralization. B.1-dominant samples generally had slightly lower titers against the Alpha pseudotype than against B.1. Those samples also had significantly lower titers against both the Delta (p<0.0001) and Omicron (p<0.001) pseudotypes. Alpha-dominant samples showed slightly lower B.1 titers and markedly lower Delta and Omicron titers. Delta-dominant samples showed similar titers against the B.1, Alpha, and Omicron pseudotypes, all of which were significantly lower than their Delta titers (p<0.0001) (Appendix 1 Figure 3).

The trends we observed for cats thought to have been infected with the B.1 variant are similar to the patterns of neutralization in humans reported previously (8); Wilhelm et al. showed that humans vaccinated with an ancestral strain–based vaccine developed lower neutralization titers against the Delta and Omicron variants than against B.1 or Alpha. Another study showed that cats experimentally inoculated with either the ancestral or the Delta variant became lethargic and pyrexic, whereas Omicron-inoculated
cats did not develop any clinical signs and displayed lower levels of virus shedding, suggesting that the Omicron variant might be less pathogenic in cats as well as in humans (9).

Despite those distinct patterns of neutralization, the variant to which the animal was exposed can only be speculatively inferred through serologic testing in the absence of viral sequence data, even in cases in which the titer against the dominant variant is many times greater than the next highest titer. The 3 specific patterns of immunity we observed were similar to previous findings in humans (10). It is likely that both the antigenicity of the different variants’ S proteins and the viral load during the infection period influence the breadth and potency of variant-specific neutralization.

A greater proportion of purebred cats (31/720 [4.3%, 95% CI 2.94%–6.06%]) than nonpedigree cats (39/1,300 [3%, 95% CI = 2.14%–4.08%]) were seropositive; however, this finding was not significant (p = 0.1). Purebred cats are more likely to be kept indoors only and may therefore experience more close contact with their owners, meaning they are more prone to exposure to SARS-CoV-2 if their owners become infected.

![Figure 2. Dominant variant of seropositive samples by date in study of SARS-CoV-2 seroprevalence and immunity in cats, United Kingdom, April 2020–February 2022. A) Timeline of key events during the COVID-19 pandemic in the United Kingdom, including the emergence of major variants into the human population. B) Seropositive samples from cats, categorized by dominant variant and plotted by month. B.1 indicates ancestral/wild-type virus.](image-url)
Although a definitive protective threshold antibody level for SARS-CoV-2 has not yet been established, waning neutralizing antibody levels in humans after vaccination have been associated with reinfection and reduced protection against novel variants (I1). Sequential samples ≥12 days apart were collected from 5 seropositive cats. In all 5 cases, the neutralizing titers against SARS-CoV-2 waned over time. The average percentage decrease in titer per day was highly variable across samples, although for 3 of 5 cats it was consistent across all variants (Table).

Conclusions
This study demonstrated increasing seroprevalence of SARS-CoV-2 antibodies in the UK domestic cat population, consistent with results reported in a survey of cats and dogs recently conducted in Canada (I2) and the low seroprevalence observed during the first and second waves of the pandemic (I3,I4). This increase could be explained by the persistence of the humoral response over time, with a consequent accumulation in the number of seropositive results in the population. In addition, increased seroprevalence during the later months of the pandemic may mean the likelihood of human-to-cat transmission is greater for newer variants that have previously been shown to be more readily transmitted between humans (I5), although this hypothesis has not been confirmed experimentally.

This study demonstrates the importance of adopting a One Health approach to monitor SARS-CoV-2 infections in pet cats that are in close contact with their SARS-CoV-2–positive owners. Changes in transmissibility of emerging variants should be monitored in cats as well as humans.

This article was preprinted at https://www.biorxiv.org/content/10.1101/2022.11.18.517046v1.

Acknowledgments
We thank Dawn Dunbar and Andrea Bowie for assisting with sample provision.

UK Research and Innovation—Biotechnology and Biological Sciences Research Council (UKRI-BBSRC) contributed to the funding of this research.

About the Author
Miss Tyson is a PhD candidate at the MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland. Her primary research interests include viral immunology, humoral immunity, and viruses at the human–animal interface.

References
Murine typhus is an acute febrile illness caused by fleaborne *Rickettsia typhi* bacteria. Although vector control campaigns led to a drastic decrease in disease incidence in the United States, typhus group rickettsiosis (TGR) reemerged in Galveston, Texas in 2013. Whether the recent increase in TGR in Texas represents reemergence due to regional changes in ecologic factors or newfound physician awareness is unclear.

In this EID podcast, Dr. Lucas Blanton, an infectious disease physician and associate professor of medicine at the University of Texas Medical Branch in Galveston, Texas discusses increases in typhus group rickettsiosis in Galveston County, Texas.

Visit our website to listen: https://bit.ly/3l4AsVN
Ranid herpesvirus 3 (RaHV3) is a recently discovered virus associated with skin disease in frogs. We detected RaHV3 DNA in free-ranging common frog (*Rana temporaria*) tadpoles, consistent with premetamorphic infection. Our finding reveals a critical aspect of RaHV3 pathogenesis, relevant for amphibian ecology and conservation and, potentially, for human health.

Infectious diseases have been identified as relevant stressors contributing to the ongoing global amphibian decline (1). The collapse of amphibian communities translates into a dramatic loss of biodiversity and critical biomass, which eventually could affect human health (2). Ranaviruses and chytrid fungi are primary amphibian pathogens that are causing extinction or extirpation of local amphibian populations worldwide (3,4). It is likely that other infectious organisms, yet to be characterized, might play a similar role.

Recently, 2 novel alloherpesviruses have been discovered: ranid herpesvirus 3 (RaHV3, *Batravirus ranidallo3*) in the common frog (*Rana temporaria*) and bufonid herpesvirus 1 in the common toad (*Bufo bufo*). Both viruses are associated with proliferative skin disease (5–7). RaHV3 is invariably associated with gray patchy skin proliferations corresponding to areas of epidermal hyperplasia (Figure 1) (7). Lesions vary in severity and size, but their clinical significance in adult frogs is unknown. Equally unclear is the potential effect of the lesions on overall host fitness, reproductive success, and susceptibility to other infectious agents.

Pathogenesis of RaHV3 is only partially understood (7); the actual route and timing of infection is unknown. In a transmission study performed on postmetamorphic common frogs, no specific lesions could be observed after RaHV3 inoculation (F.C. Origgi, unpib. data). Furthermore, experimental transmission studies of ranid herpesvirus 1 (RaHV1, *Batravirus ranidallo1*), the first characterized amphibian herpesvirus (8), indicated that the virus-associated renal adenocarcinoma most likely occurred when amphibians were infected during the early embryonic stage (premetamorphosis), but not in adult or juvenile stages (postmetamorphosis) (as reviewed in 9). We investigated the potential occurrence of RaHV3 infection in premetamorphic free-ranging common frogs.

The Study

We collected 14 sample batches of free-ranging tadpoles (3–13 tadpoles per batch), either directly from or in close (<10 m) proximity to 5 ponds in Norway in 2022, where adult frogs with lesions consistent with RaHV3 infection were observed earlier in the year (Figure 2) (F.C. Origgi, unpib. data). We sampled the ponds 2–3 times during early June through mid-July 2022 (Appendix Table, https://wwwnc.cdc.gov/EID/article/29/6/23-0255-App1.pdf). The Gosner developmental stages for tadpoles ranged from stages 26–36.

We collected and humanely euthanized tadpoles by using tricaine methanesulfonate in strict accordance with the Animal Welfare Act (§4 in FOR-2003-03-14-349) of Norway and then preserved them in 96% ethanol. In the laboratory, we bisected each tadpole with a scalpel; we extracted DNA from 1 half as previously described (5) and fixed the other half in 10% buffered formalin. We amplified the partial RaHV3 genome sequence as previously described (5) and by using a new quantitative PCR protocol (Appendix). Initially, we extracted DNA from 3–5 tadpoles from each sampling date and pond location; if we obtained a positive signal for RaHV3 by...
PCR, we tested all tadpoles collected from the same location. We processed the fixed-tissues, embedded them in paraffin, prepared 5 µm–thick sections, and stained the sections with hematoxylin and eosin in accordance with the standard protocol used at the Vetsuisse Faculty, University of Bern.

After qualitative and quantitative PCR on tadpole DNA (n = 77 samples), we found 2 of 14 sampled batches were positive for RaHV3, corresponding to 2 of the 5 tested pond locations (Lillehammer and Skytta) (Figure 2). After testing each tadpole in the positive batches, we identified 6 of 13 tadpoles from the Lillehammer pond and 1 of 4 from the Skytta pond that were positive for RaHV3 DNA; genome equivalents ranged from 2×10^1 to 2×10^7. After sequencing amplicons obtained by using qualitative PCR (5), we found a 100% match with the reference strain RaHV3_FO1_2015 (Genbank accession no. NC_034618.1).

We did not observe differences in histological sections of RaHV3 PCR-positive and PCR-negative tadpoles. However, RaHV3-associated changes might have been masked by the advanced autolysis observed in the examined tissue sections.

Conclusions
Finding genomic RaHV3 DNA in free-ranging tadpoles is a major step toward understanding the pathogenesis of RaHV3-associated disease. In particular, this result supports the hypothesis that infection occurs during the frog’s premetamorphic embryonic or larval stages. Experimental RaHV1 infection of leopard frogs (Lithobates pipiens) was successful only...
during the early embryonic stages (9). Why premetamorphic frogs are presumptively more susceptible to herpesvirus infections is unclear. The lack of keratinized skin in tadpoles (10) and the substantial immune system differences between premetamorphic and postmetamorphic life stages might partially explain the susceptibility of premetamorphic frogs to natural infection (11). Studies performed with RaHV1 did not clarify the natural route of infection because the embryos were experimentally inoculated with the virus in the pronephros, which is unlikely to mimic what occurs in nature (9). RaHV3-infected adult frogs are known to release a large number of virions embedded in sloughed keratinocytes (5,7), which could eventually be ingested by tadpoles. However, the possibility that oral ingestion of RaHV3 would cause tadpole infection, similarly to what has been shown for Ranavirus, a major amphibian pathogen (12), will need to be ruled out by a transmission study.

All 5 tadpole populations were collected in or near ponds where infected adults had been confirmed earlier in the Spring, but only 2 tadpole populations were RaHV3-positive and only at 1 timepoint for each pond (2 of 14 samples in total). Among the positive samples, the Lillehammer population had ≈50% and the Skytta population had ≈25% positivity rates. Reasons for discrepancies in incidence of RaHV3 infection between the different sampled populations remain unclear. Our finding suggests either sporadic RaHV3 infection within different tadpole populations, high virus lethality in infected tadpoles, or both. According to the second hypothesis, RaHV3-positive tadpoles would be difficult to detect in field conditions, because they would rapidly die and be scavenged. Herpesviruses, including alloherpesviruses, infecting a variety of animal species generally cause more severe disease and death in young, immature individuals than in adult hosts, (13). Accordingly, RaHV3 might be fatal to a large proportion of infected tadpoles resulting in low detection rates in the remaining viable tadpole population. No obvious tadpole die-offs had been recently reported at the sampling sites; however, those sites are not presently monitored.

In conclusion, our study opens a new venue for understanding RaHV3 pathogenesis and potential effects of RaHV3 infections on premetamorphic and postmetamorphic life stages of amphibian hosts. Understanding the short- and long-term consequences of RaHV3 and other herpesvirus infections on frog populations will be critical for amphibian conservation programs, maintaining biodiversity, and, in turn, supporting human and planetary health (2).

Acknowledgments
We thank the technical personnel at Vetsuisse Bern, Institute of Animal Pathology, for histological analysis and Ian Hawkins for critical review of this manuscript.

Fieldwork was funded by the Norwegian Financial Mechanism 2014–2021, project no. 2019/34/F/NZ8/00683 (ECOPOND project). Development of molecular tests was partially supported by the Vontobel Foundation (Zurich, Switzerland) and Swiss Federal Office of the Environment (FOEN; grant no. R212-1468).

About the Author
Dr. Origgi is a veterinary microbiologist and pathologist at the University of Messina and University of Bern. His research interests focus on infectious diseases and pathology of wildlife, especially reptiles and amphibians. Dr. Taubgol is an evolutionary geneticist at the Norwegian Institute for Nature Research. Her research interests include biodiversity conservation.

References
10. Marantelli G, Berger L, Speare R, Keegan L. Distribution of the amphibian chytrid Batrachochytrium dendrobatidis and
Emerging Pathogens

- Infant Botulism, Israel, 2007–2021
- Crimean-Congo Hemorrhagic Fever, Spain, 2013–2021
- Streptococcus dysgalactiae Bloodstream Infections, Norway, 1999–2021
- Relationship between Telework Experience and Presenteeism during COVID-19 Pandemic, United States, March–November 2020
- Circovirus Hepatitis Infection in Heart-Lung Transplant Patient, France
- Incidence and Transmission Dynamics of Bordetella pertussis Infection in Rural and Urban Communities, South Africa, 2016–2018
- Influence of Landscape Patterns on Exposure to Lassa Fever Virus, Guinea
- Increased Multidrug-Resistant Salmonella enterica I Serotype 4,[5],12:i:- Infections Associated with Pork, United States, 2009–2018
- Novel Prion Strain as Cause of Chronic Wasting Disease in a Moose, Finland
- Novel Species of Brucella Causing Human Brucellosis, French Guiana
- Penicillin and Cefotaxime Resistance of Quinolone-Resistant Neisseria meningitidis Clonal Complex 4821, Shanghai, China, 1965–2020
- Combined Phylogeographic Analyses and Epidemiologic Contact Tracing to Characterize Atypically Pathogenic Avian Influenza (H3N1) Epidemic, Belgium, 2019

February 2023

- Age-Stratified Model to Assess Health Outcomes of COVID-19 Vaccination Strategies, Ghana
- Early Introduction and Community Transmission of SARS-CoV-2 Omicron Variant, New York, New York, USA
- Correlates of Protection, Thresholds of Protection, and Immunobridging among Persons with SARS-CoV-2 Infection
- Longitudinal Analysis of Electronic Health Information to Identify Possible COVID-19 Sequelae
- Candida auris Discovery through Community Wastewater Surveillance during Healthcare Outbreak, Nevada, USA, 2022

- (Mis)perception and Use of Unsterile Water in Home Medical Devices, PN View 360+ Survey, United States, August 2021
- Molecular Detection of Candidatus Orientia chuto in Wildlife, Saudi Arabia
- Neoehrlichiosis in Symptomatic Immunocompetent Child, South Africa
- Successful Drug-Mediated Host Clearance of Batrachochytrium salamandrivorans
- Powassan Virus Lineage I in Field-Collected Dermacentor variabilis Ticks, New York, USA
- Bartonella spp. and Typhus Group Rickettsiae among Persons Experiencing Homelessness, São Paulo, Brazil
- Changing Disease Course of Crimean-Congo Hemorrhagic Fever in Children, Turkey
- Next-Generation Sequencing for Identifying Unknown Pathogens in Sentinel Immunocompromised Hosts
- Orthopoxvirus Infections in Rodents, Nigeria, 2018–2019
- Occupational Monopoxvirus Virus Transmission to Healthcare Worker, California, USA, 2022
- Familial Monkeypox Virus Infection Involving 2 Young Children
- Dirofilaria immitis in Dog Imported from Venezuela to Chile
- Relapsing Fever Caused by Borrelia lonestari after Tick Bite in Alabama, USA

To revisit the February 2023 issue, go to: https://wwwnc.cdc.gov/eid/articles/issue/29/2/table-of-contents
Baylisascaris procyonis roundworm infections should be considered a potential cause of human eosinophilic meningitis, particularly among young children and persons with developmental delays.

Baylisascaris spp. are ascarid worms that parasitize the small intestines of multiple species. The primary definitive host for B. procyonis roundworms is the raccoon (Procyon lotor), although other carnivores, including dogs, can serve as definitive hosts (1). Infected raccoons shed >1 million B. procyonis eggs daily; excreted eggs take 2–4 weeks to embryonate and become infective. In the western United States, the estimated prevalence of B. procyonis infection in raccoons is 68%–82% (2). Raccoons often defecate in communal locations (raccoon latrines) that are close to areas of human activity or living spaces, such as yards, decks, roofs, or attics. Humans become intermediate hosts after ingesting infective eggs that hatch into larvae, penetrate the gut wall, and migrate through tissues, potentially resulting in visceral, ocular, or neural larva migrans syndromes; neural larva migrans often manifests as acute eosinophilic meningitis. Tissue damage and clinical outcomes of baylisascariasis might be severe; permanent neurologic sequelae and death might occur because of the large size of B. procyonis larvae and invasive tissue migration (3). Severity of disease is related to host size, number of eggs ingested, larval migration pathway, and extent of host inflammatory responses (4,5). As with other parasite larva migrans, B. procyonis larvae are found mostly in muscle tissue; <5% of migrating larvae reach the brain (5). Asymptomatic and subclinical infections are known to occur. Fewer ingested eggs might result in positive serologic tests in the absence of neurologic disease (5,6).

We describe a case of B. procyonis infection in a child in Washington, USA, with autism spectrum disorder and history of pica who had eosinophilic meningitis. We conducted an environmental assessment of the patient’s residence to assess raccoon activity and potential exposure sources.

The Study
In July 2022, a 7-year-old boy with a history of autism spectrum disorder and global developmental delay accompanied by lack of verbal ability began having episodes of mild motor impairment, lethargy, decreased responsiveness, and difficulty understanding and executing commands that lasted 45 minutes to 2 hours (first episode = day 0). He was seen at an emergency department on day 11, then hospitalized by a second emergency department the next day after a prolonged period of stumbling and lethargy. The patient had not traveled outside of Washington in the past 2 years and had no household pets. In recent weeks, the patient had played in a sandbox where nonhuman feces were observed and visited a location with farm animals.
While hospitalized, the patient underwent several tests. A complete blood count showed peripheral eosinophilia (1,693 eosinophils/µL), and results of an upper respiratory virus and bacteria PCR panel were negative. An electroencephalogram indicated focal cerebral pathology, and brain magnetic resonance imaging showed patchy white matter disease with limited gray matter involvement (Figure 1). Cerebrospinal fluid (CSF) was collected and had negative PCR results for cytomegalovirus, enterovirus, herpes simplex virus 1, herpes simplex virus 2, herpes simplex virus 6, human parechovirus, and varicella zoster virus. CSF was Gram stain and culture negative but had a nucleated cell count of 6 cells/µL (reference range 0–5 cells/µL) with 50% eosinophils. Acute disseminated encephalomyelitis was suspected, and corticosteroid treatment was initiated. Consultation with the Centers for Disease Control and Prevention (CDC) was pursued, given the eosinophilic meningitis and possible parasitic cause of illness, after which a 10-day course of albendazole (25 mg/kg body weight/d) was initiated on day 17.

The patient’s serum and CSF specimens were sent to CDC for B. procyonis testing. The patient’s serum was positive for B. procyonis–specific antibodies; CSF was antibody negative. A Toxocara spp. IgG test was positive, although false-positive results might occur in patients with other parasitic infections, including Baylisascaris spp. Conversely, B. procyonis test cross-reactivity with toxocariasis was not expected (7). On day 23, the patient was discharged from the hospital. The family reported ongoing but improving symptoms 1 month after discharge.

In mid-September 2022, we performed an environmental investigation at the patient’s residence. The family had never seen raccoons in the yard but noted possible animal feces at the base of a fir tree. After additional questioning, the family recalled that the patient had put material from the ground around this tree in his mouth in July; we observed a raccoon latrine at this location (Figure 2). We collected 4 fecal samples for fecal flotation analysis from the following locations: raccoon latrine (location 1, 2 samples), a grassy area away from the latrine (location 2, 1 sample), and the sandbox (location 3, 1 sample). Two samples were positive for B. procyonis eggs, and 2 samples were positive for non-B. procyonis roundworm eggs (Table).

We noted various raccoon attractants around the property, including bushes and trees, a brush pile, and a large open shed. We provided oral feedback and written materials regarding safe latrine clean-up, regular observation and prompt clean-up of feces, and methods to discourage raccoons from inhabiting nearby areas. Raccoons are not a reservoir species for rabies in Washington; therefore, we did not provide education on rabies prevention.

Reported cases of human B. procyonis infection are rare, despite the proximity and prevalence of infected raccoons across much of the United States (8). We found 37 published cases of B. procyonis infection in North America (33 in the United States, 4 in Canada) (2,4,8–13). Of published case reports, including this study, the median age of infected persons was 1.6 years (range 9 months–73 years); 32 (82%) persons were male, and 7 (18%) infections resulted in death. Geophagia or pica was mentioned in 21 (55%) cases, and 14 (37%) cases described developmental disabilities in the patients. Case-patients with geophagia or pica were associated with an increased risk for death, possibly because of ingestion of higher numbers of B. procyonis eggs. All but 2 cases described neurologic symptoms. Undetected subclinical infections and lack of commercially available testing likely leads to overestimation of the overall death rate (3–7). Baylisascariasis is not nationally notifiable in the United States but was recently added to the notifiable conditions list in Washington (14).

Figure 1. Magnetic resonance imaging of brain of child with autism spectrum disorder infected with Baylisascaris procyonis roundworms, Washington, USA, 2022. Axial section of the brain shows patchy white matter disease with limited gray matter involvement. Red arrows indicate diseased regions.
Conclusions

Young children and persons with developmental delays are at high risk for *B. procyonis* infection because of hand–mouth behaviors, as are persons exposed to raccoons or environments where raccoons are frequently found (3). Healthcare providers should consider *B. procyonis* roundworm infections a possible cause of eosinophilic meningitis even without known patient exposure to raccoon feces. The ubiquitous nature of raccoons and the 1–4-week incubation period for infection might cause difficulty in characterizing potential exposure locations. Treatment with albendazole and corticosteroids during the early stage of infection might reduce serious tissue damage, although no treatments are totally effective (3,9). Known or suspected oral exposure to raccoon feces indicates immediate prophylactic treatment with albendazole should be considered, which might prevent disease (10).

Raccoon latrines have diverse locations, sizes, and appearances. Raccoons might share multiple latrines over a short period of time, increasing the accumulation of *B. procyonis* eggs (15). Feces are often dark and tubular; latrines might remain active for >1 year (3,15). Eggs can remain viable in the environment for years and are difficult to kill or remove. CDC provides resources on how to identify and safely clean up a latrine (3).

In summary, discouraging raccoons from residential areas and increased recognition of raccoon latrines can help prevent *B. procyonis* infections. Public and healthcare provider awareness of *B. procyonis* infection risks, especially for persons at higher risk such as young children and those with developmental delays, is critical for prevention and early treatment and improving disease outcome.

Acknowledgments

We thank Laura Williams and Rachel Soltys for fecal flotation analysis and study consultation and the CDC Parasitic Diseases Laboratory (Center for Global Health, Division of Parasitic Diseases and Malaria) for *B. procyonis* testing.

This report was reviewed by CDC, and the study was conducted according to applicable federal law [45 Code of Federal Regulations, part 46.102(l)(2), 21 Code of Federal Regulations, part 56; 42 United States Code (U.S.C.) §241(d); 5 U.S.C. §552a; 44 U.S.C. §3501 et seq] and CDC policy.

About the Author

Dr. Lipton is the public health veterinarian for the Washington State Department of Health, Office of Health and Science, Center for Public Health, Medical and Veterinary Sciences. Her primary research interests...
focus on using epidemiological and environmental data to elucidate disease transmission at the human–animal interface.

References

Address for correspondence: Beth A. Lipton, Washington State Department of Health, 1610 NE 150th St, Shoreline, WA 98155, USA; email: beth.lipton@doh.wa.gov
The Middle East respiratory syndrome coronavirus (MERS-CoV) is a betacoronavirus that is of special interest for public health. Dromedary camels have been identified as natural animal reservoirs, with >90% MERS-CoV seroprevalence reported in Middle East countries (1–4). Such permanent viral circulation within camel herds poses a constant threat of zoonotic transmission into human populations (5). Thus, a potentially useful approach to prevent MERS-CoV zoonoses focuses on vaccination-based reduction of spill over events from camels as a classical One Health approach (6, 7).

Besides antibody responses, MERS-CoV–specific T cells probably play a major role in rapid viral clearance and long-lasting immunity against MERS-CoV infections (8). Although serologic assays were rapidly developed, established T-cell assays for camels are still lacking, yet urgently needed for contact tracing, epidemiology, and vaccine evaluation studies. Several MERS-CoV–specific vaccine candidates are under investigation and use different platforms, such as DNA vaccines or adenoviral vectors (9–12). A promising experimental vaccine for use in camels is recombinant modified vaccinia virus Ankara (MVA) expressing full-length MERS-CoV spike protein as antigen (MVA-MERS-S) (13). Experimental vaccination with MVA-MERS-S in dromedaries can induce protective immunity to MERS-CoV (14). Moreover, MVA-MERS-S proved safe and immunogenic in a phase Ia/b clinical study in humans (15). The aim of this exploratory study in Dubai, United Arab Emirates, where enzootic MERS-CoV is prevalent, was to establish an assay for detecting MERS-CoV–specific T cells in dromedary camels under field conditions.

The Study
To investigate the effect of MVA-MERS-S vaccination in naive or previously infected animals, we divided 12 adult dromedary camels into 2 cohorts: naive and MERS-CoV seropositive solely based on presence of MERS-CoV IgG (by ELISA) before vaccination. Eight camels had antibody titers relevant for seroconversion (optical density [OD] ratio >1.1), indicating previous MERS-CoV infection, whereas the remaining 4 camels had no MERS-specific antibodies (Table 1).

Table 1. MERS-CoV seroprevalence in 12 dromedary camels before vaccination, Dubai, United Arab Emirates*

<table>
<thead>
<tr>
<th>Camel ID</th>
<th>Optical density ratio (ELISA)</th>
<th>MERS-CoV infection status/cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.07</td>
<td>Naive</td>
</tr>
<tr>
<td>2</td>
<td>2.09</td>
<td>Seropositive</td>
</tr>
<tr>
<td>3</td>
<td>2.97</td>
<td>Seropositive</td>
</tr>
<tr>
<td>4</td>
<td>4.00</td>
<td>Seropositive</td>
</tr>
<tr>
<td>5</td>
<td>0.06</td>
<td>Naive</td>
</tr>
<tr>
<td>6</td>
<td>0.07</td>
<td>Naive</td>
</tr>
<tr>
<td>7</td>
<td>0.05</td>
<td>Naive</td>
</tr>
<tr>
<td>8</td>
<td>4.11</td>
<td>Seropositive</td>
</tr>
<tr>
<td>9</td>
<td>3.42</td>
<td>Seropositive</td>
</tr>
<tr>
<td>10</td>
<td>4.59</td>
<td>Seropositive</td>
</tr>
<tr>
<td>11</td>
<td>2.48</td>
<td>Seropositive</td>
</tr>
<tr>
<td>12</td>
<td>3.22</td>
<td>Seropositive</td>
</tr>
</tbody>
</table>

*ID, identification; MERS-CoV, Middle East respiratory syndrome coronavirus.

We developed an ELISPOT assay for evaluating Middle East respiratory syndrome coronavirus (MERS-CoV)–specific T-cell responses in dromedary camels. After single modified vaccinia virus Ankara-MERS-S vaccination, seropositive camels showed increased levels of MERS-CoV–specific T cells and antibodies, indicating suitability of camel vaccinations in disease-endemic areas as a promising approach to control infection.

Author affiliations: University of Veterinary Medicine Hannover, Hanover, Germany (C. Meyer zu Natrup, L.-M. Schünemann, G. Saletti, S. Clever, A. Volz); University of Glasgow, Glasgow, Scotland, UK (V. Herder); Central Veterinary Research Laboratory, Dubai, United Arab Emirates (S. Joseph, M. Rodriguez, U. Wernery); Ludwig Maximilian University Munich, Munich, Germany (G. Sutter)

DOI: https://doi.org/10.3201/eid2906.220128

...
Camels were either vaccinated with MVA-MERS-S or MVA as a control by using intramuscular inoculation (dose 2.5×10^8 PFU/2 mL) (Table 2). Animals and application sites were monitored and scored daily for an observation period of 22 days. No clinical signs or potential side effects were observed (data not shown). Analysis of the IgG response at the day of vaccination and 15 days later (Figure 1) showed no differences in MERS-CoV–specific antibodies in naive camels (MVA– and MVA-MERS-S–vaccinated camels).

One seropositive animal vaccinated with MVA showed an increased optical density (OD) ratio of 0.54, whereas the other 2 animals showed no difference or a decreased ratio of 0.19. Seropositive camels vaccinated with MVA-MERS-S (n = 5) mounted increased levels of MERS binding antibodies, with a mean titer (OD ratio) of 4.44 on day 15 compared with 3.22 at day 0 postvaccination. Two MVA-MERS-S vaccinated camels from seropositive animals showed an increased OD ratio >2.4.

To assess T-cell responses, we prepared peripheral blood mononuclear cells (PBMCs) from blood plus EDTA on different days postvaccination during the observation period. PBMCs were restimulated with 2 pools of overlapping peptides comprising either the S1 or S2 subunit of MERS-CoV spike glycoprotein (Appendix Figure, https://wwwnc.cdc.gov/EID/article/29/6/23-0128-App1.pdf) analyzed by using interferon (IFN) γ ELISpot assays.

After S1 peptide pool stimulation, we detected no IFN-γ–producing cells in the MVA-vaccinated naive animals (Figure 2, panel A). MVA-MERS-S-vaccinated naive animals (n = 3) showed detectable levels of S1-specific T cells on day 6 postvaccination (mean 11.1 spot-forming T cells [SFC]/10⁶ PBMCs), which further increased until day 8 postvaccination (mean 63.3 IFN-γ SFC/10⁶ PBMCs). MVA-vaccinated seropositive animals showed negligible levels of IFN-γ–producing cells, except for 1 animal that had S1-specific T cells on days 6 and 8 postvaccination (mean 217.8 IFN-γ SFC/10⁶ PBMCs). Seropositive MVA-MERS-S–vaccinated animals had substantially higher activated S1-specific T-cell levels starting on day 6 postvaccination (mean 230.6 IFN-γ SFC/10⁶ PBMCs), further increasing on day 8 postvaccination (mean 497.8 IFN-γ SFC/10⁶ PBMCs). Subsequently, S1-specific T-cell levels decreased on day 10 (mean 110 IFN-γ SFC/10⁶ PBMCs), until reaching relatively low levels at day 22 postvaccination (mean 42.8 IFN-γ SFC/10⁶ PBMCs).

Upon S2 peptide stimulation, we detected lower levels of IFN-γ-producing cells compared with S1 peptide stimulation (Figure 2, panel B). The MVA-vaccinated naive camels had low levels of IFN-γ-producing cells on day 6 and 8 postvaccination (mean 38.3 IFN-γ SFC/10⁶ PBMCs). MVA-MERS-S-vaccinated naive animals showed low responses in all animals; mean levels of 11.9 IFN-γ SFC/10⁶ PBMCs on day 6 postvaccination increased to 36.3 IFN-γ SFC/10⁶ PBMCs on day 8 postvaccination, then decreased again by day 22 postvaccination.

Two MVA-vaccinated seropositive animals mounted no detectable levels of S2-specific T cells. The same seropositive animal mounting S1-specific T cells revealed increased levels of S2-specific T cell activation on day 6 and 8 postvaccination (mean 110 IFN-γ SFC/10⁶ PBMCs), until reaching relatively low levels at day 22 postvaccination (mean 42.8 IFN-γ SFC/10⁶ PBMCs).
DISPATCHES

143.6 IFN-γ SFC/10^6 PBMCs). All seropositive MVA-MERS-S–vaccinated animals had levels of S2-specific T cells that increased on day 6 postvaccination (mean 50.6 IFN-γ SFC/10^6 PBMCs), further increasing on day 8 postvaccination (mean 84 IFN-γ SFC/10^6 PBMCs). Again, the S2-specific T cells subsequently decreased by day 22 postvaccination (mean 8.9 IFN-γ SFC/10^6 PBMCs).

Conclusions
This exploratory study confirms the presence of MERS-S–specific T cells in dromedary camels after a single MVA-MERS-S vaccination under field conditions as analyzed by IFN-γ ELISPOT assay. Previous infection seems not to hamper the practicability or value of vaccination trials because specific T cells were immunologically boosted in seropositive camels. These data are consistent with a recent study of humoral boost effects in seropositive camels after vaccination with a chimpanszee adenoviral vector-based MERS-CoV vaccine (I2). This finding is relevant because serum antibodies are considered to reduce viral replication (6). MVA-MERS-S vaccination also reactivated humoral immune responses in seropositive camels. Our previous study confirmed that MERS-CoV-S–specific antibodies correlate with reduced viral excretion in camels (I4). These preliminary results could have major implications for implementing future MVA-MERS-S camel vaccination studies in disease-endemic areas.

Naive MVA-MERS-S–vaccinated animals mounted fewer MERS-CoV-S–specific T cells than seropositive animals and failed to show S-specific antibodies after single MVA-MERS-S vaccination. Thus, further optimizing MVA-MERS-S–induced immunogenicity would require modifying vaccination strategies under field conditions, such as prime-boost vaccination regimens or alternative applications including intranasal immunization.

Although it is unlikely for the specific T cells detected in 1 seropositive and 1 naive camel after MVA vaccination, we cannot rule out a field infection between vaccination and sample preparation. Rather, we hypothesize that the seropositive animal could have reactivated a cellular immune response caused by MVA-induced immune activation and potential coactivation of S-peptide specific T cells from previous MERS-CoV infection. In the naive camel, which did not seroconvert or mount S1-specific responses, nonspecific reactions could explain the detection of IFN-γ SFC.

The first limitation for this proof-of-concept study is that it was conducted as an exploratory study to
evaluate MERS-CoV–specific T cells in a few camels and provide a basis for further evaluation of camel vaccination in disease-endemic areas. To verify the potential protective capacity of vaccine-induced immune responses under field conditions, it will be essential to also characterize the infection status and demonstrate reduced virus excretion in vaccinated, subsequently infected animals. Future field studies could be based on MVA-MERS-S vaccination, not only in prime-only immunization cohorts but also in prime-boost applications, especially in juvenile animals, the probable main drivers of MERS-CoV transmission in camel populations (6). Our findings should contribute to establishing an advanced method for evaluating MERS-CoV–specific cellular immunity in dromedary camels.

This study was supported by the Federal Ministry of Education and Research (grant BMBF RAPID 01KI1723G to A.V.).

About the Author

Mr. Meyer zu Natrup is a veterinarian at the Institute of Virology at the University of Veterinary Medicine Hannover, Hannover, Germany. His primary research interest is development of innovative vaccination strategies against emerging coronaviruses.

References

Address for correspondence: Asisa Volz, Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; email: asisa.volz@tiho-hannover.de
We performed 2 surveys during 2022 to estimate point prevalences of SARS-CoV-2 infection compared with overall seroprevalence in Sweden. Point prevalence was 1.4% in March and 1.5% in September. Estimated seroprevalence was >80%, including among unvaccinated children. Continued SARS-CoV-2 surveillance is necessary for detecting emerging, possibly more pathogenic variants.

The SARS-CoV-2 Omicron variant has had strong effects on the COVID-19 pandemic. New Omicron subvariants have emerged over time and those subvariants have increased capacity to evade neutralizing antibody responses induced by both vaccines and prior infections, causing breakthrough infections and reinfections (1–4). After general PCR testing was halted in Sweden in early 2022, the possibility to track the COVID-19 situation and maintain surveillance in the general population largely depended on point prevalence surveys to detect acute SARS-CoV-2 infection by using PCR and estimates of previous infections by using serology. We performed 2 cross-sectional surveys during 2022 to estimate SARS-CoV-2 point prevalences and overall seroprevalence in Sweden.

The Study
Participants were invited from a nationwide probability-based web panel (5,6). Participants received material for sampling and instructions on how to perform self-sampling at home (Appendix, https://wwwnc.cdc.gov/EID/article/29/6/22-1862-App1.pdf). The first survey, March 21–25, covered all 21 regions in Sweden; the second survey, September 26–29, covered 11 regions in the country, representing 64% of the population. We performed surveys as part of the Public Health Agency of Sweden’s assignment to monitor communicable diseases and evaluate infection control measures (in accordance with §§18 of Ordinance 2021:248 from the Swedish Parliament). All participants provided informed consent, and the legal guardian provided consent for persons <16 years of age.

In March, 11,334 persons were invited and 2,906 persons 2–96 years of age participated (Appendix Table 1). In total, we analyzed 2,659 samples for ongoing infection and 2,587 samples for serologic responses (Figure, panel A). We detected 48 PCR-positive samples showing SARS-CoV-2 infection, an estimated point prevalence of 1.4% (95% CI 0.9%–2.1%) in the population of Sweden at the end of March. One infection was caused by the Delta variant and 47 by Omicron subvariants (Appendix Table 2). Data from the national registry for communicable diseases revealed that 633 (24%) of the 2,659 participants with a valid PCR result had ≥1 previous confirmed SARS-CoV-2 infection; 79.4% had received ≥3 vaccine doses (Table 1). Among 48 participants with PCR-positive results, 4 (8.3%) had previously
reported SARS-CoV-2 infections. On the basis of spike IgG data from the 2,587 participants with a valid sample for serology, we estimated a 93.3% (95% CI 91.5%–94.8%) SARS-CoV-2 seroprevalence in the population of Sweden at the end of March 2022. The estimated seroprevalence was 80.1% (95% CI 71.1%–87.4%) in children ≤11 years of age and 94.2%–98.8% in persons >11 years of age (Table 2).

In the September survey, 10,568 persons were invited and 1,774 persons 2–94 years of age participated. We were able to analyze 1,687 samples for ongoing infection (Appendix Table 1), and 1,554 samples for serologic responses (Figure, panel B). We previously reported that 31 of 1,687 participants were PCR-positive in September, that the estimated point prevalence was 1.5% (95% CI 0.9%–2.5%), and all infections were caused by Omicron subvariants (6). Among participants in the September survey, 485 (29%) had ≥1 previously confirmed SARS-CoV-2 infection; 85.5% had received ≥3 vaccine doses (Table 1). Among PCR-positive participants, 22 (71%) had previously reported SARS-CoV-2 infections. On the basis of spike IgG data (n = 1,554), we estimated that SARS-CoV-2 seroprevalence in Sweden was 93.1% (95% CI 89.2%–96.0%) at end of September. Estimated seroprevalence was 84.0% (95% CI 70.3%–93.3%) in persons 2–11 years of age and 84.9%–100% in persons >11 years of age (Table 2).

Using answers in the participant symptom survey, we next analyzed for symptoms in general and for symptoms among SARS-CoV-2–infected participants. Overall, 65.2% of participants in March and 67.7% of participants in September, experienced ≥1 symptom within 2 weeks before sampling. Of participants with negative PCR results, 64.6% in March and 67.3% in September had ≥1 symptom (Appendix Table 3). Among 79 PCR-positive participants, 4 had no symptoms within 2 weeks before sampling (Appendix Table 3), and 3 of those 4 experienced symptoms within 1 week after sampling.

Conclusions
Beginning February 9, 2022, mainly hospitalized persons, healthcare workers, long-term care facility staff, and at-risk persons with symptoms indicating COVID-19, were tested for SARS-CoV-2 infection in Sweden. Because the general population was no longer tested, trends in prevalence and transmission patterns were difficult to assess in real-time. To estimate point prevalence of infection in the population, Sweden needed random sampling of the population on a nationwide level.

We estimated point prevalences in Sweden of 1.4% during March 21–25 and, as previously reported (6), 1.5% during September 26–29. Those estimated point prevalences were higher than those in our previous national surveys (5). In another survey of...
healthcare workers in Stockholm during June 28–29, 2022, we observed asymptomatic SARS-CoV-2 infections in 2.3% of participants (7). Although healthcare workers are likely at higher risk for infection than the general population, those 3 surveys collectively indicated a continued high level of Omicron transmission in Sweden during March, June, and September 2022. Similar, or even higher, point prevalences were reported from other countries during 2022. For example, surveys performed on the general population in the United Kingdom estimated point prevalences of 6.7%–8.7% in March and 2.1%–2.5% in September for England, Scotland, Wales, and Northern Ireland (8). Moreover, a survey of blood donors in Denmark estimated that, by March 2022, ≈66% of the age-matched healthy population had been infected by SARS-CoV-2 in <5 months (9). Taken together, those and many other reports show the high capacity of Omicron to spread, including among highly vaccinated populations.

A large percentage of the population were positive for spike IgG in March and in September 2022, which can partly be explained by the high vaccine coverage in Sweden. COVID-19 vaccination was not recommended for children <12 years of age in Sweden. Hence, in the youngest, unvaccinated, age group, seroconversion was likely induced solely by infection, indicating that a large percentage (80%) of that age group had already been infected with SARS-CoV-2 by March 2022. Similar levels of infections in children have been reported from Bavaria, Germany, including seroprevalences of 67% for preschool children 1–4 years of age and 84% for school-age children 5–10 years of age in June 2022, largely caused by the Omicron variant (10).

Current vaccines seem to provide only limited, short-term, inhibitory effect on Omicron transmissibility (11). Of note, our surveys showed that among PCR-positive participants in March, 8.3% had a previously recorded SARS-CoV-2 infection, but in September, those participants increased to 71%, indicating a high level of reinfection caused by then circulating Omicron subvariants, which have shown highly increased capacity to avoid neutralizing antibodies (12–14).

In summary, we estimate that ≈1 of every 66 persons in Sweden was infected with SARS-CoV-2 by March and September 2022. Although Omicron has a high transmission capacity, current vaccines protect against severe disease, as noted by the low fatality rate observed in Omicron-infected persons in Denmark (9). However, because Omicron has the capacity to efficiently transmit despite high vaccine coverage, continued surveillance of the general population for early signs of new, more possibly pathogenic, emerging SARS-COV-2 variants remains crucial.

Acknowledgments
We thank all the participants in the survey for volunteering to perform self-sampling and completing symptom questionnaires. We thank the Swedish Armed Forces, whose personnel from regular units and Home Guard units collected and transported the samples. This work was funded by grants provided to the Public Health Agency of Sweden (grant nos. S2020/0281/FS and S2020/08532 FS).

About the Author
Dr. Groenheit is a microbiologist at the Public Health Agency of Sweden, Solna, Sweden. Her primary interests include tuberculosis, especially focusing on drug resistance and molecular epidemiology, and SARS-CoV-2 prevalence and seroprevalence.

References

Dr. Danielle Greenberg, founder of a veterinary clinic near Liverpool, knew something was wrong. Dogs in her clinic were vomiting—and much more than usual. Concerned, she phoned Dr. Alan Radford and his team at the University of Liverpool for help. Before long they knew they had an outbreak on their hands.

In this EID podcast, Dr. Alan Radford, a professor of veterinary health informatics at the University of Liverpool, recounts the discovery of an outbreak of canine enteric coronavirus.

Visit our website to listen: https://go.usa.gov/xsMcP
Since the Gs/GD/96-lineage highly pathogenic avian influenza virus (HPAIV) (H5N1) was identified in 1996, H5 HPAIVs have evolved into divergent clades and caused continuous outbreaks in birds (1–11). Moreover, long-distance transmissions of H5 HPAIVs within a relatively short period indicate a crucial role of migratory birds in global spread of HPAIVs (7,8). Thus far, H5 viruses have undergone at least 4 waves of intercontinental transmission: H5N1 clade 2.2 during 2005–2006, H5N1 clade 2.3.2.1c during 2009–2010, H5N8 clade 2.3.4.4a and H5N1 clade 2.3.2.1c during 2014–2015, and H5Ny clade 2.3.4.4b during 2016–2017 (2–8).

Starting during 2020–2021, a new wave of HPAIV H5N1/H5N8 clade 2.3.4.4b outbreaks was reported in wild and domestic birds in Eurasia (9–11) and Africa (https://wahis.woah.org/#/event-management). Human cases of H5N1/H5N6/H5N8 infection were sporadically documented (https://www.who.int/teams/global-influenza-programme/avian-influenza/monthly-risk-assessment-summary), highlighting the zoonotic risk of H5 HPAIVs. Since 2021, H5 HPAIVs have caused at least 9 outbreaks in wild birds rather than poultry in mainland China (http://www.moa.gov.cn/gk/yjgl_1/yqfb; http://www.xmsyj.moa.gov.cn/yqfb). However, large outbreaks of H5N1 HPAIVs in domestic poultry were reported during 2021–2022 in Europe and the United States (https://www.cdc.gov/flu/avianflu/data-map-commercial.html) (A. Kandeil et al., unpub. data, https://doi.org/10.21203/rs.3.rs-2136604/v1). In this study, we explored the genetic origin, spread patterns, and antigenicity of H5N1 viruses identified from 2 dead migratory birds in China.

The Study

We collected oral swab specimens and lung tissues from a dead whooper swan in northern China (Inner Mongolia) on November 3, 2021, and a deceased black swan in eastern China (Zhejiang) on November 15, 2021. We performed virus isolation in 10-day-old specific pathogen-free chicken embryos (12), then confirmed results by quantitative reverse transcription PCR (Mabsky Biotech, http://www.mabsky.com).

We isolated and Sanger sequenced 3 viruses, A/whooper swan/Northern China/11.03 IMEEDSAK1-O/2021 (Ws/NC/AK1-O/2021), A/whooper swan/Northern China/11.03 IMEEDSAK2-O/2021 clade 2.3.2.1c during 2014–2015, and H5Ny clade 2.3.4.4b during 2016–2017 (2–8).

These authors contributed equally to this article.
Avian Influenza Virus (H5N1) Clade 2.3.4.4b, China

(Ws/NC/AK2-O/2021), and A/black swan/Eastern China/11.15 ZJHZ74-Lg/2021 (Bs/EC/74-Lg/2021). We deposited whole genomes in NMDC (https://nmdc.cn; accession nos. NMDCN0000RD8–NMDCN0000RDV) and GISAID (https://www.gisaid.org; accession nos. EPI195500–EPI195523). We reconstructed phylogenetic trees for each gene of the 3 H5N1 isolates together with reference viruses from GISAID and the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi), using the maximum-likelihood method with a general time-reversible model plus gamma distribution in RAxML 8.2.12 (https://cme.h-its.org/exelixis/web/software/raxml) (Appendix 1 Table, https://wwwnc.cdc.gov/EID/article/29/6/22-1723-App1.xlsx). We reconstructed Bayesian time-resolved phylogenetic trees in BEAST 1.10.4 (https://beast.community/index.html) using the SRD06 model, the log-normal relaxed clock model, and the Skygrid coalescent model. We mapped spatial coordinates to the post burn-in time-scaled posterior trees using a Brownian motion continuous phylogeographic model. We mapped host type and hemagglutinin (HA) or neuraminidase (NA) subtype on each posterior tree by using a discrete trait phylogeographic model with BSSVS extension to infer the most likely ancestor with statistical support (Appendix 2, https://wwwnc.cdc.gov/EID/article/29/6/22-1723-App2.pdf).

Figure 1. Phylogenetic trees for hemagglutinin genes of clade 2.3.4.4 H5Ny and neuraminidase genes of global H5N1 avian influenza viruses. A) Phylogeny of hemagglutinin genes of global clade 2.3.4.4 H5Ny avian influenza viruses. Solid green circles indicate H5N1 and H5N8 viruses from wild birds isolated in China; sequence names are listed next to corresponding circles. Red asterisks indicate human isolates. H5 vaccine seed strains used in mainland China are listed near the corresponding clades; orange cross indicates Re-14 vaccine. The major H5Ny subtypes within clade 2.3.4.4b are colored by their subtypes and collection dates. Clade 2.3.4.4b was divided into clade 2.3.4.4b.1 and clade 2.3.4.4b.2 because of >2.7% average pairwise nucleotide distance and >60% support for the 2 subclades. B) Phylogeny of global H5N1 neuraminidase genes. Colored circles indicate the novel H5N1 viruses from this study, H5N1 viruses isolated in 2020 and 2021. Numbers on branches represent bootstrap support values for some major clades. Scale bar indicates number of nucleotide substitutions per site. Full phylogenetic trees of hemagglutinin genes of global H5Ny and neuraminidase genes of global H5N1 are provided at https://github.com/judyssister/globalH5N1_2021.
We performed hemagglutination inhibitor (HI) assays (https://www.who.int/publications/i/item/manual-for-the-laboratory-diagnosis-and-virological-surveillance-of-influenza) to test the reactivities of antisera of H5 Re-11/Re-13/Re-14 vaccines against these new H5N1 isolates and H5N8 HPAIVs identified in 2020 (10). Re-11 (A/duck/Guizhou/S4184/2017[H5N6], clade 2.3.4.4h) was used in poultry in mainland China during December 2018–December 2021, whereas Re-13 (A/duck/Fujian/S1424/2020[H5N6], clade 2.3.4.4h) and Re-14 (A/whooper swan/Shanxi/4–1/2020[H5N8], clade 2.3.4.4b) have been deployed since January 2022 (http://www.moa.gov.cn/govpublic).

Conclusions
We obtained 3 H5N1 HPAIVs, Ws/NC/AK1-O/2021 and Ws/NC/AK2-O/2021 from a dead whooper swan in northern China and Bs/EC/74-Lg/2021 from a dead black swan in eastern China in November 2021. Consistent with the HPAIV signature of multiple basic amino acids on HA cleavage site, these H5N1 strains caused severe histopathologic changes in the wild birds (Appendix 2 Figure 1).

Phylogenetic analyses showed that all 3 H5N1 HA genes cluster in clade 2.3.4.4b.2 (Figure 1, panel A). Most H5 avian influenza viruses (AIVs) identified during 2020–2021 were in that clade, whereas H5N8 was the dominant subtype during 2019–2021, and H5N1 strains emerged in October 2020 and increased subsequently. In NA phylogeny, most H5N1 viruses identified during 2020–2021 including those 3 H5N1 viruses, were classified into the Eurasian lineage clade EA-3 (Figure 1, panel B). However, almost all H5N1 NA genes from mainland China were identified during 1996–2018 and are clade EA-1.

Given the HA phylogenetic relationships, we defined cluster 1, 2, and 3 in clade 2.3.4.4b.2 (Figure 1, panel A). Cluster 1 includes 4 H5N8 HPAIVs identified from wild birds in 2020 (10) and Re-14 vaccine strain. In cluster 2, Bs/EC/74-Lg/2021 was grouped with H5N1 viruses from Japan and South Korea, showing 99.3%–99.6% sequence identity. In cluster 3, Ws/NC/AK1-O/2021 and Ws/NC/AK2-O/2021 are identical (Appendix 2 Table 1) and clustered with H5N1 viruses from Europe, possessing 99.3% nucleotide identity. Most H5N1 viruses identified during 2020–2021 belong to cluster 3. Notably, 8 H5N6 and 1 H5N8 viruses that caused human infections (13) are found in cluster 1. Moreover, 2 human infections with cluster 3 H5N1 viruses were reported in the United Kingdom and United States during 2021–2022 (14). Therefore, this virus lineage poses a nonnegligible threat to public health, despite these viruses carrying non–mammalian-adapted molecular markers (Appendix 2 Table 2) and avian-type receptor-binding propensity (Appendix 2 Figure 2).

Table 1. HI titers of H5N1 and H5N8 highly pathogenic avian influenza viruses from wild birds in China against antisera of H5 Re-11, Re-13, and Re-14 vaccines

<table>
<thead>
<tr>
<th>Virus</th>
<th>HI titers of chicken antiserum against vaccine strains and H5N1/H5N8 isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Re-11, clade2.3.4.4h</td>
</tr>
<tr>
<td>Re-11, Dx/GZ/S4184/2017(H5N6)</td>
<td>256</td>
</tr>
<tr>
<td>Re-13, Dx/F/J/S1424/2020(H5N6)</td>
<td>32</td>
</tr>
<tr>
<td>Re-14, Ws/SX/4–1/2020(H5N8)</td>
<td>8</td>
</tr>
<tr>
<td>Bs/EC/74-Lg/2021(H5N1)</td>
<td>16</td>
</tr>
<tr>
<td>Ws/NC/AK2-O/2021(H5N1)</td>
<td>2–4</td>
</tr>
<tr>
<td>Ws/HN/1-K/2020(H5N8)</td>
<td>8</td>
</tr>
<tr>
<td>Ws/HN/1-G/2020(H5N8)</td>
<td>8</td>
</tr>
</tbody>
</table>

*H5 Re-11 vaccine was used in poultry in mainland China during December 2018–December 2021; H5 Re-13 and Re-14 vaccines have been deployed since January 2022. HI, hemagglutination inhibition.

Table 2. Amino acid substitutions on the hemagglutinin antigenic sites between H5N1 2021 and H5N8 2020 highly pathogenic avian influenza viruses and H5 vaccine seed viruses Re-11, Re-13, and Re-14 used in China

<table>
<thead>
<tr>
<th>Virus</th>
<th>Position of antigenic sites in hemagglutinin genes (H3 numbering)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63</td>
</tr>
<tr>
<td>Re-11, clade2344h</td>
<td>D</td>
</tr>
<tr>
<td>Re-13, clade2344h</td>
<td>N</td>
</tr>
<tr>
<td>Re-14, clade2344b</td>
<td>D</td>
</tr>
<tr>
<td>Bs/EC/74-Lg/2021(H5N1)</td>
<td>D</td>
</tr>
<tr>
<td>Ws/NC/AK1-O/2021(H5N1)</td>
<td>D</td>
</tr>
<tr>
<td>Ws/NC/AK2-O/2021(H5N1)</td>
<td>D</td>
</tr>
<tr>
<td>Ws/HN/1-K/2020(H5N8)</td>
<td>D</td>
</tr>
<tr>
<td>Ws/HN/1-G/2020(H5N8)</td>
<td>D</td>
</tr>
<tr>
<td>Ws/HN/2-F17/2020(H5N8)</td>
<td>D</td>
</tr>
<tr>
<td>Ws/HN/2-F18/2020(H5N8)</td>
<td>D</td>
</tr>
</tbody>
</table>

*Positions of antigenic sites based on the H5 and H3 (sites A–E) antigenic sites.
Current H5N1 viruses have resulted in substantial mortality in domestic and wild birds in Eurasia, Africa, and Americas (https://wahis.woah.org/#/event-management); however, they have only been identified in wild birds in mainland China. Compared with high HI antibody titers (256) between homologous antiserum and antigens of H5 vaccines, the recent H5N1/H5N8 viruses presented low HI titers (2–16) against Re-11/Re-13 antiserum (Table 1). In addition, cluster 1 H5N8 viruses had HI titers of 64 against Re-14 (cluster 1) antiserum, whereas HI titers for the H5N1 viruses were 128 for Bs/EC/74-Lg/2021 (cluster 2) and 32 for Ws/NC/AK1-O/2021 (cluster 3). This finding indicates lower antigenic identities between H5N1/H5N8 viruses circulating in wild birds and vaccines used in domestic poultry, even within the same clade. This antigenic variation may correlate to substitutions at antigenic sites (Table 2; Appendix 2 Tables 3,4, Figure 3).

Phylogenetic analyses uncovered that 3 novel H5N1 viruses could be classified into Ws/2021-like (Ws/NC/AK1-O/2021 and Ws/NC/AK2-O/2021) and Bs/2021-like (Bs/EC/74-Lg/2021) reassortants (Appendix 2 Figure 4). The viruses originated through separate reassortment events between H5N8 HPAIVs (obtaining HA and matrix [M] genes) and low pathogenic avian influenza virus pools (NA, polymerase basic 1, polymerase basic 2, polymerase acidic, nucleoprotein, and nonstructural protein genes) (Appendix 2 Figure 5–12). Phylogeographic
analyses suggested that the H5N1 viruses spread to China by long-distance bird migration through various routes (Figure 2).

We reconstructed the genetic reassortment history for these H5N1 viruses (Appendix 2 Table 5, Figures 13, 14). For the Bs/2021-like reassortant, most gene segments group with viruses from wild Anseriformes in China or its adjacent areas, whereas the M gene likely originated from an HPAIV H5N8 ancestor from Eastern Europe in approximately May 2021 before import into China through bird migration. For the Ws/2021-like reassortant, 7 gene segments originated from Europe and were potentially transmitted by wild birds in February–August 2021, whereas a unique polymerase basic 2 gene originated from an early ancestry in 2017 with unknown origin but most closely related to a Russian H3N6 low pathogenic AIV. The ancestral states of most genes of the 2 reassortants indicate origins in wild Anseriformes and likely transmission through wild Anseriformes over the summer of 2021, whereas a few genes (e.g., Bs/2021-like M gene) potentially originated from domestic poultry. However, sampling bias in sequences might affect ancestral reconstruction by discrete trait phylogeographic models.

In conclusion, we identified 3 H5N1 HPAIVs in wild birds in autumn 2021, China. The antigenic divergence highlights the high-risk introduction of H5N1 circulating in wild birds to incompletely protected vaccinated flocks in China. The H5N1 viruses have experienced complicated reassortment during long-distance spread through various bird migration routes. Therefore, we call for international cooperation on AIV monitoring in migratory birds to help early identification and intervention of the emerging and reemerging AIVs with public health risks.

Acknowledgments

We thank the submitters and originating laboratories for influenza virus genomes in the GISAID and National Center for Biotechnology Information databases.

This work was supported by the National Key R&D Program of China (grant nos. 2021YFC2300900 and 2022YFC2601602), National Natural Science Foundation of China (grant nos. 32261135524 and 32200416), Strategic Priority Research Program of Chinese Academy of Sciences (grant no. XDB29010102), Chinese Academy of Sciences’ Southeast Asia Biodiversity Research Institute (grant no. 151C53KYSB20210023), Self-supporting Program of Guangzhou Laboratory (grant no. SRPG22-001), and the National Science and Technology Infrastructure of China (grant no. NPRC-32).

Y.B. is supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences (grant no. Y2021034) and Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (grant no. ZYYCXTD-D-202208). L.L., S.L., P.D., and W.L. are supported by an Ecology and Evolution of Infectious Diseases collaborative grant with the UK Biotechnology and Biological Sciences Research Council (grant no. BB/V011286/1) and the National Natural Science Foundation of China (grant no. 32061123001). P.D. and S.L. are additionally supported by the Strategic Program grant to Roslin Institute (grant no. BB/P013740/1) and a UK research consortium on avian influenza research gaps (Flu-MAP) (grant no. BB/X006123/1) from the UK Biotechnology and Biological Sciences Research Council and Department for Environment Food and Rural Affairs. P.D. was also supported by an EU Horizon 2020 award (no. 727992 [DELTA-FLU]), and L.L. and S.L. are supported by an EU Horizon 2020 award (no: 874735 [VEO]).

About the Author

Dr. Yang is an assistant professor at the Institute of Microbiology, Chinese Academy of Sciences. Her research interests are focused on the evolution and spread patterns of emerging and reemerging infectious diseases.

References

Address for correspondence: Yuhai Bi, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Rd, Chaoyang District, Beijing 100101, China; email: beeyh@im.ac.cn

The Public Health Image Library

The Public Health Image Library (PHIL), Centers for Disease Control and Prevention, contains thousands of public health–related images, including high-resolution (print quality) photographs, illustrations, and videos.

PHIL collections illustrate current events and articles, supply visual content for health promotion brochures, document the effects of disease, and enhance instructional media.

PHIL images, accessible to PC and Macintosh users, are in the public domain and available without charge.

Visit PHIL at: http://phil.cdc.gov/phil
Leishmania RNA virus 1 (LRV1) belongs to the Totiviridae family, Leishmaniavirus genus, and infects different Leishmania lineages. This virus is not enveloped and is composed of a viral capsid ≈40 nm in diameter and a double-stranded RNA (dsRNA) of 5,280 nt (1,2). The genome has 3 open reading frames (ORF), 2 of which are coding. The orf2 codes for the capsid protein and the orf3 codes for an RNA-dependent RNA polymerase (RdRp). orf1 has been described in other members of the family, but its function is unknown (1,3). This virus has been categorized in LRV1 and LRV2, according to the subgenuses of Leishmania in which they have been identified (4,5). The presence of LRV1 has been reported more frequently in specific regions of South America associated with cases of cutaneous leishmaniasis (CL) (6,7). L. (Viannia) panamensis is the predominant species and is responsible for most cases of CL in Panama (8,9) and the presence of LRV1 has been reported in 2 isolates of L. (V.) panamensis from Ecuador and Costa Rica (7,10).

The Study
We analyzed Leishmania spp. parasite isolates from clinical samples from 2014–2018 that were cryopreserved at Gorgas Memorial Institute’s parasitology research department (Panama City, Panama). The Bioethics Committee of the Gorgas Memorial Institute for Health Studies approved this study (protocol no. 056/CBI/ICGES/19). We extracted clinical and epidemiologic data such as sex, age, clinical classification (location, severity, and number of lesions), and province of origin from the database. The disease was classified as nonsevere or severe according to Infectious Disease Society of America guidelines (11). We activated the isolates at 26°C by using Schneider’s medium enriched with 25% fetal bovine serum until reaching exponential growth (2–3 ×10^7 parasites/mL) (9). We centrifuged this concentration of parasites for 10 minutes at 3,500 rpm and divided it into 2 pellets; we used 1 pellet to extract DNA from Leishmania spp. for characterization and confirmation and the other to extract RNA and detect LRV1. We characterized the isolates as L. (V.) panamensis by the RFLP/PCR-Hsp70 methodology (12). For the detection of LRV1, we amplified 245 nucleotides corresponding to the orf1 gene region using the primers described by Ito et al. (6,13) and sequenced the product by the Sanger method.

We recovered parasite isolates from 56 patients. Of those isolates, 11 (20%) were positive for LRV1, 63.3% from female patients and 36.4% from male...
Leishmania RNA Virus 1 in L. (Viannia) panamensis

patients. Patient age range was 8–59 years; mean (+SD) age was 34 (+5.4) years (Appendix Table 1, https://wwwnc.cdc.gov/EID/article/29/6/22-0012-App1.pdf). All the patients came from leishmaniasis-endemic areas in Panama: 36.4% from Panama Oeste, 18.2% from Panama, 18.2% from Colón, 18.2% from Darién, and 9.0% from Coclé (Figure 1). Most of the patients had single lesions (7/11 [63.6%]); mean (+SD) was 1 (+0.2) and range 1–3 lesions per patient. Mean (+SD) time of evolution of the lesion was 50 (+9.6) days and range was 21–120 days. Most (6/11 [54.5%]) patients had an evolution time of 30 days. All the lesions were CL and were classified as nonsevere; lesions consisted of a crusty, moist ulcer with raised margins and a clean base (Table) (11). The lesions were distributed mainly on the arms (9/11: 81.8%); only 2 were visible elsewhere, on the leg (1/11: 9.1%) and face (1/11: 9.1%).

We performed data analysis using GraphPad Prism 5.0 software (GraphPad, https://www.graphpad.com). We performed the Kolmogorov-Smirnov test to assess the normality of the samples. To analyze the differences between groups, we performed a t test for Gaussian distribution data. We considered differences statistically significant when p was <0.05. We found no significant difference to suggest that those with LRV1-positive parasites developed more severe diseases (data not shown). From 10 sequences downloaded from obtained in the study (GenBank accession nos. OL389058–67), we selected 6 sequences based on phylogenetic analysis quality (Appendix Table 2); those sequences clustered within the phylogenetic group of LRV1 sequences detected in the species of the subgenus Viannia, close to those found in isolates of L. (V.) guyanensis (Figure 2).

Conclusions

We detected LRV1 in 11/56 (20%) of L. (V.) panamensis–evaluated isolates, all of them in patients with CL, consistent with the preliminary description of the presence of LRV1 in 2 isolates of L. (V.) panamensis from clinical samples from Ecuador and Costa Rica, countries geographically close to Panama (7). The prevalence of LRV1 has been reported as higher in Leishmania spp. isolates from the New World (39.1%) than in those from the Old World (8.4%); prevalence also is higher in isolates from patients with severe skin forms of leishmaniasis, such as disseminated leishmaniasis and MCL, than from patients with CL (14).

The use of Leishmania spp. isolates could be a limitation for the analysis because we were able to analyze only the parasites that grew in medium. To avoid this bias, future studies analyzing the presence of the virus directly from clinical samples are needed. In South American countries, prevalence of ≈25% of LRV1 has been described in isolates of L. (V.) braziliensis and L. (V.) guyanensis from Peru (7), Bolivia (14), and Brazil (15). The presence of LRV1 in L. (V.) panamensis in this study (20%) indicates circulation of this virus in Panama, suggesting LRV1 is likely widespread across the Americas and in different Leishmania (V.) species. Future analysis using a higher

Figure 1. Distribution map of Leishmania RNA virus 1 positive and negative isolates analyzed in Panama, 2014–2018.
number of samples is necessary to estimate LRV1 prevalence in Panama.

In this study, we found no evidence that correlates the presence of LRV1 with severe clinical forms of leishmaniasis caused by *L. (V.) panamensis*, which was consistent with previous findings of no predisposition of the Th2 response induced by LRV1 for the favorable survival of the parasite for *L. (V.) panamensis* (7). In addition, previous studies described a general decrease in the expression of virulence factor transcription in *L. (V.) panamensis* (7) compared with an earlier study of *L. (V.) braziliensis* (10). It is possible that *L. (V.) panamensis* strains infected with LRV1 have low expression of virulence factor, which would be reflected in the presence of uncomplicated symptoms of CL cases in the analyzed samples.

The role of LRV1 and its subtypes modulating the immune response in infection caused by *L. (V.) panamensis* is unclear. It is important to carry out studies of the virus subtypes that are circulating in the country and analyze whether the differences in the modulation of the immune response reflected in the clinical manifestations are because of intrinsic factors of the virus, the *Leishmania* species that it infects, or both.

Table

Epidemiologic description of *Leishmania (Viannia) panamensis* isolates analyzed for LRV1, Panama, 2014–2018

<table>
<thead>
<tr>
<th>LRV1 status</th>
<th>No. isolates, N = 56</th>
<th>Mean age, y (SD)</th>
<th>Age range, y</th>
<th>Sex, no.</th>
<th>Duration of disease, d, Mean (SD)</th>
<th>Range</th>
<th>No. lesions, Mean (SD)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>11</td>
<td>34 (5.4)</td>
<td>8–59</td>
<td>4 M, 7 F</td>
<td>50 (9.6)</td>
<td>21–120</td>
<td>1 (0.2)</td>
<td>1–3</td>
</tr>
<tr>
<td>Negative</td>
<td>45</td>
<td>30 (3.1)</td>
<td>3–72</td>
<td>26 M, 19 F</td>
<td>67 (11)</td>
<td>15–365</td>
<td>1 (0.2)</td>
<td>1–6</td>
</tr>
</tbody>
</table>

LRV1, Leishmania RNA virus 1.
In conclusion, the data we obtained show the presence of LRV1 in isolates of L. (V.) panamensis from Panama from different years and locations, suggesting wide spread of the virus in this species. In addition, the recent documented circulation of L. (V.) guyanensis and L. (V.) braziliensis in Panama (9) and the proposed association of LRV1 presence in these species with severity of disease highlight the necessity of future studies on the presence of LRV1 in non–L. (V.) panamensis species in Panama. The role of *Leishmania* in disease severity may depend on the species infected and the role of viral, parasite, and human host factors in pathogenesis.

Acknowledgments

We thank all the members of the Department of Research in Virology and Biotechnology, the Department of Research in Parasitology, and the clinical research unit of Gorgas Memorial Institute for Health Studies. We thank Alberto Cumberna for map creation.

This study was possible thanks to the support of the Sistema Nacional de Investigación (SNI-SENACYT), Panama, awarded to J.A.S., J.M.P., S.L.V., A.S., K.G., and L.E.A. This work also received administrative and financial support from Gorgas Memorial Institute for Health Studies.

About the Author

Dr. González is a medical technologist and senior health researcher at Gorgas Memorial Institute, Panama City, Panama. Primary research interests are immunopathology of cutaneous leishmaniasis and molecular characterization of *Leishmania* spp., and in vitro studies of *Leishmania* (V.) panamensis infection.

References

Address for correspondence: Leyda Abrego, Department of Research in Virology and Biotechnology, Gorgas Memorial Institute for Health Studies, Avenida Justo Arosemena, Panama City, Panama; email: labrego@gorgas.gob.pa; Azael Saldaña, Department of Research in Parasitology, Gorgas Memorial Institute for Health Studies, Avenida Justo Arosemena, Panama City, Panama; email: azael.saldana@up.ac.pa
We isolated a new orthonairovirus from *Dermacentor silvarum* ticks near the China–North Korea border. Phylogenetic analysis showed 71.9%–73.0% nucleic acid identity to the recently discovered Songling orthonairovirus, which causes febrile illness in humans. We recommend enhanced surveillance for infection by this new virus among humans and livestock.

Viruses of the genus *Orthonairovirus*, family *Nairoviridae*, include the consequential tick-transmitted pathogens Crimean–Congo hemorrhagic fever virus and Nairobi sheep disease virus, as well as other poorly characterized viruses that have been found in ticks and mammals. *Orthonairovirus* virions are spherical in shape (80–120-nm diameter) with 3 single-stranded RNA segments 17.1–22.8 kilobases in length and a membrane envelope (1–5). We performed surveillance in areas endemic for tick-borne encephalitis (6) and identified a novel orthonairovirus from *Dermacentor silvarum* ticks collected in 2021 in Jilin Province, China, near the China–North Korea border.

The Study

On April 17, 2021, we dragged corduroy to collect ticks from a forest region in Antu (118°46′E, 43°15′N), a district of the city of Yanbian in eastern Jilin Province, China, near the border with North Korea. We identified captured ticks according to morphologic keys and stored them at 4°C with wet cotton. We collected 264 ticks of 3 species—29 *Ixodes persulcatus*, 193 *Dermacentor silvarum*, and 12 *Haemaphysalis concinna*—and 30 larvae of unidentified species. We homogenized ticks using a QIAGEN TissuLyser (QIAGEN, https://www.qiagen.com) and inoculated supernatants onto a monolayer of African green monkey kidney (Vero) E6 cells. After 3 successive passages, we observed cells for cytopathic effects. The inoculate from *Dermacentor silvarum* ticks, designated as YB_tick_2021_24, caused cytopathic effects in Vero E6 cells 96 h after inoculation (Figure 1, panels A, B). We collected cells showing cytopathic effects, then fixed and embedded them in epoxy resin. We cut ultrathin (80 nm) sections from the resin block, stained them with citrate lead and uranyl acetate, and observed them under a transmission electron microscope. We observed enveloped virus particles ≈100 nm in diameter that shared morphologic features with *Bunyavirales* viruses (Figure 1, panel C).

We extracted viral RNA from infected culture supernatants using a QIAGEN QIAamp Viral RNA Mini Kit, synthesized cDNA, prepared DNA libraries using an Illumina Nextera XT Kit (Illumina, https://www.illumina.com), and performed 150 bp paired-end sequencing using the Illumina MiniSeq System. We filtered reads on the basis of their length and mean quality values. We prepared contigs by de novo assembly and subjected them to BLASTx alignment (https://blast.ncbi.nlm.nih.gov/Blast.cgi) at E value <10^{-4} against the nonredundant protein and viral proteome databases of the National Center for Biotechnology Information. We used Bowtie2 (https://bowtie-bio.sourceforge.net/bowtie2/index.shtml) to remap the clean reads to the generated virus-related contigs (7). We used rapid
amplification of cDNA ends (RACE) PCR and Sanger sequencing to confirm the terminal sequences of virus genomes, and deposited the new genome in GenBank (accession nos. OQ207701-3). We identified open read frames (ORFs) using ORF finder (https://www.ncbi.nlm.nih.gov/orffinder) and calculated sequence similarities using BLAST.

Our procedure generated 40,826,350 reads (6.1 Gbp), which produced 266 virus-related contigs. Three contigs, the 1,516 bp small (S), 3,936 bp medium (M), and 12,133 bp large (L) segments, were annotated to Songling virus (SLV), a previously reported...
Results indicate that the isolate represents a unique orthonairovirus (8). Average sequencing coverages remapped to the 3 contigs were 48× (S), 63× (M), and 234× (L). The final genome lengths confirmed by RACE sequencing were 1,848 bp encoding 488 aa for the S segment, and 12,001 bp encoding 3,950 aa for the L segment. We performed multiple alignments using MAFFT version 7 (https://mafft.cbrc.jp/alignment/server) (9) and constructed a phylogenetic tree in MEGA7 (https://www.megasoftware.net) by using the neighbor-joining method with a bootstrap test for 1,000 replicates (10).

Phylogenetic analysis showed the strain belongs to the genus Orthonairovirus, family Nairoviridae, and is genetically related to SLV (Figure 2 (4,5,8,11)). The terminal nucleotides of the S segment were identical to those of orthonairoviruses (3′ segment terminus AGAGUUUCU and 5′ segment terminus AGAAACUCU) (5). The termini of the M and L segments were different (Appendix Figure, https://wwwnc.cdc.gov/EID/article/29/6/23-0056-App1.pdf). Homology analysis comparing YB_tick_2021_24 with SLV sample YC585 showed 71.9% nucleic acid (na) and 71.5% aa identities for the S segment, 72.4% na and 79.5% aa identities for the M segment, and 73.0% na and 84.6% aa identities for the L segment (Table 1) (8). Those results indicate that the isolate represents a unique Orthonairovirus species. For purposes of archiving, we designated novel YB_tick_2021_24 as Antu virus and deposited the strain in the National Pathogen Resource Center (accession no. NPRC 2.3.9401).

Conclusion

We identified a novel orthonairovirus, Antu virus, in Dermacentor silvarum ticks collected in China near the China–North Korea border. Nucleotide and amino acid sequence homologies, combined with phylogenetic analysis of other orthonairovirus genomes, suggested that Antu virus is a new member of the genus Orthonairovirus, genetically related to SLV. Tamdy virus and SLV are orthonairoviruses reportedly able to infect human and livestock (8,12,13). Lacking direct evidence of the ability of Antu virus to infect and cause illness among humans and livestock animals, we recommend enhanced monitoring and surveillance for Antu virus infection among humans and livestock in potentially endemic areas.

This study was supported by the Science and Technology Fundamental Resources Investigation Program (grant no. 2022FY100904), the National Key Research and Development Program (grant no. 2022YFC2302700, 2022YFC2602200), and the United States National Institutes of Health Foundation (grant no. U01 AI1151810).

Table. Homology comparisons of the sequence of novel orthonairovirus Antu viruses from China and other related viruses*

<table>
<thead>
<tr>
<th>Protein/virus</th>
<th>Antu virus</th>
<th>SLGV</th>
<th>WTV</th>
<th>TTV</th>
<th>BURV</th>
<th>TDYV</th>
<th>HTV</th>
<th>CCHFV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Antu virus</td>
<td>71.5</td>
<td>52.6</td>
<td>53.7</td>
<td>52.1</td>
<td>48.9</td>
<td>47.4</td>
<td>37.3</td>
<td></td>
</tr>
<tr>
<td>SLGV</td>
<td>71.9</td>
<td>55.3</td>
<td>51.2</td>
<td>51.8</td>
<td>49.6</td>
<td>45.9</td>
<td>34.9</td>
<td></td>
</tr>
<tr>
<td>WTV</td>
<td>60.3</td>
<td>60.6</td>
<td>50.0</td>
<td>54.1</td>
<td>43.8</td>
<td>46.0</td>
<td>34.0</td>
<td></td>
</tr>
<tr>
<td>TTV</td>
<td>59.5</td>
<td>57.9</td>
<td>56.6</td>
<td>46.6</td>
<td>49.1</td>
<td>51.0</td>
<td>33.4</td>
<td></td>
</tr>
<tr>
<td>BURV</td>
<td>58.6</td>
<td>59.9</td>
<td>60.5</td>
<td>55.2</td>
<td>44.3</td>
<td>42.4</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>TDYV</td>
<td>56.5</td>
<td>58.2</td>
<td>54.0</td>
<td>57.9</td>
<td>53.1</td>
<td>45.0</td>
<td>34.3</td>
<td></td>
</tr>
<tr>
<td>HTV</td>
<td>55.5</td>
<td>55.8</td>
<td>55.9</td>
<td>58.7</td>
<td>52.9</td>
<td>55.8</td>
<td>35.2</td>
<td></td>
</tr>
<tr>
<td>CCHFV</td>
<td>47.6</td>
<td>46.8</td>
<td>46.8</td>
<td>46.5</td>
<td>47.9</td>
<td>47.7</td>
<td>46.3</td>
<td></td>
</tr>
<tr>
<td>Medium Antu virus</td>
<td>79.5</td>
<td>59.9</td>
<td>56.3</td>
<td>58.7</td>
<td>53.8</td>
<td>46.9</td>
<td>25.4</td>
<td></td>
</tr>
<tr>
<td>SLGV</td>
<td>72.4</td>
<td>58.2</td>
<td>53.9</td>
<td>57.0</td>
<td>51.2</td>
<td>46.5</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td>WTV</td>
<td>61.9</td>
<td>61.8</td>
<td>51.8</td>
<td>54.0</td>
<td>50.0</td>
<td>46.5</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td>TTV</td>
<td>57.2</td>
<td>58</td>
<td>56.4</td>
<td>51.6</td>
<td>51.1</td>
<td>48.1</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td>BURV</td>
<td>61</td>
<td>61.2</td>
<td>58.9</td>
<td>58</td>
<td>49.4</td>
<td>47.2</td>
<td>24.0</td>
<td></td>
</tr>
<tr>
<td>TDYV</td>
<td>56.6</td>
<td>57.5</td>
<td>55.9</td>
<td>55.1</td>
<td>55.4</td>
<td>45.7</td>
<td>24.4</td>
<td></td>
</tr>
<tr>
<td>HTV</td>
<td>53.7</td>
<td>53.9</td>
<td>53.4</td>
<td>52.9</td>
<td>54.2</td>
<td>52.1</td>
<td>24.6</td>
<td></td>
</tr>
<tr>
<td>CCHFV</td>
<td>41.8</td>
<td>40.7</td>
<td>40.5</td>
<td>40.6</td>
<td>41.3</td>
<td>42.2</td>
<td>40.3</td>
<td></td>
</tr>
<tr>
<td>Large Antu virus</td>
<td>84.6</td>
<td>66.5</td>
<td>64.1</td>
<td>66.0</td>
<td>62.2</td>
<td>60.1</td>
<td>39.2</td>
<td></td>
</tr>
<tr>
<td>SLGV</td>
<td>73.0</td>
<td>65.7</td>
<td>64.0</td>
<td>65.1</td>
<td>61.4</td>
<td>60.1</td>
<td>38.5</td>
<td></td>
</tr>
<tr>
<td>WTV</td>
<td>63.4</td>
<td>63.7</td>
<td>63.5</td>
<td>69.7</td>
<td>61.7</td>
<td>60.0</td>
<td>38.5</td>
<td></td>
</tr>
<tr>
<td>TTV</td>
<td>61.9</td>
<td>62.0</td>
<td>62.2</td>
<td>63.2</td>
<td>59.3</td>
<td>60.0</td>
<td>38.7</td>
<td></td>
</tr>
<tr>
<td>BURV</td>
<td>63.4</td>
<td>63.3</td>
<td>66.1</td>
<td>61.8</td>
<td>61.5</td>
<td>60.3</td>
<td>38.7</td>
<td></td>
</tr>
<tr>
<td>TDYV</td>
<td>60.4</td>
<td>60.5</td>
<td>60.5</td>
<td>59.4</td>
<td>60.8</td>
<td>58.0</td>
<td>39.2</td>
<td></td>
</tr>
<tr>
<td>HTV</td>
<td>59.8</td>
<td>60.1</td>
<td>59.5</td>
<td>61.5</td>
<td>60.3</td>
<td>58.2</td>
<td>38.2</td>
<td></td>
</tr>
<tr>
<td>CCHFV</td>
<td>48.1</td>
<td>48.3</td>
<td>48.2</td>
<td>48.0</td>
<td>48.8</td>
<td>48.1</td>
<td>48.5</td>
<td></td>
</tr>
</tbody>
</table>

Percentage nucleotide sequence identity presented below and amino acid identity above blank cells. BURV, Burana virus; CCHFV, Crimean-Congo hemorrhagic fever virus; HTV, Huangpi tick virus; SLGV, Songling virus; TDYV, Tamdy virus; TTV, Tacheng tick virus; WTV, Wenzhou tick virus.
About the Author

Dr. Fan Li is an associate professor at National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention. Her research interests include virus discovery in disease vectors and arbovirus infections.

References

Address for correspondence: Huanyu Wang, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, No.155 Changbai Rd, Changping District, Beijing 102206, China; email: wanghy@ivdc.chinacdc.cn; Qiang Wei, National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, No.155 Changbai Rd, Changping District, Beijing 102206, China; email: weiqiang@chinacdc.cn
Enterovirus D68 Outbreak in Children, Finland, August–September 2022

Ville Peltola, Riikka Österback, Matti Waris, Lauri Ivaska, Paula A. Tähtinen, Miia Laine, Tytti Vuorinen

We observed an intense enterovirus D68 outbreak in children in southwest Finland in August–September 2022. We confirmed enterovirus D68 infection in 56 children hospitalized for respiratory illnesses and in 1 child with encephalitis but were not able to test all suspected patients. Continuing surveillance for enterovirus D68 is needed.

Widespread enterovirus D68 (EV-D68) epidemics occurred in the United States and in other parts of the world in 2014, 2016, and 2018 (1,2). Low-level EV-D68 detection was reported in the United States during the COVID-19 pandemic in 2020 (3). EV-D68 re-emerged in autumn 2021, prominently in Europe but also to some extent in the United States, and again in 2022, when reports emerged from the United States and Europe about a substantially increased circulation of EV-D68 associated with acute respiratory illnesses in children (4–6). Previous EV-D68 epidemics in Europe and the United States were associated with severe lower respiratory tract infections, wheezing illnesses, and, more rarely, acute flaccid myelitis or other neurologic presentations in children (7,8). The clinical manifestations during the outbreaks in 2022 have not been described in detail in the literature.

In Finland, EV-D68 cases were detected in 2014 and sporadically before and after that, but circulation of the virus has not been seen during recent years. All laboratory findings of enterovirus in Finland are reported in the Finnish National Infectious Diseases Register, and some enteroviruses are typed. Hospitalizations of children because of respiratory illnesses increased rapidly in southwest Finland in August 2022. We screened children (≤16 years of age) admitted to Turku University Hospital, Turku, Finland, for respiratory or central nervous system illness associated with enterovirus (confirmed by reverse transcription PCR [RT-PCR]) and identified EV-D68 by type-specific RT-PCR and sequencing. We describe the outbreak and report the clinical features of 57 children hospitalized with EV-D68 in August–September 2022.

The Study

Turku University Hospital is the only hospital providing inpatient care for children in the Southwest Finland Hospital District, covering a population of 470,000 people, including 77,000 children and adolescents ≤16 years of age. The hospital also serves as a tertiary facility for a larger area, but our study did not include patients referred from other hospitals. Hospital policy requires that all children and adolescents with symptoms of infection at admittance be screened by a rapid RT-PCR test for SARS-CoV-2, influenza A and B, and respiratory syncytial virus (RSV). A laboratory-developed triplex RT-PCR test for enterovirus, rhinovirus, and RSV (9) or a 16-plex RT-PCR test for respiratory viruses including enterovirus (Allplex Respiratory Panels 1–3; Seegene, https://www.seegene.com) is performed by using nasopharyngeal swab or cerebrospinal fluid specimens for patients with a respiratory tract or central nervous system illness and negative screening test (Appendix, https://wwwnc.cdc.gov/EID/article/29/6/22-1795-App1.pdf).

When we noticed an enterovirus outbreak, we aimed to genotype viruses in all detected cases. First, we subjected specimens positive for enterovirus to typing based on partial enterovirus viral protein (VP) 1 gene sequencing after seminested PCR amplification (10). We observed a high prevalence of EV-D68, but the amplification succeeded only in specimens with high virus load (low cycle threshold value). Therefore, we applied an RT-PCR assay with EV-D68 VP1 gene-specific primers (11). Because a portion of the specimens remained untyped, we subjected them to
In August 2022, hospitalization and intensive care unit admittances of children for wheezing illnesses and pneumonia increased rapidly at our hospital. EV-D68 was documented in most children who tested positive for enterovirus (Figure 2). During the study period of August 1–September 30, 2022, a total of 57 children were hospitalized with a confirmed EV-D68 infection. The weekly number of new EV-D68 cases ranged from 7 to 20 during the 4-week period of August 22–September 18, 2022, and decreased thereafter. The median age of the 56 children hospitalized with EV-D68 respiratory illness was 4.23 years.

Figure 1. Flowchart of the enterovirus D68 (EV-D68) testing process of children hospitalized with respiratory illness or suspected central nervous system (CNS) infection at Turku University Hospital, Turku, Finland, during August 1–September 30, 2022. EV, enterovirus; RT-PCR, reverse transcription PCR.

Figure 2. Weekly number of enterovirus D68, coxsackievirus A6, and nontyped enteroviruses in children hospitalized with enteroviral illness in southwest Finland during July 25–October 2, 2022.
DISPATCHES

(Interquartile range 2.42–6.15 years), and most (66.1%) were male (Table). Before their most recent illness, 26.8% of the children had confirmed asthma or had been prescribed inhaled corticosteroids for suspected asthma. The primary reason for hospitalization was wheezing illness for 78.6% and pneumonia for 16.1%. The mean length of hospital stay among the children was 2.75 days (SD 2.05 days). More than half needed supplemental oxygen or other respiratory support, and 7 (12.5%) were admitted to the intensive care unit. The study population included 1 case of encephalitis and no cases of acute flaccid myelitis. The child with encephalitis manifested ataxia as the predominant symptom and did not need intensive care; EV-D68 was detected in the nasopharyngeal specimen but not in cerebrospinal fluid. All children recovered fully, and only 1 child was re-admitted to hospital within 14 days after discharge.

We detected another respiratory virus, in addition to EV-D68, in 8 (14.3%) children. Because other respiratory viruses can affect the clinical picture, we performed a sensitivity analysis of the clinical characteristics, excluding children with a co-detected virus (Appendix Table). We determined the clinical characteristics of 48 children with EV-D68 as the only detected virus to be similar to all study children.

Conclusions

The EV-D68 outbreak we studied started rapidly and was exceptionally intense but was of short duration in our area. Other parts of Finland also reported an increased number of children hospitalized with wheezing illnesses during the same timeframe. As in earlier reports, we found that the clinical picture of EV-D68 infection in hospitalized children was most often a respiratory illness characterized by wheezing and respiratory distress. In that respect, EV-D68 resembles rhinoviruses more than it does other enteroviruses (13).

Compared with wheezing illnesses caused by other viruses, the median age of children with EV-D68–associated illness was somewhat high (4.2 years), and a large proportion of children had a severe illness treated at the intensive care unit. Some children were simultaneously positive for another respiratory virus, but clinical manifestations were similar among those with EV-D68 only and those with co-detected viruses. Co-detection of ≥2 respiratory viruses is common in children. Although cases in this outbreak included 1 child diagnosed with encephalitis and no cases of acute flaccid myelitis, EV-D68 can cause acute flaccid myelitis and other neurologic illnesses. A study of a larger population would be needed to determine the occurrence of rare manifestations.

Table. Baseline characteristics, diagnoses, and treatment of children hospitalized with EV-D68 respiratory illness in southwest Finland, August–September 2022*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Children with EV-D68, N = 56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, years (IQR)</td>
<td>4.23 (2.42–6.15)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>19 (33.9)</td>
</tr>
<tr>
<td>M</td>
<td>37 (66.1)</td>
</tr>
<tr>
<td>Underlying condition, any</td>
<td></td>
</tr>
<tr>
<td>Asthma†</td>
<td>21 (37.5)</td>
</tr>
<tr>
<td>Neurologic condition</td>
<td>15 (26.8)</td>
</tr>
<tr>
<td>Premature birth, <37+0 gestational weeks</td>
<td>5 (8.9)</td>
</tr>
<tr>
<td>Other condition‡</td>
<td>4 (7.1)</td>
</tr>
<tr>
<td>Other virus§</td>
<td>8 (14.3)</td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
</tr>
<tr>
<td>Wheezing illness¶</td>
<td>44 (78.6)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>9 (16.1)</td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>3 (5.4)</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
</tr>
<tr>
<td>Intensive care unit admission</td>
<td>7 (12.5)</td>
</tr>
<tr>
<td>Respiratory support, any</td>
<td>32 (57.1)</td>
</tr>
<tr>
<td>Supplemental oxygen</td>
<td>22 (39.3)</td>
</tr>
<tr>
<td>High flow nasal oxygen</td>
<td>10 (17.9)</td>
</tr>
<tr>
<td>Invasive ventilation</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Inhaled salbutamol</td>
<td>53 (94.6)</td>
</tr>
<tr>
<td>Systemic corticosteroids</td>
<td>42 (75.0)</td>
</tr>
<tr>
<td>Antibiotics</td>
<td>20 (35.7)</td>
</tr>
<tr>
<td>Mean length of stay in the hospital, days (SD)</td>
<td>2.75 (2.05)</td>
</tr>
<tr>
<td>Readmission#</td>
<td>1 (1.8)</td>
</tr>
</tbody>
</table>

*Values are no. (%) unless otherwise indicated. IQR, interquartile range; SD, standard deviation.
†Confirmed or suspected asthma.
‡Cardiovascular condition, cystic fibrosis, or hypothyroidism.
§Rhinovirus, n = 7; SARS-CoV-2, n = 3; and human bocavirus, n = 3. Including 3 patients who had 3 or 4 viruses.
¶Bronchiolitis, wheezing bronchitis, or exacerbation of asthma.
#Within 14 days after discharge.
Active surveillance for EV-D68 is important because of its epidemic occurrence, continuous antigenic evolution (14), and potential to cause severe respiratory illnesses and serious neurologic conditions. Rapid multiplex RT-PCR methods are increasingly used for microbiologic diagnostics of respiratory tract infections, but these methods do not provide virus type, and some methods do not discriminate between rhinoviruses and enteroviruses. Our findings support virologic laboratory testing, especially in severe clinical cases, to determine the enterovirus type.

Our study included only 1 large pediatric hospital in Finland, and the number of EV-D68 cases is probably underestimated because of the short study period; enterovirus testing of only children negative in the screening test for SARS-CoV-2, influenza A and B, and RSV; and use of either triplex or 16-plex RT-PCR as the primary test for enterovirus. If we had used both tests or the highly sensitive triplex test for all cases, sensitivity might have been higher. We were not able to determine the lineage of genotyped EV-D68 viruses based on partial sequencing of VP1 only.

In summary, we observed a rapid onset of an EV-D68 epidemic in southwest Finland in August 2022. Most children who needed hospital treatment had a respiratory illness characterized by acute wheezing and respiratory distress. Given the virus’ ability to cause acute flaccid myelitis and other neurologic illnesses, continuing surveillance for EV-D68 is needed.

Acknowledgments
We acknowledge Ulla Torkko for help in collecting the clinical data.

This study received institutional approval and was not subject to the Ethics Committee approval.

About the Author
Dr. Peltola is a professor of pediatric infectious diseases at the University of Turku, Turku, Finland. His primary research interests include epidemiology, diagnostics, treatment, and prevention of respiratory tract infections in children.

References

Address for correspondence: Ville Peltola, Department of Paediatrics and Adolescent Medicine, Turku University Hospital, 20521 Turku, Finland; email: ville.peltola@utu.fi
In July 2022, the World Health Organization declared human mpox an international public health emergency (1). Mpox usually has a self-limiting illness course of 2–4 weeks; characteristic rash is the most common symptom and is associated with fever, lymphadenopathy, and fatigue in ≈50% of cases (2). Although ≈5.8% of confirmed cases require hospitalization, patients with advanced AIDS might be especially prone to severe mpox and death (3). No medications have a proven benefit for mpox, and experience with available regimens is limited. Four medications are available under clinical trials or the US Food and Drug Administration expanded access protocol (4). Two of them, brincidofovir and tecovirimat (TPOXX or ST-246), have shown effectiveness against orthopoxvirus in animal models (5,6). Both medications have a safe side effect profile in humans (7,8). According to the Centers for Disease Control and Prevention (CDC), tecovirimat is the first choice and should be taken with fatty meals. For patients who experience clinically significant disease progression while receiving tecovirimat or who experience recrudescence, brincidofovir can be used as an adjunctive therapy. Another medication, cidofovir, can be used in cases of severe monkeypox virus infection, although it has a less favorable safety profile. Vaccinia immune globulin intravenous (VIG-IV) can also be used in severe illness and prophylactically in patients with T-cell deficiency who cannot receive live mpox vaccines (4).

We report a case of disseminated mpox treated with those novel drugs in a patient with untreated HIV who was admitted multiple times to different hospitals. Information regarding outside admissions was obtained from electronic medical records.

The Study
A 33-year-old man with untreated HIV infection sought care at an outside hospital for generalized rash, diarrhea, and odynophagia. His first skin lesion (day 0) appeared 4 days before the hospitalization, and his last sexual contact occurred with a male partner 10 days before hospitalization. He had 25–30 circular, raised lesions (vesicles, pustules, and scabs) measuring 1 × 1 cm distributed over his entire body. Some of the lesions had purulence around the circumference with a dark center. His CD4 count was 25 cells/mm³ (reference range 500–1,500 cells/mm³) and viral load 678,000 copies/mL (ideal range in HIV infection <20 copies/mL).

Results of blood cultures at admission were negative. Given the high clinical suspicion of mpox, superficial swab specimens were collected from skin lesions. The viral PCR result was positive for nonvira- riola orthopoxvirus DNA of mpox on day 6. He was treated with oral tecovirimat (600 mg 2×/d). On day 10, he was discharged with the remainder of the 14-day course and close outpatient follow-up.

Two days later, the patient was readmitted to a different outside hospital for worsening fever and painful skin lesions. He had widespread annular and pustular lesions on the face, scalp, trunk, and extremities. He could not tolerate oral tecovirimat and received further doses intravenously (days 18–23 after onset of lesions). Most of his lesions crusted during this treatment, and the fever subsided. The patient...
Patient with Severe Mpox and Untreated HIV received a 17-day course of tecovirimat before leaving against medical advice on day 23. He was noted to be unaccepting of his HIV status and declined antiretroviral therapy (ART) during each hospital admission.

On day 44, he was readmitted to Sinai Hospital of Baltimore (Baltimore, Maryland, USA) for severe swelling in his right hand, lethargy, and fever, as well as widespread coalescing, painful, and necrotic lesions (>3 cm diameter). Several lesions were ulcerated and open, and he also had a few moist, small vesicular lesions (0.5 × 0.5 cm). CD4 count was 22 cells/mm³, HIV viral load was 229,000 copies/mL, and leukocyte count was 11,700 cells/mm³ (reference range 4,500–11,000 cells/µL). Ultrasonography of the right arm showed subcutaneous edema but no abscess. He declined ART throughout this hospitalization and initially deferred mpox medications. We empirically treated suspected bacterial superinfection with vancomycin and cefepime, which were later transitioned to linezolid and meropenem secondary to worsening leukocytosis and fevers.

By day 60, the patient’s rash involved his left eye and arm. Orbital computed tomography showed soft tissue swelling in anterior globes but no intraorbital abnormalities. On day 65, the patient agreed to begin oral tecovirimat and adjunctive brincidofovir (2 doses given 1 week apart). Still, rash and left arm swelling worsened (Figure 1). On day 72, leukocyte count increased to ≈35,000 cells/µL with a neutrophilic predominance (89%; reference range 43%-70%); liver function tests remained unremarkable, and blood cultures remained negative. He received 1 dose of VIG-IV. The next day, severe respiratory distress developed, and we noted several lung nodules and a large left-sided pleural effusion on imaging (Figure 2). A chest tube was placed. On day 74, the patient died of cardiac arrest. The cause of death was determined to be severe monkeypox virus infection per discussion with CDC and the Maryland health department (Figure 3, https://wwwnc.cdc.gov/EID/article/29/6/23-0059-F3.htm).

Conclusions

This case demonstrated severe manifestations of mpox in the setting of untreated HIV with advanced immunodeficiency. The patient had worsening dissemination of skin lesions, presumed superinfection, periorbital swelling, and possible lung involvement. Historically, intratracheal monkeypox virus administration in Macaque monkeys caused rapidly progressive fatal pneumonia (9). The pulmonary nodules in this patient closely resemble those seen by Manta et al. (10) in a patient with pulmonary mpox. We lack pathologic evidence, but this patient’s lung
complications could be secondary to mpox. The role of early imaging and biopsy in identifying those lesions warrants further study.

The body of data regarding the interaction between untreated HIV and mpox is growing. Evidence suggests higher hospitalization rates, severe infections, and increased mortality rates in this subgroup. The current recommendation is to initiate ART at the time mpox is diagnosed (11). As seen in this case, treating mpox might not be effective without concurrent ART.

Treatment guidelines for mpox are still developing. An ongoing randomized clinical trial, Study of Tecovirimat for Human Monkeypox Virus, is intended to help determine the efficacy of oral tecovirimat (12). Although this patient completed more than the suggested 14-day course of tecovirimat, he intermittently declined several doses, hindering optimal treatment response. Whether the patient was taking tecovirimat with fatty meals at home, as was recommended, was unclear. Brincidofovir was well tolerated without evidence of liver toxicity. The role of initiating intravenous forms of these medications early warrants discussion. Prospective trials with the available agents in various combinations and treatment durations for managing mpox are needed.

Barriers to HIV treatment are still prevalent and include poverty, behavioral health disorders, and substance use disorders. Fear of living with HIV and lack of awareness regarding the benefits of ART also play a role; Dasgupta et al. (13) found that 91.5% of patients about whom clinicians sought CDC guidance were persons with HIV not taking ART. Of those, 68% were Black, as was the patient in this study. Only a few states publicly report racial disparities, which could lead to a disproportionate effects of mpox outbreaks, as was seen in the COVID-19 pandemic (14,15). The specific barriers in our case could not be elucidated.

This case adds to the limited clinical experience with these novel medications in treating mpox. We second CDC recommendations regarding the necessity of ART in patients with HIV and mpox. Barriers to HIV treatment can be detrimental to prognosis and must be preemptively identified and addressed. This case also raises the suspicion of possible pulmonary involvement, which could pave the way for further research into the spread of mpox and systemic involvement. In this case, mpox treatments deployed months into the course of illness, in the setting of untreated HIV, did not appear to alter disease progression to death.

About the Author

Dr. Filippov is a first-year resident at Sinai Hospital of Baltimore who graduated from First Moscow State University, Russia, with the honor of distinction. His primary research interest is infectious diseases, specifically HIV.

References

11. Centers for Disease Control and Prevention. Clinical considerations for treatment and prophylaxis of mpox infection in people who are immunocompromised [cited 2023 Feb 15]. https://www.cdc.gov/poxvirus/monkeypox/clinicians/people-with-HIV.html

Address for correspondence: Sanchit Duhan, Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD, 21215, USA; email: s123anchit@gmail.com

April 2023

Vectorborne Infections

- Challenges in Forecasting Antimicrobial Resistance
- Pediatric Invasive Meningococcal Disease, Auckland, New Zealand (Aotearoa), 2004–2020
- Bacterial Agents Detected in 418 Ticks Removed from Humans during 2014–2021, France
- Association of Scrub Typhus in Children with Acute Encephalitis Syndrome and Meningoencephalitis, Southern India
- Nocardia pseudobrasiliensis Co-infection in SARS-CoV-2 Patients
- Monitoring Temporal Changes in SARS-CoV-2 Spike Antibody Levels and Variant-Specific Risk for Infection, Dominican Republic, March 2021–August 2022
- Extensive Spread of SARS-CoV-2 Delta Variant among Vaccinated Persons during 7-Day River Cruise, the Netherlands
- Mapping Global Bushmeat Activities to Improve Zoonotic Spillover Surveillance by Using Geospatial Modeling
- Adeno-Associated Virus 2 and Human Adenovirus F41 in Wastewater during Outbreak of Severe Acute Hepatitis in Children, Ireland
- Outbreaks of SARS-CoV-2 Infections in Nursing Homes during Periods of Delta and Omicron Predominance, United States, July 2021–March 2022
- Effectiveness of BNT162b2 Vaccine against Omicron Variant Infection among Children 5–11 Years of Age, Israel
- Monkeypox Virus Infection in 2 Female Travelers Returning to Vietnam from Dubai, United Arab Emirates, 2022
- Experimental Infection and Transmission of SARS-CoV-2 Delta and Omicron Variants among Beagle Dogs
- Highly Pathogenic Avian Influenza A(H5N1) Virus Outbreak in New England Seals, United States
- Blackwater Fever Treated with Steroids in Nonimmune Patient, Italy
- Emergence and Persistent Dominance of SARS-CoV-2 Omicron BA.2.3.7 Variant, Taiwan
- Yezo Virus Infection in Tick-Bitten Patient and Ticks, Northeastern China
- Effects of Seasonal Conditions on Abundance of Malaria Vector Anopheles stephensi Mosquitoes, Djibouti, 2018–2021
- Tularemia in Pregnant Woman, Serbia, 2018
- Ocular Trematodiasis in Children, Sri Lanka
- Serial Intervals and Incubation Periods of SARS-CoV-2 Omicron and Delta Variants, Singapore
- Serial Interval and Incubation Period Estimates of Monkeypox Virus Infection in 12 Jurisdictions, United States, May–August 2022
- Two-Year Cohort Study of SARS-CoV-2, Verona, Italy, 2020–2022
- Chikungunya Outbreak in Country with Multiple Vectorborne Diseases, Djibouti, 2019–2020
- Helicobacter arius grus in Patient with Multiple Refractory Gastric Ulcers, Japan
- Harbor Porpoise Deaths Associated with Erysipelothrix rhusiopathiae, the Netherlands, 2021
- Powassan Virus Infection Detected by Metagenomic Next-Generation Sequencing, Ohio, USA

To revisit the April 2023 issue, go to:
Manifestations and Management of Trimethoprim/Sulfamethoxazole–Resistant Nocardia otitidiscaviarum Infection

Katherine Fu, Kyle White, Aliaksandr Ramaniuk, Vidya Kollu, Daniel Urbine

Author affiliations: University of Florida College of Medicine, Gainesville, Florida, USA

DOI: https://doi.org/10.3201/eid2906.221854

Nocardia can cause systemic infections with varying manifestations. Resistance patterns vary by species. We describe N. otitidiscaviarum infection with pulmonary and cutaneous manifestations in a man in the United States. He received multidrug treatment that included trimethoprim/sulfamethoxazole but died. Our case highlights the need to treat with combination therapy until drug susceptibilities are known.

Nocardia otitidiscaviarum was first described in 1924 after being isolated from a guinea pig with ear disease (1). N. otitidiscaviarum infections account for ≈5.9% of all Nocardia infections (2,3). Nocardia can cause systemic infections with varying clinical signs. Predisposing factors are chronic lung disease, corticosteroid use, HIV infection, solid organ transplant, and solid organ malignancy (4). Patterns of resistance to antimicrobial therapies vary widely among Nocardia species. We present a case of a man with pulmonary and cutaneous manifestations of a trimethoprim/sulfamethoxazole (TMP/SMX)–resistant N. otitidiscaviarum infection.

The patient was a 73-year-old man in Gainesville, Florida, USA, who had severe chronic obstructive pulmonary disease, coronary artery disease, and congestive heart failure. In June 2020, he sought care for fever, productive cough, dyspnea on exertion, and a 30-pound weight loss over 4 months. Six months earlier, he had undergone computed tomography (CT) of the chest because of his smoking history and concern for unintentional weight loss. Scans revealed a 3.4-cm spiculated, cavitary, right upper lobe mass with associated precarinal and right hilar adenopathy. Subsequent positron emission tomography/CT showed a hypermetabolic wedge-shaped subpleural area of consolidation (5.0 × 4.1 cm) in the right upper lobe, consistent with pneumonia. Antimicrobial drugs were administered. Follow-up CT chest 3 months later showed progressive disease bilaterally in the upper lobes (Figure, panel A). The patient was then hospitalized and underwent bronchoscopy with bronchoalveolar lavage (BAL). We sent cultures for bacterial, including mycobacterial, and fungal testing. Pending results of the BAL gram stain and cultures, we empirically prescribed broad-spectrum antimicrobial drugs (i.e., vancomycin, cefepime, and metronidazole) for pneumonia, and the patient was discharged after clinical improvement. The BAL sample showed gram-positive branching rods (Figure, panel B), and N. otitidiscaviarum grew on culture. The patient was readmitted to the hospital.

At readmission, examination was remarkable for distant heart and lung sounds and a prolonged expiratory phase. The patient had no noticeable skin lesions at that time. CT of the head with contrast (implantable cardioverter device was not compatible

Figure. Pulmonary and cutaneous manifestations of Nocardia otitidiscaviarum infection in a man in Gainesville, Florida, USA, 2020. A) Computed tomography of the chest showing progressive disease in the upper lobes. B) Bronchoalveolar lavage sample (Gram stain) showing gram-positive branching rods. C) Cutaneous abscess on the ulnar aspect of the right hand.
subsequently died. Subsequently decided to pursue palliative care and macrolide. Repeat CT of the chest at week 6 of prompted discontinuation of the aminoglycoside distributed to either amikacin or clarithromycin, which seen on electrocardiogram. Those findings were at developed, and a new, prolonged QTc interval was unchanged. Unfortunately, acute renal injury de...ed linezolid and clarithromycin; amikacin remained discontinued TMP/SMX and levofloxacin and add...ation. On the basis of sensitivity results (Table), we discaviarum grew in cultures with broth microdilu...involvement and a rapidly developing skin abscess. It also infection may include pneumonia, brain abscess, lung abscess, skin abscess, muscle abscess, ocular infec...Table. Sensitivity results for Nocardia otitidiscaviarum isolated from a man in Gainesville, Florida, USA, 2020

<table>
<thead>
<tr>
<th>Drug</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amikacin</td>
<td>Sensitive</td>
</tr>
<tr>
<td>Amoxicillin/clavulanate</td>
<td>Resistant</td>
</tr>
<tr>
<td>Cefepime</td>
<td>Resistant</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>Resistant</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>Sensitive</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>Resistant</td>
</tr>
<tr>
<td>Imipenem</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Linezolid</td>
<td>Sensitive</td>
</tr>
<tr>
<td>Minocycline</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>Sensitive</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Trimethoprim/sulfamethoxazole</td>
<td>Resistant</td>
</tr>
</tbody>
</table>

cefotaxime, ceftriaxone, ciprofloxacin, moxifloxacin, tobramycin, and clarithromycin (3–5). This case demonstrates the value of considering Nocardia infection for patients with cavitary lung disease and concomitant soft tissue abscesses. It also highlights the need to choose appropriate initial antimicrobial therapy. In the absence of a drug susceptibility profile, clinicians should approach the selection of antibiotics with a framework that considers disease severity, the epidemiologic probability of particular species, and the most likely resistance profiles of the species. Treatment can be narrowed after the species and susceptibilities are known.

About the Author
Dr. Fu is an internal medicine resident at the University of Florida, pursuing a fellowship in pulmonology and critical care. Her research interests include global health, clinical education, pulmonary diseases, critical care, and pulmonary hypertension.

References

Address for correspondence: Katherine Fu, Department of Medicine, University of Florida College of Medicine, 1600 SW Archer Rd, Gainesville, FL 32610, USA; email: Katherine.Fu@medicine.ufl.edu
Limited Cutaneous Leishmaniasis as Ulcerated Verrucous Plaque on Leg, Tucson, Arizona, USA

Caitlyn B. Dagenet, Mitchell S. Davis, Sean Murphy, Rebecca Thiede, Keliegh S. Culpepper, Mohammad Fazel

Author affiliations: University of Arizona College of Medicine, Tucson, Arizona, USA (C.B. Dagenet, R. Thiede, M. Fazel); University of California, San Francisco, California, USA (M.S. Davis); Tucson ER and Hospital, Tucson (S. Murphy); DermPath Diagnostics, Tucson (K.S. Culpepper)

DOI: https://doi.org/10.3201/eid2906.230125

We report a 34-year-old man who had a nonhealing, verrucous plaque with central ulceration on the lower leg. This case-patient is a rare example of endemic limited cutaneous leishmaniasis in Tucson, Arizona, USA. Clinicians should be aware of this disease because its manifestations can vary for individual patients.

Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis and typically manifests as solitary painless lesions at the site of sand fly bites. This disease is generally acquired in specific habitat environments conducive to its sand fly vector and reservoir hosts (1). Most cases of CL diagnosed in the United States are attributed to persons who travel (e.g., military, international workers) to disease-endemic countries (e.g., India, Nepal, Brazil, Sudan, and Bangladesh) (1,2).

Although the United States was classified as endemic for leishmaniasis by the World Health Organization in 2020, the state of Arizona has had few documented cases (1–4). A Medline search of authors showed only 3 cases of CL have been reported in Arizona (1,2,4). Of those case-patients, only 1 truly autochthonous case-patient did not report recent travel to a disease-endemic location (1,2,4). Despite the rarity of human CL cases, sand fly vectors (e.g., Lutzomyia anthophora) and hosts (e.g., Neotoma albignula [white-throated woodrat]) can transmit New World Leishmania spp. and have been documented in Arizona (5,6). We report a 34-year-old man who had a nonhealing, verrucous plaque with central ulceration on the lower leg.

Consent for publication of all patient photographs and medical information was provided by the authors at the time of article submission. The patient gave consent for their photographs and medical information to be published in print and online with the understanding that this information might be publicly available.

The patient had no major medical history and no history of skin cancer or immunosuppression. He came to the dermatology clinic in Tucson, Arizona, because of a new onset of a painless lesion on the right lateral lower leg. The lesion was present for 6 weeks before the visit. Physical examination demonstrated a 2.1 × 1.1 cm solitary, nonhealing, verrucous plaque with central ulceration on the right proximal lateral pretibial region (Figure). The patient reported considerable time outdoors and recreational activities, such as mountain biking and hiking. Those activities occurred in Arizona; he specifically denied a history of recent travel outside of the United States. He also denied any trauma to the site of infection.

Shave biopsy and subsequent staining with hematoxylin and eosin showed focal ulceration with mixed acute, chronic, and granulomatous inflammatory infiltrate and minute organisms in the cytoplasm of histocytes favoring parasitized histiocytic infection. The organisms were negative by staining with periodic acid–Schiff. Microscopic examination was then completed by the Centers for Disease Control and Prevention, and small intracellular organisms compatible with protozoal amastigotes were observed within macrophages. Immunohistochemical analysis subsequently confirmed a diagnosis of leishmaniasis. The patient was referred to an infectious disease department, where observation was recommended because he had a solitary cutaneous lesion that was removed in entirety by biopsy. He also had no mucosal involvement.

In this case, the new-onset ulcerated plaque was initially most concerning for infectious versus neoplastic etiology. Although an infectious process was considered, CL was not on the original differential diagnosis given the rarity of this diagnosis in Arizona. This case helps demonstrate that leishmaniasis must be a consideration when patients in Arizona have verrucous papules or plaques.

Most autochthonous cases of CL in the United States have been in Texas (6). In 2018, a study in Texas identified 69 novel cases of leishmaniasis and 22 having documented speciation (all L. mexicana) (4). CL is probably underreported because reporting is not required in most states, and a high rate of misdiagnosis can be presumed (4,6). Sand flies capable of transmitting L. mexicana have been reported in several states (7).

CL treatment decreases the risk for mucosal dissemination, accelerates healing of the lesion, decreases the risk for relapse, and decreases illness. Relapse...
of cutaneous disease (leishmaniasis recidivans) can occur several years after resolution of the primary lesion in treated and untreated patients (9). Treatment options for CL include systemic miltefosine (for Leishmania [Viannia] spp.), ketoconazole (for L. mexicana), and fluconazole or local therapy (antimonial drugs, topical paromomycin, or liquid nitrogen therapy) (9).

Treatment of leishmaniasis is determined by species, risk for mucosal dissemination, size, number, and location of lesion(s). Limited CL does not require further treatment if the findings self-resolve. CL can spontaneously resolve within 2 months to a year. CL that has ≥5 lesions; an area >5 cm; is on the face, toes, fingers, or genitalia; or has a duration >6 months might require treatment to prevent relapse or progression to mucosal disease (2). Other complications of CL include secondary infections and scarring (8).

CL treatment decreases the risk for mucosal dissemination, accelerates healing of the lesion, decreases the risk for relapse, and decreases illness. Relapse of cutaneous disease (leishmaniasis recidivans) can occur several years after resolution of the primary lesion in treated and untreated patients (9). Treatment options for CL include systemic miltefosine (for Leishmania [Viannia] spp.), ketoconazole (for L. mexicana), and fluconazole or local therapy (antimonial drugs, topical paromomycin, or liquid nitrogen therapy) (9).

In conclusion, CL is an increasing concern in the United States where endemic cases have been identified, most prominently the southern and southwestern regions. Our case adds to the short but increasing list of documented CL cases in Arizona. Placing CL in the differential diagnosis for new-onset verrucous plaques of unknown etiology in local disease-endemic areas of the United States is prudent. Limited CL can be managed conservatively with monitoring for recurrence once the solitary lesion has been removed, but further treatment might be necessary depending on the manifestations in an individual patient.

This study was supported by the Department of Medicine, Division of Dermatology, University of Arizona.

About the Author
Ms. Dagenet is a medical student at the University of Arizona College of Medicine in Tucson, AZ. Her primary research interests are cutaneous manifestations of disease and inflammatory dermatoses.

References

Address for correspondence: Mohammad Fazel, Division of Dermatology, University of Arizona College of Medicine, 7165 N Pima Canyon Dr, Tucson, AZ 85718, USA; email: morox5@arizona.edu
Genomic Surveillance of Monkeypox Virus, Minas Gerais, Brazil, 2022

Author affiliations: Ezequiel Dias Foundation, Belo Horizonte, Brazil (N.R. Guimarães, L.M.R. Tomé, L.O. Lamounier, M.V.F. Silva, M.T. Lima, A.V.B. da Costa, K.C.M. Luiz, J.B.P. Moura, T.E.R. Adelino, F.C. de Melo Iani); Federal University of Minas Gerais, Belo Horizonte (L.M.R. Tomé, G.d.S. Trindade, F.G. da Fonseca, A.P.S.M. Fernandes, E.G. Kroon); Brazilian Ministry of Health, Distrito Federal, Brazil (R. de Jesus); Federal University of Vales do Jequitinhonha e Mucuri, Diamantina, Brazil (D.B. Oliveira); State Secretary of Health of Minas Gerais, Belo Horizonte (J.S. de Oliveira); University of Campus Bio-Medico, Rome, Italy (M. Giovanetti); Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte (M. Giovanetti, L. Alcantara); Pan American Health Organization, Distrito Federal, Brazil (V. Fonseca)

DOI: https://doi.org/10.3201/eid2906.230113

Phylogenetic analysis of 34 monkeypox virus genome sequences isolated from patients in Minas Gerais, Brazil, revealed initial importation events in early June 2022, then community transmission within the state. All generated genomes belonged to the B.1 lineage responsible for a global mpox outbreak. These findings can inform public health measures.

H uman mpox (formerly monkeypox) is an emerging zoonotic disease caused by monkeypox virus (MPXV) (1,2). Since the 1970s, mpox outbreaks in humans have occurred sporadically, mainly in Africa (3). In early May 2022, mpox emerged worldwide, and case numbers increased substantially (4). On July 23, 2022, the World Health Organization (WHO) declared the mpox outbreak a Public Health Emergency of International Concern (5).

Genomic surveillance might be considered a fundamental approach to tracking circulating strains and investigating viral spread (6–8). By October 2022, Brazil had reported 12,378 mpox cases, and the state of Minas Gerais, located in southeast Brazil, reported a total of 838 cases through epidemiologic week 41 (9).

We selected 34 human MPXV-positive samples collected in Minas Gerais during June–September 2022 for whole-genome sequencing at the Central Laboratory of Public Health of Minas Gerais. The selected samples had cycle threshold values ≤30 and available epidemiologic patient data. The study was approved by the research ethics committee of the Ezequiel Dias Foundation (approval no. 62702222.6.0000.9507).

We extracted viral DNA from lesion exudate and sequenced with the Ion Torrent PGM platform (Thermo Fisher Scientific, https://www.thermo-fisher.com) using a set of MPXV-specific primers designed for this study by using the primalscheme platform version 1.3.2 (https://pypi.org/project/primalscheme) (Appendix Table 1, http://wwwnc.cdc.gov/EID/article/29/6/22-0113-App1.pdf). We used the MPXV reference genome (GenBank accession no. NC_063833.1) to perform genome assembly by using Burrows-Wheeler Aligner version 0.7.17 (https://github.com/lh3/bwa), SAMtools version 1.11 (https://github.com/samtools), and iVar version 1.0 (https://github.com/andersen-lab/ivar). We used Nextclade version 2.8.1 (Nextstrain, https://clades.nextstrain.org) to assess genome quality and classification.

We used MAFFT version 7.310 (https://mafft.cbrc.jp) to align the 34 genomes obtained from this study with an additional 218 MPXV genomes collected from GISAID (https://www.gisaid.org) until October 3, 2022 (Appendix Table 2). We used BEAST version 1.10.4 (https://beast.community) to infer the Bayesian phylogeny. The Brazilian Ministry of Health Notifiable Diseases Information System provided weekly notified cases of MPXV infection in Minas Gerais.

Epidemiologic data revealed that the highest number (n = 112) of MPXV cases in Minas Gerais were reported during epidemiologic week 31 (Appendix Figure 1). The data also highlight that the metropolitan region of Belo Horizonte had the highest concentration (n = 608) of confirmed cases during June–September (Appendix Figure 2).

Using patients’ clinical records, we found that 55.9% (19/34) were HIV-positive and 23.5% (8/34) reported active sexually transmitted infection. Among the screened samples, 33 were from male patients and 1 was from a female patient; patients were 22–46 (mean 32.5)
years of age. The most frequent signs and symptoms were rash (34/34, 100%), lymphadenopathy (22/34, 64.7%), and fever (21/34, 61.8%) (Appendix Figure 3). Among mpox patients, 17 reported no travel history, 15 reported travel history to the state of São Paulo, Brazil, and 1 each reported travel to London and to Portugal.

Using the Ion Torrent PGM platform, we obtained a total number of 34 MPXV genome sequences. Genome coverage was 76.2%–97.5% (mean 87%) and had an average depth of 391 × (Table). All the genomes generated in this study belonged to lineages B.1 (n = 13), B.1.1 (n = 19), B.1.2 (n = 1), and B.1.9 (n = 1), which are lineages responsible for the 2022 outbreak (7,8).

Our phylogenetic reconstruction revealed that all genomes from the 2022 mpox outbreak grouped together (Figure). Most of the genomes we obtained from Minas Gerais grouped with MPXV genomes isolated from other regions of Brazil (Figure). Our phylogenetic reconstruction revealed that the first mpox case reported in Minas Gerais, isolated from a patient with a travel history to London, UK (GISAID accession no. EPI_ISL_13780332), grouped with a genome sequence from the United Kingdom (GISAID accession no. EPI_ISL_14439774).

We also sequenced a sample from the first confirmed mpox death in Brazil, which was reported in late July 2022. That sample was collected from
These findings and the available data can help Minas Gerais and increase the number of genome results contribute to genomic MPXV surveillance in community transmission. The first confirmed death states in Brazil.

- HIV
-
- 10
-
- §
-
- 2022 Jun 28
- 311257928†
- 241,791
- 208.5
- 90.3
- B.1
- EPI_ISL_13780332
- 311261010
- 2022 Jul 1
- 520,016
- 473.6
- 86.5
- B.1.1
- EPI_ISL_16650224
- 311261273
- 2022 Jul 1
- 478,258
- 447.8
- 90.7
- B.1
- EPI_ISL_16650225
- 311261816
- 2022 Jul 4
- 318,530
- 244.3
- 84.9
- B.1
- EPI_ISL_16650230
- 311261841
- 2022 Jul 4
- 388,417
- 347.0
- 93.5
- B.1
- EPI_ISL_16650229
- 311262116‡
- 2022 Jul 4
- 334,589
- 234.4
- 83.3
- B.1
- EPI_ISL_16650231
- 311262133
- 2022 Jul 4
- 362,965
- 331.9
- 85.3
- B.1.1
- EPI_ISL_16650228
- 31126224
- 2022 Jul 4
- 436,397
- 420.0
- 91.4
- B.1
- EPI_ISL_16650226
- 311262265
- 2022 Jul 4
- 427,206
- 399.6
- 93.6
- B.1.1
- EPI_ISL_16650227
- 311262687
- 2022 Jul 5
- 353,768
- 282.2
- 76.2
- B.1.1
- EPI_ISL_16650233
- 311262723
- 2022 Jul 5
- 342,256
- 266.3
- 81.8
- B.1
- EPI_ISL_16650234
- 311263370
- 2022 Jul 5
- 388,951
- 308.5
- 80.5
- B.1.1
- EPI_ISL_16650232
- 311265338
- 2022 Jul 5
- 344,341
- 299.7
- 82.5
- B.1.1
- EPI_ISL_16650238
- 311263885
- 2022 Jul 6
- 296,827
- 256.8
- 78.4
- B.1
- EPI_ISL_16650236
- 311263902
- 2022 Jul 6
- 394,450
- 332.8
- 79.2
- B.1.1
- EPI_ISL_16650235
- 311264859
- 2022 Jul 7
- 393,675
- 342.8
- 81.0
- B.1.1
- EPI_ISL_16650237
- 311266133
- 2022 Jul 8
- 345,305
- 290.7
- 79.1
- B.1.1
- EPI_ISL_16650239
- 311266186
- 2022 Jul 8
- 354,920
- 274.4
- 87.8
- B.1
- EPI_ISL_16650240
- 311266233
- 2022 Jul 8
- 284,916
- 239.2
- 82.9
- B.1.1
- EPI_ISL_16650241
- 311266796
- 2022 Jul 11
- 384,836
- 358.5
- 82.2
- B.1.9
- EPI_ISL_16650243
- 311267285
- 2022 Jul 11
- 351,311
- 325.0
- 79.4
- B.1.1
- EPI_ISL_16650242
- 311267311
- 2022 Jul 11
- 341,773
- 320.4
- 81.0
- B.1.1
- EPI_ISL_16650244
- 311267938
- 2022 Jul 12
- 330,526
- 300.1
- 77.1
- B.1.1
- EPI_ISL_16650245
- 311271087§
- 2022 Jul 15
- 581,432
- 594.2
- 97.5
- B.1.1
- EPI_ISL_16650246
- 311283035
- 2022 Aug 5
- 590,550
- 584.0
- 96.3
- B.1
- EPI_ISL_16650248
- 311287351
- 2022 Aug 12
- 565,565
- 557.1
- 96.5
- B.1.1
- EPI_ISL_16650247
- 311286391
- 2022 Aug 15
- 533,148
- 528.6
- 97.1
- B.1.1
- EPI_ISL_16650249
- 311291580
- 2022 Aug 22
- 520,820
- 554.3
- 91.7
- B.1
- EPI_ISL_16650262
- 311294876
- 2022 Aug 26
- 567,700
- 528.8
- 97.0
- B.1
- EPI_ISL_16650251
- 311297067
- 2022 Aug 31
- 539,498
- 454.0
- 94.7
- B.1.2
- EPI_ISL_16650253
- 311300630
- 2022 Sep 8
- 532,582
- 549.0
- 88.9
- B.1.1
- EPI_ISL_16650258
- 311300699
- 2022 Sep 8
- 476,181
- 514.3
- 82.5
- B.1
- EPI_ISL_16650255
- 311303564
- 2022 Sep 13
- 533,191
- 563.8
- 95.9
- B.1.1
- EPI_ISL_16650260
- 311309205
- 2022 Sep 26
- 546,501
- 564.2
- 92.9
- B.1.1
- EPI_ISL_16650265

†First confirmed mpox case in Minas Gerais; patient had travel history to London, UK.

‡Patient had travel history to Portugal and São Paulo, Brazil.

§First mpox death reported in Minas Gerais.

a patient who resided in Minas Gerais and was in treatment for diffuse large B-cell lymphoma and HIV (10). The genome from that patient’s sample belonged to the B.1.1 lineage, and in our phylogenetic reconstruction, it clustered with genome sequences isolated from Minas Gerais and from other states in Brazil.

Overall, our data revealed that an mpox case detected in Minas Gerais in early 2022 was related to a likely importation event, probably associated with a traveler returning from the United Kingdom, and then sustained MPXV community transmission. The first confirmed death reported in Minas Gerais was associated with a local MPXV infection described in a patient who reported several underlying conditions. These results contribute to genomic MPXV surveillance in Minas Gerais and increase the number of genome sequences from this virus available in GISAID. These findings and the available data can help future studies aiming to improve diagnostic protocols and vaccine development.

Acknowledgments
We thank all authors who have kindly deposited and shared genome data on GISAID (Appendix Table 2).

This study was financed by the Central Public Health Laboratory of Minas Gerais (Ezequiel Dias Foundation), the Brazilian Ministry of Health (grant no. SCON2021-00180), Pan American Health Organization PAHO/WHO and the National Institutes of Health (grant no. U01AI151698) for the United World Arbovirus Research Network (UWARN). M.G. is funded by PON Ricerca e Innovazione (Research and Innovation) 2014-2020. Laboratório de Vírus and CT-Vacinas received funding from the Ministry of Science, Technology and Innovation, Brazil. G.d.S.T. is a researcher with the National Council for Scientific and Technological Development (CNPq), Brazil.
About the Author
Dr. Guimarães is a research scientist and analyst at the Ezequiel Dias Foundation. Her research interests and work include the molecular diagnosis and sequencing of SARS-CoV-2, monkeypox virus, and arboviruses, including dengue, Zika, chikungunya, and yellow fever viruses, and other pathogens of importance to public health.

References

Address for correspondence: Felipe Campos de Melo Iani, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro, 80—Gameleira, Belo Horizonte 30510-010, Brazil; email: felipe.iani@funed.mg.gov.br

Antimicrobial-Resistant Infections after Turkey/Syria Earthquakes, 2023

Anthony Rizk, Antoine Abou Fayad, Louis-Patrick Haraoui

Author affiliations: Geneva Graduate Institute, Geneva, Switzerland (A. Rizk); American University of Beirut, Beirut, Lebanon (A. Abou Fayad); Université de Sherbrooke, Sherbrooke, Québec, Canada (L.-P. Haraoui)

DOI: https://doi.org/10.3201/eid2906.230316

The 2023 earthquakes that affected Turkey and Syria, with Kahramanmaraş Province in Turkey at their epicenter, measured 7.8 and 7.5 on the Richter scale. The effects were devastating, making these the strongest earthquakes in Turkey since 1939. Combined with their multiple aftershocks, the earthquakes caused >50,000 deaths and severely damaged or collapsed >170,000 buildings (https://www.aljazeera.com/news/2023/2/25/death-toll-climbs-above-50000-after-turkey-syria-earthquakes). In their wake, the earthquakes left a growing humanitarian crisis. If previous experiences are any indication, we can also expect hospitals caring for the injured and wounded to struggle with highly antimicrobial-resistant infections, many of which will lead to excess illnesses and deaths.

Multidrug resistant microbes have often been reported after earthquakes and other natural disasters. Medical literature on earthquake-associated injuries, going as far back as the Marmara, Turkey, earthquake of 1999 (1), have consistently shown highly resistant microbial strains emerging in hospital settings and causing hospital-acquired infections in trauma patients. Antimicrobial-resistant Acinetobacter baumannii has been identified in disproportionately high rates from infections associated with large-scale earthquakes in Southeast Asia in 2004; northern Pakistan in 2005; Wenchuan, China, in 2008; central Italy in 2009; and Haiti in 2010 (Appendix, https://wwwnc.cdc.gov/EID/article/29/6/23-0316-App1.pdf).
Although earthquake-associated pathogens detected in hospital settings have been consistently multidrug resistant, their resistance profiles have varied. The etiology of antimicrobial resistance from earthquakes remains uncertain. After the Marmara earthquake of 1999, associated earthquakes varied. The etiology of antimicrobial resistance from treated in hospital settings have been consistently multidrug-resistant A. baumannii, extended-spectrum β-lactamase Escherichia coli, and methicillin-resistant Staphylococcus aureus (2). After the 2005 northern Pakistan earthquake, Kiani et al. reported emergence of multiply drug-resistant Acinetobacter spp., Enterobacter spp., and other gram-negative organisms, susceptible to amikacin only. Hospitals were overwhelmed with staff and antimicrobial drug shortages, and wounds were often treated empirically because of limited laboratory capacities (3). After the 2008 earthquake in Wenchuan, China, the predominant pathogen causing infections was A. baumannii; 1 hospital reported that >65% of Acinetobacter isolates were resistant to a wide range of antimicrobial drugs, except imipenem, and 24.6% of isolates were pan-drug resistant (4).

Since the 2023 Turkey/Syria earthquakes, multidrug resistance has not yet been reported. However, on the basis of the epidemiology of infections in earthquake-stricken regions, we expect hospitals in the region to struggle with containing nosocomial transmission of highly resistant pathogens that may increase deaths among hospitalized patients. Also of concern is the re-emergence of other infectious diseases, such as cholera, known to be precipitated by disaster settings (5). The Turkey/Syria earthquakes come on the heels of multiple crises in the region, many of which have been shown to influence the rising rates of multidrug resistance, as in the wake of the Iraq and Syrian conflicts (6). Rising rates of antimicrobial resistance are further compounded by the regionwide travel of wounded patients for treatment as healthcare infrastructure in Iraq and Syria collapsed (7). Medicine shortages, especially resulting from sanctions in Syria and Iraq and following the 2019 financial collapse in Lebanon, further compound selective pressures on microbes to develop specific resistance profiles.

Hospitals in and outside the region treating injuries from the Turkey/Syria earthquakes will probably observe a surge in highly resistant pathogens and nosocomial transmission. In addition to providing immediate care for the injured and displaced, relief efforts should therefore anticipate a probable increase in antimicrobial-resistant infections for which therapeutic options may be limited. Detecting and responding to this superimposed crisis urgently requires support and expansion of existing microbiology laboratory capacity. Recent initiatives, such as the deployment of telemicrobiology in northern Syria, are examples of how to rapidly assist local laboratory teams in settings of social disruption (8). Training healthcare workers on surgical techniques and wound care adapted to deal with traumatic injuries have also been shown to enhance wound healing and to limit complications such as chronic and recurrent skin and soft tissue infections, which are risk factors for antimicrobial resistance (9).

Early-stage detection and aggressive infection-control practices (e.g., active surveillance, contact isolation, sampling of healthcare workers and hospital environments, and antimicrobial stewardship) during and after disasters play key roles in preventing resistant strains from becoming endemic to healthcare facilities (10). Healthcare facilities may need to consider patient decolonization through chlorhexidine bathing to forestall colonization by antimicrobial-resistant Acinetobacter strains (10). Communities affected by the recent earthquakes will probably experience their effects for months to come. It is not too late to act to prevent further complications from these natural disasters, such as antimicrobial-resistant infections, from compounding ongoing human tragedies.

This work was supported by the New Frontiers in Research Fund, Canada (NFRFE-2019-00444) (A.R. and L.-P.H.), the Fonds de Recherche du Quebec-Sante (282182) (L.-P.H.), and the Canadian Institute for Advanced Research (GS-0000000256) (L.-P.H.).

About the Author
Mr. Rizk is a PhD candidate in anthropology at the Geneva Graduate Institute, Switzerland. His research interests include scientific laboratory capacities and antimicrobial resistance.

References
3. Kiani QH, Amir M, Ghazanfar MA, Iqbal M. Microbiology of wound infections among hospitalised patients following...
Detection of Severe Murine Typhus by Nanopore Targeted Sequencing, China

Panpan Qian, Xiaohua He, Mei Yang, Li Wei, Lihui Zhang, Xiqian Xing

Authors affiliation: The Affiliated Hospital of Yunnan University, Kunming, China

DOI: https://doi.org/10.3201/eid2906.221929

We report a case of murine typhus in China caused by *Rickettsia typhi* and diagnosed by nanopore targeted sequencing of a bronchoalveolar lavage fluid sample. This case highlights that nanopore targeted sequencing can effectively detect clinically unexplained infections and be especially useful for detecting infections in patients without typical signs and symptoms.

Murine typhus is caused by *Rickettsia typhi* bacteria transmitted by rat or cat flea vectors. Persons with murine typhus often have nonspecific or mild symptoms, such as fever, myalgia, and rash. In rare instances, murine typhus will cause atypical or multiple organ dysfunction syndrome (MODS) (1,2).

Murine typhus is an undifferentiated febrile illness, which makes it challenging to recognize and diagnose. We report a case of murine typhus and MODS in a patient without rash. We diagnosed murine typhus by using nanopore targeted sequencing (NTS) of a bronchoalveolar lavage fluid (BALF) sample, aiming to provide more reference for clinical practice.

A 60-year-old female farmer from Yunnan Province, China, had fatigue, anorexia, nausea, dizziness, and vomiting for 1 week. At admission, she was afebrile and hemodynamically stable and did not have headache, rash, or eschar. Chest computed tomography (CT) imaging showed pneumonia and a small plural effusion (Figure, panels A, B). By the next day, her condition had deteriorated. She experienced chills, fever (temperature 39°C), severe hypotension (70/53 mm Hg), dyspnea, and deterioration of the oxygenation index. Preliminary laboratory investigation demonstrated mild leukocytosis (13.86 × 10⁹ cells/L), moderately elevated transaminase levels (alanine aminotransferase 128 U/L, aspartate aminotransferase 197 U/L), moderately elevated transaminase levels (alanine aminotransferase 128 U/L), severe thrombocytopenia (12 × 10⁹ platelets/L), coagulation disorder (D-dimer 49.8 µg/mL), elevated C-reactive protein (207.4 mg/L) and procalcitonin (4.65 ng/mL) levels, and respiratory failure (partial pressure of oxygen 58.9 mm Hg).

The patient was given intravenous meropenem and norepinephrine and was admitted on noninvasive ventilation. We then conducted tests for malaria, *Legionella*, influenza virus, SARS-CoV-2, HIV, herpes simplex virus, cytomegalovirus, Epstein-Barr virus IgM, *Roxiella burnetti* IgM (phase II antigen), *R. typhi* IgM, *Mycoplasma pneumoniae* IgM, *Chlamydia* IgM, respiratory syncytial virus IgM, and adenovirus IgM; results were all negative. In addition, testing of blood, urine, stool, and sputum cultures and bone marrow biopsy all produced negative results.

On admission day 5, she remained normotensive. Her body temperature dropped, but she still had a low-grade fever, body temperature fluctuating from 37.5°C to 38°C. However, the cause of her severe infection remained unclear. The next day, she underwent bronchoscopy. BALF was sent to undergo NTS analysis to Wuhan Dgensee Clinical Laboratory Co., Ltd (https://www.dgensee.com). Two days later, NTS results revealed *R. typhi* DNA.
NTS analysis yielded a total of 71,252 single-end reads. *R. typhi* had the highest relative abundance of 44.58% (n = 31,764 reads). Subsequently, we conducted quantitative PCR (qPCR) using a sequence from GenBank (accession no. WP_011190964) as the target gene to detect *R. typhi*. The qPCR results confirmed the NTS detection (Appendix, https://wwwnc.cdc.gov/EID/article/29/6/22-1929-App1.pdf).

After the murine typhus diagnosis, the patient was treated with doxycycline (100 mg every 12 h) beginning on admission day 9. Soon after, her body temperature, platelet count, and blood coagulation function returned to normal. Reexamination of

Figure. Chest computed tomography images from a patient with severe murine typhus detected by nanopore targeted sequencing, China. A, B) Images taken at hospital admission demonstrating pneumonic exudation of the left lung lingual segment and double lower lobes and small plural effusion. C, D) Improvement of pulmonary infiltrates after 14 days. E, F) Resolution of pulmonary infiltrates demonstrated 1 month after hospital discharge.
chest CT images showed improved pulmonary infiltrates (Figure, panels C, D), and she was discharged from the hospital. She continued doxycycline (100 mg 2×/d) for 14 days after discharge. At a 1-month follow-up, she had no symptoms of discomfort, and chest CT imaging showed resolving pulmonary infiltrates (Figure, panels E, F).

As an undifferentiated febrile illness, murine typhus can be challenging to diagnose in clinically mild or severe illness. Murine typhus can manifest with nonspecific symptoms and mimic other disease processes, making laboratory-confirmed diagnosis difficult without a high index of suspicion.

Diagnosis of murine typhus is usually performed by serologic testing and molecular analysis. Adaptation of modern serologic techniques for murine typhus diagnosis has substantially increased diagnostic accuracy, and serology was deemed the standard before the wide acceptance of molecular testing. Rickettsial infections require early diagnosis and treatment to prevent severe outcomes, but early diagnosis is rarely achieved by using serology (3). In addition to serology, the most common diagnostic method for murine typhus is qPCR (4). However, PCR has limitations, including being more sensitive during acute illness, such as the febrile phase, usually days 1–5 of illness, but possibly up to days 7–10 (3).

NTS is a groundbreaking technology that has the potential to overcome the shortcomings of both PCR and metagenomic next-generation sequencing, and next-generation sequencing is much less affected by antimicrobial drugs than is PCR (5–7). NTS has been used clinically and has shown high specificity and sensitivity (6). NTS combines long read length (>5,000 bp) and targeted amplification of 16S RNA gene for bacteria, rpoB for mycobacteria, and internal transcribed spacer (ITS) for fungi, all of which are free from interference of host background DNA (8,9). NTS can accurately detect causative pathogens in infectious samples and has a short 8–14-hour turnaround time.

In conclusion, we successfully detected R. typhi by using NTS in a febrile patient with MODS but without rash. NTS is a promising technology that can efficiently identify infectious pathogens early and has the potential to assist physicians in providing timely and precise treatment, especially for patients with nonspecific symptoms indicative of multiple disease processes.

Acknowledgments
We thank Dgensee, Wuhan, China for performing the targeted nanopore sequencing procedure and interpretation.

This work was supported by grants from the National Natural Science Foundation of China (grant no. 82160016), the Basic Research Program of Yunnan Province (grant no. 202201AY070001-265), and the Famous Doctors of High-Level Talent Training Support Program of Yunnan Province (grant no. YNWR-MY-2020-013).

About the author
Dr. Qian is a resident at the Affiliated Hospital of Yunnan University, Kunming, Yunnan, China. Her research interest is emerging infectious diseases.

References

Address for correspondence: Xiqian Xing, Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Yunnan University, 176 Qingnian Rd, Kunming 650021, Yunnan, China; email: xingxiqian@ynu.edu.cn or xingxiqiankm@163.com
Mycobacterium marinum Infection after Iguana Bite in Costa Rica

Jordan Mah, Kyle Walding, Brooke Liang, Laurence Rinsky, Roshni Mathew, Indre Budvytiene, Niaz Banaei

Author affiliations: Stanford University School of Medicine, Stanford, California, USA (J. Mah, K. Walding, B. Liang, L. Rinsky, R. Mathew, N. Banaei); Stanford Health Care, Stanford (J. Mah, I. Budvytiene, N. Banaei)

DOI: https://doi.org/10.3201/eid2906.230062

Infections after reptile bites are uncommon, and microbial etiologies are not well defined. We describe a case of *Mycobacterium marinum* soft-tissue infection after an iguana bite in Costa Rica that was diagnosed through 16S rRNA sequencing and mycobacterial culture. This case informs providers of potential etiologies of infection after iguana bites.

Zoonotic infections associated with animal bite injuries are common and can result in severe illness (1,2). Approximately 5 million animal bites occur annually in North America, and 10 million injuries occur globally from dog bites alone (2,3). Pathogens causing infections after dog or cat bites are well described; pathogens from other animal bites are less well defined, although their oral microbiota are known (1). We report a case of cutaneous *Mycobacterium marinum* infection after an iguana bite to inform clinicians of potential infectious etiologies of lizard bites.

A previously healthy 3-year-old girl was on vacation with her family in Costa Rica. She was eating cake on the beach when an iguana approached her. While attempting to take the cake, the animal bit the dorsum of her left hand. She was immediately taken to a local clinic and found to have a single, superficial bite wound over the dorsum of her third metacarpal. The wound was immediately disinfected and irrigated; she was prescribed a 5-day course of oral amoxicillin. The family returned to the United States after the incident. Her wound completely resolved over the ensuing days without immediate complications.

Five months after the bite, her parents noted a small lump on the dorsum of her left hand that was not present previously. The child was otherwise well. The lump became progressively larger, erythematous, and mildly painful over the next 3 months (Figure, panel A). Because of persistent symptoms, her parents sought medical attention at Stanford Medicine Children’s Health (Stanford, California, USA). Although ultrasound demonstrated findings suggestive of a ganglion cyst (Figure, panel B), the location...
and symptoms were not consistent with this diagnosis. She saw an orthopedic surgeon who, given the progression and unusual clinical features, performed excision of the mass.

Surgical excision revealed a 2-cm, thick-walled mass adherent to the extensor tendons of the third and fourth digits, with extrusion of a thick, white, purulent material. Histopathology revealed extensive necrosis and necrotizing granulomatous inflammation with acid-fast bacilli seen by Fite staining (Figure, panels C, D). Bacterial 16S rRNA sequencing identified a sequence with 100% identity to *M. marinum* (GenBank accession no. OQ249694). Mycobacterial culture (Middlebrook 7H11 agar) incubated at 30°C grew photochromogenic colonies after 2 weeks that were consistent with *M. marinum*. The patient was started on rifampin and clarithromycin and gradually improved over the next 2 months.

Literature on the microbiologic etiologies of infected human wounds secondary to iguana bites is scarce; *Serratia marcescens* was reported in 3 cases and *Staphylococcus aureus* in 1 other (1). *Salmonella enterica* is a consideration for reptiles in general because 75%–90% of both wild and captive reptiles (including snakes, turtles, and iguanas) are colonized (4,5). Several studies have demonstrated that domestic reptiles can also harbor nontuberculous mycobacteria (NTM) because of their ubiquitous environmental presence (4). In a study of healthy pet reptiles, many were found to harbor NTM such as *M. fortuitum*, *M. peregrinum*, and *M. chelonae* (6). Reptiles can be asymptomatic carriers or can have NTM disease; cutaneous manifestations are the most common, with granulomatous lesions seen on histopathology (4,6). In this case, although the iguana is the most plausible source of *M. marinum*, we cannot rule out the possibility that the patient’s wound was inoculated from an environmental source.

M. marinum, a slow-growing photochromogenic NTM, is an established environmental pathogenic mycobacterium found in fresh water and salt water (7). *M. marinum* causes necrotizing granulomatous disease in humans, where its immunopathogenesis mimics that of *M. tuberculosis*, with which it shares considerable genetic homology (7). In humans, *M. marinum* is associated with occupational or recreational exposures after a skin injury where a contaminated water source enables direct inoculation (7). *M. marinum* is taken up by local macrophages and, like *M. tuberculosis*, uses the type VII secretion system ESX-1 (ESAT-6 secretion system 1), escaping the phagosome into cytoplasm and triggering an inflammatory response to spread to other macrophages (8).

M. marinum causes disease in immunocompetent and immunosuppressed hosts; however, the incidence of cutaneous infections among children is low (9). The incubation period ranges from 3 weeks to 9 months, and symptoms are usually minimal and localized; systemic symptoms are generally absent (7). Common manifestations of *M. marinum* infections include subacute to chronic papulonodular skin lesions on the hand with a sporotrichoid spread, as the infection spreads along lymphatic vessels to regional lymph nodes (7). NTM, including *M. marinum*, are resistant to β-lactams because of β-lactamases, decreased cell permeability, and low affinity to penicillin-binding proteins, explaining why this patient did not respond to amoxicillin (7).

Isolation of *M. marinum* in culture is challenging because it is slow growing, requiring 28°C–32°C for optimal growth in vitro and incubation over several weeks (7,10). For this reason, bacterial sequencing is increasingly used for diagnosis because of its rapidity, sensitivity, and specificity. The cold-blooded nature of iguanas might enable them to serve as reservoirs for temperature-sensitive *M. marinum* (4). The genotypic and phenotypic evidence of *M. marinum* infection after an iguana bite in this report could inform clinicians of less commonly known bacterial etiologies after unusual zoonotic exposures.

J.M. and N.B. conceived the project. J.M., K.W., and B.L. drafted the manuscript. J.M. and B.L. prepared the figures. All authors provided critical appraisal of manuscript drafts. All authors critically revised the manuscript for important intellectual content and gave final approval of the version to be published and agreed to be accountable for all aspects of the work.

About the Author

Dr. Mah is a board-certified infectious diseases physician who is a trainee in medical microbiology at Stanford University. His research interests include tropical medicine, invasive fungal infections, mycobacterial infections, and infections in immunocompromised hosts.

References

Microscopic Evidence of Malaria Infection in Visceral Tissue from Medici Family, Italy

Author affiliations: Eurac Research, Bolzano, Italy (F. Maixner, G. Boccalini, G. Cipollini, A. Zink); University Hospital Heidelberg, Heidelberg, Germany (D. Drescher, J. Schatterny, R.E. Morty, M. Ludwig, N. Kilian); Vlilnus University, Vlilnus, Lithuania (D. Piombino-Mascali); Technical University of Darmstadt, Darmstadt, Germany (M. Janko, R. Stark); Institute of Tropical Medicine, Antwerp, Belgium (N. Berens-Riha); University of Munich, Munich, Germany (N. Berens-Riha); Oregon State University, Corvallis, Oregon, USA (B.J. Kim); Chungnam National University, Daejeon, Korea (B.J. Kim, H.J. An); Heritage and Archaeological Research Practice, Edinburgh, Scotland, UK (M. Gamble); Kiel University, Kiel, Germany (B. Krause-Kyora); Ludwig Maximilian University, Munich (J. Neumann); Agilent Technologies, Santa Clara, California, USA (R. Grimm)

Address for correspondence: Niaz Banaei, Department of Pathology, Stanford University, 3375 Hillview Ave, Palo Alto, CA 94304, USA; email: nbanaei@stanford.edu

DOI: https://doi.org/10.3201/eid2906.230134

Microscopy of mummified visceral tissue from a Medici family member in Italy identified a potential blood vessel containing erythrocytes. Giemsa staining, atomic force microscopy, and immunohistochemistry confirmed Plasmodium falciparum inside those erythrocytes. Our results indicate an ancient Mediterranean presence of P. falciparum, which remains responsible for most malaria deaths in Africa.

The Medici family was a powerful family from Florence, Italy, that gained prominence under Cosimo de’ Medici in the early 15th century (1). Dynastic power granted Medici family members a burial at the San Lorenzo Basilica in central Florence (Appendix Figure 1, panel A, https://wwwnc.cdc.gov/EID/article/29/6/23-0134-App1.pdf). Burial was preceded by an embalming procedure in which inner organs (viscera) were removed and placed in large terracotta jars (Appendix Figure 1, panel B).

In 2011, selected jars of organs from Medici family members were opened centuries after burial to examine their contents, revealing that multiple tissue pieces were still present (Appendix). The Institute for Mummy Studies at Eurac Research (Bolzano, Italy) received samples from the organs; we performed microscopic and molecular analysis (Appendix) of a 2.5 cm × 1.5 cm tissue piece (ID 1297) from 1 jar (Appendix Figure 1, panel C). Using microscopy, we identified a potential blood vessel containing erythrocytes (Figure, panel A). Diameters (7.24, SD ±0.14 μm; n = 37) and discocyte shapes of cells within the blood vessel were characteristic of erythrocytes (2). We conducted further microscopic evaluation of single cells and found the potential presence of a parasite that might have resided within the erythrocytes during the lifetime of the deceased family member. Giemsa staining of tissue sections confirmed our first impression (Figure, panel B) and suggested the parasite was Plasmodium spp.; members of this genus are the causative agent of different types of human malaria (3). We used atomic force microscopy to identify the ring stage, an immature developmental stage of P. falciparum that is dominant in peripheral blood of infected patients and a diagnostic
hallmark (Figure, panel C). We verified the presence of *P. falciparum* by using immunohistochemistry with polyclonal mouse antiserum against *Plasmodium* spp.–specific aldolase (Appendix Figure 1, panels D, E) and a monoclonal antibody against *P. falciparum*–specific histidine-rich protein HRPII (Appendix Figure 1, panels F, G). We confirmed results by using immunofluorescence analysis with antibody against *P. falciparum* endoplasmic reticulum resident protein Pf39 (Appendix Figure 1, panels H, I). All isotype controls were negative (Appendix Figure 1, panels E, G, I). Not all observed parasitized erythrocytes were labeled by the antiserum, likely because of tissue degradation over the centuries. We verified a progressed state of biomolecule degradation by additional DNA-based analysis.

We determined that parasitemia was 38% in the Medici tissue, which appeared high (Appendix

![Image](image-url)
In 2010, immunoassays were used to analyze bones (Appendix Figure 2, panel E). However, instead of peripheral blood, we investigated tissues that might have had higher than expected parasitemia from sequestration of erythrocytes parasitized by mature asexual developmental stages (trophozoite and schizonts) of *P. falciparum* (4). Erythrocytes were visible in the tissue and were not washed away after embedding, further suggesting the presence of malaria parasites because they can trigger blood coagulation that might have kept the cells in place (5). High parasitemia within tissues is likely dependent on *P. falciparum* developmental stages (4). Erythrocytes infected with juvenile ring stages can be found in the peripheral blood of patients, whereas mature developmental stages are absent (6). Erythrocytes that contain more mature developmental stages can adhere to endothelial cells that line blood vessels within inner organs (6).

The most striking parasite-derived erythrocyte modification is the establishment of secretory organelles, known as Maurer’s clefts, that reside within the cytoplasm of terminally differentiated host erythrocytes infected with *P. falciparum* (7). Similar organelles also exist in the cytoplasm of erythrocytes infected by other pathogenic *Plasmodium* spp. (7). During *P. falciparum* infections, Maurer’s clefts are crucial for initiating host-parasite interactions; they are responsible for severe disease and patient death by enabling protein trafficking that causes cytoadherence within organs (4). By using Giemsa staining, we observed delicate stipplings within the cytoplasm of infected erythrocytes in the Medici tissue, indicative of Maurer’s clefts (Appendix Figure 1, panel J). We quantified the stipplings; numbers were comparable to what can be observed within infected erythrocytes of malaria patients and in vitro-infected erythrocyte cultures.

We performed glycan analysis by using mass spectrometry and molecular analyses (Appendix). We identified a unique glycan found in erythrocyte B antigen (Appendix Figure 2, panels A–D), further indicating the presence of erythrocytes in the tissue. However, parasite DNA was undetectable by PCR. Metagenomic sequencing showed only 0.06% of all reads were host DNA; 2 reads could be unambiguously assigned to *P. falciparum* (Appendix Figure 2, panel E).

Medici family members were known to hunt in marshlands around Florence and in Tuscany that served as breeding grounds for mosquito vectors capable of transmitting *Plasmodium* spp. parasites (8). In 2010, immunoassays were used to analyze bones of 4 Medici family members who might have died from malaria; *P. falciparum* was detected (9). Our observations agree with previous studies of ancient human remains, suggesting a Mediterranean presence of malaria from the era of ancient Egypt to modern times (10). Malaria remains a major health threat for persons in Africa, mostly affecting pregnant women and children. Malaria is a curable disease; however, persons in malaria-endemic areas still lack access to proper healthcare. Developing *Plasmodium* resistance to standard treatments further hampers positive therapeutic outcomes.

Acknowledgments

We thank Donatella Lippi and Elsa Pacciani for their support during the initial phase of the study.

Funding was provided by the European Regional Development Fund 2014–2020_CALL-FESR 2017 Research and Innovation_Autonomous Province of Bolzano-South Tyrol_Project: FESR1078-MummyLabs.

About the Author

Dr. Maixner is coordinator at the EURAC Institute for Mummy Studies and head of the ancient DNA laboratory. His research interests focus on genomic and relationship analysis of ancient human remains and identification of ancient pathogens that caused disease.

References

Address for correspondence: Albert Zink, Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy; email: albert.zink@eurac.edu

Enhanced Adenovirus Vaccine Safety Surveillance in Military Setting, United States

John Iskander, Scott Blanchet, Caitlin Springer, Patrick Rockwell, Dana Thomas, Satish Pillai

Author affiliations: United States Coast Guard, Washington, DC, USA (J. Iskander, D. Thomas, S. Pillai); United States Coast Guard Academy, New London, Connecticut, USA (S. Blanchet, C. Springer, P. Rockwell)

DOI: https://doi.org/10.3201/eid2906.230331

The US Coast Guard Academy began adenovirus vaccination of incoming cadets in 2022. Of 294 vaccine recipients, 15%–20% had mild respiratory or systemic symptoms within 10 days postvaccination but no serious adverse events after 90 days. Our findings support the continued use of adenovirus vaccines in congregate military settings.

Adenovirus infection results in considerable illness among congregate military populations (1). US Food and Drug Administration–approved use of a live, oral, bivalent adenovirus vaccine for military populations began in 2011 and was associated with substantial decreases in adenovirus infection incidence at US military basic training centers (2,3). The US Naval Academy introduced adenovirus vaccination in 2018 after a large adenovirus outbreak (4). An adenovirus outbreak involving ≈300 cadets occurred at the US Coast Guard Academy (CGA) in 2019 (5). Adenovirus vaccines were introduced for incoming first-year CGA cadets on June 28, 2022. To supplement postlicensure data on adenovirus vaccine safety (6), we monitored postvaccination signs and symptoms in those cadets.

We developed a monitoring system to account for military training features, such as restricted cellphone access and a time-sensitive, regimented curriculum. For sick call visits occurring ≤10 days after vaccination, the CGA clinic used a monitoring tool (Appendix, https://wwwnc.cdc.gov/EID/article/29/6/23-0331-App1.pdf) consisting of 17 postvaccination signs or symptoms obtained from clinical trial results (7,8). We measured vaccine uptake and inability to swallow pills and monitored cadets for 90 days after vaccination for US Food and Drug Administration–defined serious adverse events (9).

Cadets received an in-person briefing from CGA clinic staff on June 27, 2022. The CGA training cadre, with whom the cadets had daily contact, were briefed by clinic leadership on the paper-based reporting tool, reporting requirements, and referring ill cadets to the CGA clinic. Before vaccination, cadets were given the Centers for Disease Control and Prevention adenovirus vaccine information statement and opportunity to ask questions. Subsequently, if cadets sought care for illness at the CGA clinic, staff used the reporting tool to record whether any of the 17 signs and symptoms were present.

During the initial vaccination period (June 28–30, 2022), 293 (97.3%) of 301 first-year cadets received the adenovirus vaccine; 4 (1.3%) cadets were unable to swallow the vaccine. Of 4 cadets isolated for COVID-19 during the initial vaccination period, only 1 subsequently received the vaccine. Of 294 vaccinated cadets, a total of 159 (54.1%) received 1 other vaccine and 53 (18.0%) received ≥2 additional vaccines.

The average age of the 294 vaccine recipients was 18.25 years; 57% were male, and 43% female. During June 30–July 8, 2022, ≈100 first-year cadets sought care at the CGA clinic for illness, and 65 (22.1%) cadets reported ≥1 vaccine surveillance sign or symptom. Commonly reported signs and symptoms were cough (20.1%), sore throat (17.0%), headache (16.0%), fatigue (16.0%), nasal congestion (15.3%), and shortness of breath (11.6%) (Table). Frequencies of gastrointestinal symptoms among cadets seeking care at the clinic during the 10-day period after vaccination were 2.3% for abdominal pain, 3.7% for diarrhea, 4.0% for vomiting, and 8.3% for nausea (Table). During the 90 days after vaccination, no serious adverse events were reported, including hospitalization, Guillain-Barre syndrome, or death.
Table. Percentages of first-year US Coast Guard cadets reporting signs or symptoms within 10 days after adenovirus vaccination in study of enhanced adenovirus vaccine safety surveillance in military setting, United States*

<table>
<thead>
<tr>
<th>Signs or symptoms</th>
<th>% Total†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cough</td>
<td>20.1</td>
</tr>
<tr>
<td>Sore throat</td>
<td>17.0</td>
</tr>
<tr>
<td>Headache</td>
<td>16.0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>16.0</td>
</tr>
<tr>
<td>Nasal congestion or rhinorrhea</td>
<td>15.3</td>
</tr>
<tr>
<td>Shortness of breath</td>
<td>11.6</td>
</tr>
<tr>
<td>Arthralgias or myalgias</td>
<td>10.5</td>
</tr>
<tr>
<td>Nausea</td>
<td>8.5</td>
</tr>
<tr>
<td>Fever, subjective or measured at >38.0°C</td>
<td>7.8</td>
</tr>
<tr>
<td>Increasing weakness in arms or legs</td>
<td>5.8</td>
</tr>
<tr>
<td>Numbness or tingling in hands or feet</td>
<td>4.8</td>
</tr>
<tr>
<td>Vomiting</td>
<td>4.1</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>3.7</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>2.4</td>
</tr>
<tr>
<td>New rash</td>
<td>0.7</td>
</tr>
<tr>
<td>Dysuria</td>
<td>0.0</td>
</tr>
<tr>
<td>Hematuria</td>
<td>0.0</td>
</tr>
</tbody>
</table>

*Total number of vaccinated cadets was 294.
†Percentages sum to >100% because vaccine recipients reported multiple signs or symptoms.

During the enhanced postimmunization monitoring period, a concomitant COVID-19 outbreak affected <20% of first-year cadets. Of the 65 students who sought care at the CGA clinic and had ≥1 enhanced surveillance sign or symptom, 8 (12.3%) also tested positive for COVID-19.

The live adenovirus vaccine was well-tolerated; only 4 vaccination failures occurred, the cadets who could not swallow the medication. Of 294 vaccinated CGA cadets, <25% reported signs or symptoms during the monitoring period. Phase 1 adenovirus vaccine trial data (7) showed symptom occurrence reached 33% within 8 weeks postvaccination. The most common signs and symptoms reported among CGA first-year cadets corresponded with those noted in a large phase 3 adenovirus trial (8), including headache, sore throat, nasal congestion, and cough. In this cohort, rates for gastrointestinal symptoms (2.3%–8.3%) were lower than those reported in the phase 3 trial (8).

Shortness of breath in 11.6% of cadets did not clearly correspond to signs and symptoms identified in phase 1 or phase 3 trial safety data. Given that >25% of nonhospitalized adults with COVID-19 report shortness of breath (10), the concurrent COVID-19 outbreak might have contributed to reports of this specific symptom.

In conclusion, enhanced passive monitoring established after introducing adenovirus vaccination for incoming first-year CGA cadets did not identify any serious adverse events. Even with the receipt of multiple vaccines and an intercurrent COVID-19 outbreak, the signs and symptoms profile among cadets who had sick calls during the 10-day postvaccination period appears consistent with profiles reported in previous adenovirus vaccine trials. A positive COVID-19 test was observed for 12.3% of cadets who completed the surveillance questionnaire during their sick call, which might explain the 11.6% of cadets who reported shortness of breath. Our favorable real-world findings support continuing adenovirus vaccination of incoming CGA cadet classes and wider use of the vaccine in congregate military settings.

Acknowledgments
We thank Christopher Janik, Martin Newton, Garrett Heitmann, Benjamin Keller, Matthew Cuevas, Fahad Alsayyid, and Shane Steiner for providing logistic and technical support.

About the Author
Dr. Iskander is Chief of Preventive Medicine and Population Health for the United States Coast Guard in Washington, DC. His primary interests focus on immunization-related topics.

References
We report a case of ocular-only mpox infection in a 53-year-old man in San Francisco, California, USA. His medical history included chronic lymphocytic leukemia (CLL), inactive 2 years after treatment with obinutuzumab and venetoclax but with persistent lymphopenia. He reported male sexual partners but was HIV negative. Symptoms in his right eye began August 2022 as itching and nasal scleral redness (Figure, panel A). There was no fever, rash, or lymphadenopathy. Eye redness worsened; the patient sought care at an urgent care facility and was given erythromycin ointment. Continued vision loss led to an emergency department visit, resulting in a diagnosis of preseptal cellulitis, treated with trimethoprim/sulfamethoxazole plus amoxicillin/clavulanic acid.

In early September 2022, the patient sought care at a county eye clinic for purulent conjunctivitis and corneal epithelial defects. Clinicians suspected gonococcal conjunctivitis and administered intramuscular ceftriaxone and topical moxifloxacin 0.5%. Bacterial and fungal ocular cultures and herpetic viral PCR returned negative results. Topical prednisolone acetate 1% and oral valacyclovir failed to control the eye inflammation. Three weeks after initial symptoms appeared, the patient’s ocular inflammation increased; keratic precipitates and a moderate corneal opacity developed. Uveitis and scleritis workups did not yield a specific diagnosis (Table).

In late September 2022, at a second opinion examination at a University of California clinic, the patient’s right eye acuity was 20/640. Examination showed a nasal patch of avascular scleral necrosis (Figure, panel B), and corneal epithelial sloughing (Figure, panel C) with microcystic edema. Repeat ocular surface cultures and PCR were negative. Given the negative results of extensive infectious etiology testing, we prescribed oral prednisone (40 mg/d) for presumed undifferentiated necrotizing anterior scleritis and keratitis.

One week later, corneal inflammation worsened (Figure, panel D). Clinical deterioration on systemic steroids continued to raise suspicion for ocular infection; we stopped steroid treatments. Again, cultures and PCR remained negative. Without prednisone, the patient’s limbal infiltrates worsened, with progressive corneal haze. White corneal endothelial plaques appeared. We performed anterior chamber paracentesis for cultures, viral PCR, and an RNA deep-sequencing (RNA-seq) protocol previously described (I). The patient’s scleritis, keratitis, and anterior uveitis worsened (Figure, panels E, F). Right eye vision decreased to hand motion only. We performed a diagnostic scleral and corneal biopsy and initiated

Isolated Ocular Mpox without Skin Lesions, United States

Minh T. Nguyen, Akshay Mentreddy, Julie Schallhorn, Matilda Chan, Su Aung, Sarah B. Doernberg, Jennifer Babik, Kevin Miles, Katherine Yang, Emily Lydon, Daniel J. Minter, John Gonzales, Jessica Shantha, Thuy Doan, Gerami D. Seitzman

DOI: https://doi.org/10.3201/eid2906.230032

We report a case of a 53-year-old HIV-negative patient in San Francisco, California, USA, with no classic mpox prodromal symptoms or skin lesions who experienced fulminant, vision-threatening scleritis, keratitis, and uveitis. Deep sequence analysis identified monkeypox virus RNA in the aqueous humor. We confirmed the virus on the cornea and sclera by PCR.
voriconazole for presumed fungal infection. The biopsy results returned negative for infection, and voriconazole was stopped.

Given the progressive clinical disease and negative infectious workup, we processed residual aqueous fluid for RNA-seq, which revealed a high number of reads aligning to monkeypox virus (MPXV) (Appendix Figure 1, https://wwwnc.cdc.gov/EID/article/29/6/23-0032-App1.pdf). Orthogonal testing from corneal and scleral swab specimens also returned positive results for MPXV by PCR. A nasal swab specimen obtained on the same day tested negative for MPXV by PCR.

When presented with those findings, the patient offered additional information regarding high-risk sexual activities, previously withheld because his definition of sexual activity included only penetrative intercourse. He described an encounter with a male partner with semen deposition into his right eye 2 weeks before the onset of his symptoms. He received the first dose of mpox vaccine for higher risk groups the week after this encounter. Several months later, during casual text messaging, the partner from this activity revealed a subsequent penile mpox diagnosis. (Appendix Figure 2).

Following treatment guidance from the Centers for Disease Control and Prevention, we initiated oral tecovirimat (600 mg 2×/d), topical trifluridine (6×/d), and weekly topical ophthalmic betadine washes (2). Four months into this course, worsening vision to light perception and repeat positive conjunctival mpox PCR led to inpatient admission for intravenous tecovirimat and cidofovir. Used in a compassionate-use capacity, tecovirimat and cidofovir have shown good activity against other orthopoxviruses, and in vitro and animal models have shown the antivirals to be effective against mpox (3). Unfortunately, after 3 weeks of inpatient treatment, the ocular disease did not improve. The patient’s eye remained PCR positive for MPXV with an opacified and vascularized cornea.

Ocular manifestations of mpox during the 2010–2013 outbreak were associated with a more severe systemic presentation (4). However, during the recent 2022 outbreak, ocular findings do not appear to have correlated with systemic disease severity (5–7). Isolated ocular mpox in the absence of systemic or skin findings is exceedingly rare.

In conclusion, we describe a case of isolated ocular mpox with no skin lesions or systemic prodromal symptoms in a relatively immunocompromised patient. Because pertinent history and clinical suspicion were lacking, metagenomic RNA sequencing was highly valuable in helping identify the pathogen.
Seminal was the likely vehicle for direct transmission (8), although hand-to-eye contact with unobserved lesions or exposure through nondisclosed encounters cannot be excluded. Intraocular mpox involving the sclera, cornea, and anterior chamber, along with persistently PCR-positive ocular surface mpox, has a poor visual prognosis. There is no established treatment for ocular mpox (9). Continued mpox disease progression over several months is unusual and could raise suspicion of immunosuppression or treatment resistance.

Research reported in this manuscript was supported by the National Eye Institute of the National Institutes of Health under award no. R01EY03861 (TD), a Research to Prevent Blindness unrestricted grant, and the Pacific Huang Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

About the Author

Dr. Nguyen is a fellow in cornea and external disease at the University of California San Francisco and F.I. Proctor Foundation in San Francisco, California. His research interests include regenerative ophthalmology and ocular infectious diseases.

References

2. Centers for Disease Control and Prevention. Interim clinical considerations for management of ocular mpox virus infection. 2022 [cited 2023 Feb 20]. https://www.cdc.gov/poxvirus/monkeypox/clinicians/ocular-infection.html

Table. Summary of laboratory and microbiology testing of patient with ocular mpox, California, USA

<table>
<thead>
<tr>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory and microbiology testing from serum or ocular surface scraping or swab specimen</td>
</tr>
<tr>
<td>Human leukocyte antigen B27</td>
</tr>
<tr>
<td>Angiotensin-converting enzyme</td>
</tr>
<tr>
<td>Complement</td>
</tr>
<tr>
<td>Antineutrophilic cytoplasmic antibody</td>
</tr>
<tr>
<td>Antinuclear antibodies</td>
</tr>
<tr>
<td>Rheumatoid factor</td>
</tr>
<tr>
<td>Anti-cyclic citrullinated peptide</td>
</tr>
<tr>
<td>HIV antibody/antigen</td>
</tr>
<tr>
<td>QuantIFERON-TB Gold*</td>
</tr>
<tr>
<td>Fluorescent treponemal antibody absorption</td>
</tr>
<tr>
<td>Herpes simplex virus 1 DNA from ocular surface scrap specimen</td>
</tr>
<tr>
<td>Cytomegalovirus DNA from ocular surface scrap specimen</td>
</tr>
<tr>
<td>Varicella zoster virus DNA from ocular surface scrap specimen</td>
</tr>
<tr>
<td>Bacterial culture on blood, chocolate, Middlebrook agar</td>
</tr>
<tr>
<td>Fungal culture on potato flake agar</td>
</tr>
<tr>
<td>Monkeypox virus RNA from aqueous sample</td>
</tr>
<tr>
<td>Monkeypox virus DNA from conjunctival scrap specimen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing from scleral and corneal biopsy</td>
</tr>
<tr>
<td>Periodic acid Schiff for fungus</td>
</tr>
<tr>
<td>Grocott’s methamine silver</td>
</tr>
<tr>
<td>Steiner</td>
</tr>
<tr>
<td>Acid-fast bacteria (Fite)†</td>
</tr>
<tr>
<td>Trepona pallidum antibody</td>
</tr>
<tr>
<td>Herpes simplex virus 1 & 2</td>
</tr>
<tr>
<td>Varicella zoster virus</td>
</tr>
</tbody>
</table>

| Complete blood count with differential obtained at the time of hospitalization |
Red blood cell count (reference 4.4–5.9 ×10¹² cells/L)‡	4.45 × 10¹² cells/L
Hemoglobin (reference 13.6–17.5 g/dL)‡	13.7 g/dL
Platelets (reference 140–450 ×10⁹/L)‡	174 × 10⁹/L
Leukocyte count (reference 3.4–10 ×10⁹ cells/L)	4.3 × 10⁹ cells/L
Absolute neutrophils (reference 1.8–6.8 ×10⁹ cells/L)	3.93 × 10⁹ cells/L
Absolute monocytes (reference 0.2–0.8 ×10⁹ cells/L)‡§	0.06 × 10⁹ cells/L
Absolute eosinophils (reference 0–0.4 ×10⁹ cells/L)	0
Absolute basophils (reference 0–0.1 ×10⁹ cells/L)	0.01 × 10⁹ cells/L
Absolute lymphocytes (reference 1–3.4 ×10⁹ cells/L)‡§	0.33 × 10⁹ cells/L

Pediatric acute hepatitis of unknown etiology has been reported globally since April 2022. In Japan, 139 possible cases with onset dates after October 2021 were reported as of December 2022. Three patients required liver transplants, but none died. Rates of adenovirus positivity (11/125, 9%) were lower than those for other countries.

Severe acute hepatitis of unknown etiology (AHUE) in children has been reported globally since April 2022. By July 8, 2022, a total of 1,010 cases had been reported to the World Health Organization from 35 countries on the basis of the working case definitions (1). A definition for a confirmed case is not available, but probable cases are defined as acute hepatitis (non-A–E hepatitis) in persons ≤16 years of age with serum transaminase >500 IU/L (aspartate transaminase or aspartate aminotransferase) since October 1, 2021; epidemiologically linked cases are acute hepatitis (non-A–E hepatitis) in persons of any age who were close contacts with a probable case-patient since October 1, 2021. Of the 1,010 cases identified, 46 (5%) children required liver transplants, and 22 (2%) children died (1). We report pediatric AHUE cases in Japan and compare them with cases in other countries. Because the data for this study were taken from an epidemiologic investigation conducted by the government, the National Institute of Infectious Diseases did not require informed consent and ethical review (receipt no. 1442).

The Ministry of Health, Labor and Welfare (MHLW) of Japan issued the working case definitions of AHUE on April 27, 2022 (2), adopting the case definition published by the World Health Organization but limiting cases to hospitalized patients (Appendix Table 1, https://wwwnc.cdc.gov/EID/article/29/6/22-1579-App1.pdf). Physicians were instructed to exclude viral hepatitis A, B, C, and E through laboratory tests and report cases to public health centers. Laboratories at hospitals and local public health institutions performed microbiological testing recommended by MHLW (Appendix Table 2). Acute liver failure was considered a coagulopathy characterized by a prothrombin time and international normalized ratio of ≥2 or ≥1.5 with clinical encephalopathy (3).

As of December 31, 2022, a total of 139 probable AHUE cases with onset dates after October 1, 2021, had been reported throughout Japan without geographic clustering (Table). Six cases with unknown onset dates were excluded, and none were epidemiologically linked. Among the 139 patients, 3 (2%) underwent liver transplantation. Eleven (13%) of 85 patients met the definition of acute liver failure, 17 (18%) of 95 received intensive care, and none died (Table 1).
Of note, of 125 cases tested for adenovirus by PCR, 11 (9%) were positive (Appendix Table 3); however, adenoviruses were the most frequently detected pathogen in AHUE cases from Europe (52%) and the United Kingdom (66%) (4,5). Among the 11 adenovirus-positive cases, type 41 was identified in only 2 cases (18%) in Japan, unlike its frequent detection in England (5) (Appendix Table 1). Studies from the United Kingdom reported simultaneous increases in numbers of hospitalized hepatitis case-patients and detected adenoviruses cases (5). In Japan, the national surveillance system for viral hepatitis (Appendix Table 4), adenovirus, and adenovirus-associated syndromes (e.g., pharyngoconjunctival fever) did not identify unusual numbers or trends compared with previous years (2). The varying characteristics of reported AHUE cases among countries might be attributed to these differences.

Some reports have stated that SARS-CoV-2 spike protein acts as a superantigen, broadly stimulating T cells to induce hyperinflammation and

Table 1. Characteristics and laboratory findings of 139 cases that fulfilled the working case definition of pediatric acute hepatitis of unknown etiology, Japan, October 2021–December 2022*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, y (IQR)</td>
<td>4.4 (1.3–9.5)</td>
</tr>
<tr>
<td><6 y of age</td>
<td>81/139 (58)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>74/139 (53)</td>
</tr>
<tr>
<td>F</td>
<td>65/139 (47)</td>
</tr>
<tr>
<td>Any comorbidities†</td>
<td>37/139 (26)</td>
</tr>
<tr>
<td>No comorbidities</td>
<td>98/139 (71)</td>
</tr>
<tr>
<td>Presence of comorbidities unknown</td>
<td>4/139 (3)</td>
</tr>
<tr>
<td>History of COVID-19 before onset of disease</td>
<td>15/132 (11)</td>
</tr>
<tr>
<td>Median duration from COVID-19 onset to hepatitis onset, d (range)</td>
<td>85 (14–300)</td>
</tr>
<tr>
<td>Persons ≥5 y who received ≥1 dose of COVID-19 vaccine</td>
<td>22/66 (33)</td>
</tr>
<tr>
<td>Any international travel in 2 mo before illness</td>
<td>0/130 (0)</td>
</tr>
<tr>
<td>Any contact with sick persons in 2 wk before illness</td>
<td>39/129 (30)</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
</tr>
<tr>
<td>Steroid therapy</td>
<td>15/139 (11)</td>
</tr>
<tr>
<td>Immunoglobulin</td>
<td>6/139 (4)</td>
</tr>
<tr>
<td>Plasmapheresis</td>
<td>6/139 (4)</td>
</tr>
<tr>
<td>Hemodialysis</td>
<td>4/139 (3)</td>
</tr>
<tr>
<td>Liver transplantation</td>
<td>3/139 (2)</td>
</tr>
<tr>
<td>Outcome</td>
<td></td>
</tr>
<tr>
<td>Acute liver failure</td>
<td>11/85 (13)†</td>
</tr>
<tr>
<td>Hospitalized to ICU or HCU</td>
<td>17/95 (18)</td>
</tr>
<tr>
<td>Death</td>
<td>0/139 (0)</td>
</tr>
<tr>
<td>Median duration from symptom onset to hospital admission, d (IQR)</td>
<td>4 (2–7.5)</td>
</tr>
<tr>
<td>Median length of hospital stay, d (IQR)</td>
<td>10 (7–16)</td>
</tr>
<tr>
<td>Clinical symptoms§</td>
<td></td>
</tr>
<tr>
<td>Fever 37.5°C or higher</td>
<td>89/138 (64)</td>
</tr>
<tr>
<td>Gastrointestinal symptoms: abdominal pain, diarrhea, or nausea/vomiting</td>
<td>75/138 (54)</td>
</tr>
<tr>
<td>Cough</td>
<td>29/138 (21)</td>
</tr>
<tr>
<td>Jaundice</td>
<td>29/138 (21)</td>
</tr>
<tr>
<td>White stools</td>
<td>10/138 (7)</td>
</tr>
<tr>
<td>Impaired consciousness</td>
<td>6/138 (4)</td>
</tr>
<tr>
<td>Median AST, IU/L (IQR)§</td>
<td>764 (503–1,312)</td>
</tr>
<tr>
<td>Median ALT, IU/L (IQR)§</td>
<td>838 (576–1,390)</td>
</tr>
<tr>
<td>Median total bilirubin, mg/dL (IQR)§</td>
<td>1.00 (0.60–4.47)</td>
</tr>
<tr>
<td>Median PT-INR (IQR)§</td>
<td>1.11 (1.02–1.32)</td>
</tr>
<tr>
<td>No. SARS-CoV-2 positive/no. tested (%)</td>
<td>10/134 (7)</td>
</tr>
<tr>
<td>Nucleic acid amplification test: PCR 101, LAMP 1, and NEAR 1</td>
<td>8/103 (8)</td>
</tr>
<tr>
<td>Antigen test</td>
<td>2/13 (15)</td>
</tr>
<tr>
<td>Type of test unknown</td>
<td>0/18 (0)</td>
</tr>
</tbody>
</table>

*Values are no. (%) except as indicated. Denominators consist of cases for which data are available. ALT, alanine aminotransferase; AST, aspartate aminotransferase; HCU, high-care unit; ICU, intensive care unit; IQR, interquartile range; LAMP, loop-mediated isothermal amplification; NEAR, nicking enzyme amplification reaction; PT-INR, prothrombin time and international normalized ratio.
†Specific underlying conditions reported were psychomotor retardation (11, 8%), syndromes involving changes in chromosomes or genes (5, 4%), congenital heart disease (4, 3%), congenital metabolic disorder (3, 2%), low birthweight (3, 2%), endocrine disorder (3, 2%), autoimmune and collagen diseases (3, 2%), primary immunodeficiency syndrome (2, 1%), and other disorders (8, 6%) (atopic dermatitis, cloacal exstrophy, hydronephrosis, unilateral kidney agenesis and haemangiomata).
‡Including 3 patients with encephalopathy.
§Some patients reported ≥1 sign/symptom.
¶Maximum values up to the time of reporting. Based on information from 136 (AST and ALT), 99 (total bilirubin), and 85 (PT-INR) cases.
potentially contributing to hepatitis (6). AHUE cases in Europe and United Kingdom revealed high rates of SARS-CoV-2 seropositivity (4,5) (Appendix Table 1). However, our study indicated low SARS-CoV-2 positivity (10/134, 7%) at the time of hospitalization for AHUE in Japan. Results of serologic tests for SARS-CoV-2 were unavailable because they were not required. The low proportion of patients with a history of COVID-19 before onset of AHUE (15/132, 11%) might explain the lower rates of seropositivity in Japan than for Europe and the United Kingdom.

Laboratory tests did not reveal a high frequency of any specific microorganism in Japan, and the distribution, other than for adenovirus, was similar to that reported in Europe (4). The cause of AHUE in Japan remains unknown. Cases reported in Japan were less severe than those reported in other countries (1,2,4,5,7) (Appendix Table 1), which might be because of differences in genetic predisposition that could affect inflammatory responses and clinical severity, as has been suggested with certain acute inflammatory diseases (8). The prevalence of the HLA-DRB1*04:01 allele, expressed by 89% of AHUE liver transplant cases in Scotland (5), is higher in the general population in Scotland than in Japan (8.9% vs. 1.0%) (9).

The first limitation of our study is that ascertainment bias might have affected microbiological testing results. The pathogens listed by MHLW (Appendix Table 2) might not have been examined uniformly and systematically, and the frequency of pathogens indicated in this report might not accurately reflect actual distribution. Second, the increase in reports after MHLW issued an administrative notice could be caused by reporting bias (Figure). Last, recall bias could have resulted in underestimates of the number of AHUE cases early in the study period.

In conclusion, 23 identified 139 pediatric AHUE cases in Japan during October 2021–December 2022 that differed in severity and adenovirus PCR positivity from cases in other countries. However, no unusual trends were found in this investigation. Japan might observe similar AHUE trends as in past years, as in the United States (10).

Acknowledgments

We thank the attending physicians, authorized staff at local public health centers, and members of the Ministry of Health, Labour and Welfare (Taito Kitano, Shouhei Nagae, Shuugo Sasaki, Jun Sugihara, and Mayumi Ueda) involved in data collections and case investigations. We thank the staff of Unit 4, Center for Surveillance, Immunization, and Epidemiologic Research, for contributing complementary surveillance information from the National Epidemiological Surveillance of Infectious Diseases system. We also acknowledge the work of the Prefectural and Municipal Public Health Institutes in Japan involved in microbiological testing. In addition, we thank Editage (http://www.editage.com) for editing and reviewing our manuscript for English publication.

This study was performed as a part of a grant funded by the Ministry of Health, Labour and Welfare (Research project on global disease intelligence and readiness for emerging diseases, 22HA2002).

About the Author

Dr. Otake is a researcher in field epidemiology and a pediatric infectious disease specialist at the National Institute of Infectious Diseases, Tokyo, Japan. His research interests are field epidemiology and pediatric infectious diseases.
etymologia revisited

Norovirus
[nor′-o-vi′rəs]

Genus of viruses that cause viral gastroenteritis. Noroviruses are named after the original strain, “Norwalk virus,” which caused an outbreak of acute gastroenteritis among children at an elementary school in Norwalk, Ohio, in 1968. Numerous outbreaks of disease with similar symptoms have been reported since, and the etiologic agents were called “Norwalk-like viruses” or “small round-structured viruses.” Noroviruses are transmitted primarily through the fecal-oral route and are highly contagious; as few as 10 viral particles may infect a person.

Reference:

https://wwwnc.cdc.gov/eid/article/13/3/e1-1303_article
The wig-stretching block appearing on this month’s cover is thought to be the only surviving work from John Williamson, who lived on the Shetland Islands of Scotland. Williamson, perhaps better known by his nickname “Johnnie Notions” (sometimes spelled Johnie), proved to be skilled at many trades. The Statistical Accounts of Scotland 1791–1845 describes him as “a singular instance of an uncommon variety of talents, being a tailor, a joiner, a clock and watch-mender, a blacksmith, and a physician.” He was also, at various times in his life, a farmer, fisherman, and weaver. A self-taught physician, Williamson developed and administered smallpox inoculations for an estimated 3,000 patients during the late 18th century, primarily during the decade before Edward Jenner developed his smallpox vaccine in 1796. The procedure Williamson used, known as variolation, had been used for thousands of years, and it involves taking live virus from a smallpox patient and “inoculating” that virus onto the skin of a recipient who did not have the disease.

Ian D. Conacher, a physician and researcher, and Brian Smith, an archivist and author with the Shetland Archives, have each authored detailed accounts of Williamson’s life and his work as an inoculator. Both authors provide historical context for how smallpox was introduced from the mainland of Scotland to Shetland and the devastating consequences resulting

John Williamson (c.1730–c.1803), Recovering Smallpox Patient, c.1770 (detail). Bust, pine, boiled linseed oil. 12.6 in x 5.7 in x 9.45 in/32 cm x 14.5 cm x 24 cm. Shetland Museum and Archives. Shetland Islands, Scotland, UK.

“Unassisted by Education, and Unfettered by the Rules of Art”

Byron Breedlove

Author affiliation: Centers for Disease Control and Prevention, Atlanta, Georgia, USA

DOI: https://doi.org/10.3201/eid2906.AC2906
from a series of smallpox outbreaks, curiously occurring in 20-year intervals (1700, 1720, 1740, and 1760). Both also draw from The Statistical Accounts of Scotland 1791–1845, which provides this account of Williamson’s work:

“Williamson was a local pioneer in the use of vaccines against smallpox. Unassisted by education, and unfettered by the rules of art. He is careful in providing the best matter and keeps it a long time before he puts it to use - sometimes 7 or 8 years. And, in order to lessen its virulence, he first dries it in peat smoke, and then puts it under the ground covered in camphor....by a small knife, made by his own hand, he gently raises a very little of the outer skin of the armthen puts in a very small quantity of the matter....The only plaister he uses, for healing the wound, is a bit of cabbage leaf.”

Conacher noted that there is no evidence that Williamson caused any cases of smallpox or deaths among the people he inoculated. However, it is difficult to determine whether his techniques to reduce virulence of the virus were always successful. Variation was inherently risky, in that, for some, the process could result in a full-blown case of smallpox. Regardless of the resulting severity, the individual recipient could then transmit the virulent smallpox virus to others.

According to the Shetland Museum and Archives, Williamson created the wig block for the Cheyne family, lairds at Tangwick Haa, Northmavine, Shetland, and “The face is modelled on an old man suffering from smallpox, the wood chosen because it was naturally marked with similar scarring.” The archivist Smith wrote that “There is a strong tradition in Shetland that ‘Johnie Notions’ used as his model for this stretcher an old man from Hillswick whose face was marked with smallpox.” A careful observer might conclude that, given the few pockmarks on the face, the man had experienced a relatively mild case of smallpox.

During that time in Europe, wigs were often favored by the wealthy and aristocratic classes but not simply to signal wealth and social status. Syphilis, which was widespread across Europe, caused hair loss and skin sores, so wigs helped disguise those symptoms. Blocks such as the one Williamson created from a piece of pine were essential for preening, shaping, and maintaining wigs.

During the last years of Williamson’s life, Jenner developed the first vaccine against smallpox and envisioned the elimination of smallpox. In his 1801 treatise On the Origin of the Vaccine Inoculation, Jenner wrote, “the annihilation of the smallpox, the most dreadful scourge of the human species, must be the final result of this practice.”

A good measure of control was achieved in many developed countries, largely via mass vaccination campaigns. However, because of poor health infrastructures in most developing countries, mass campaigns were not very successful, and smallpox circulation continued into the 20th century. In the 1960s, the deployment of an approach known as surveillance and containment—in which cases of smallpox were identified and traced and all those exposed and nearby were vaccinated—proved successful. Consequently, in 1980, the World Health Organization declared smallpox to be eradicated.

Although the smallpox virus (variola virus), the best known of the poxviruses affecting humans, no longer exists naturally, other poxviruses, including monkeypox virus, orf virus, molluscum contagiosum, yatapoxviruses, and parapoxviruses, can infect humans or other animals. The recent epidemic of monkeypox highlights the importance of continued vigilance, response, prevention, and innovation in public health efforts to control and treat diseases caused by poxviruses.

Bibliography

Address for correspondence: Byron Breedlove, EID Journal, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop H16-2, Atlanta, GA 30329-4027, USA; email: wbb1@cdc.gov

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 29, No. 6, June 2023
Complete list of articles in the July issue at
https://wwwnc.cdc.gov/eid/#issue-300
Earning CME Credit

To obtain credit, you should first read the journal article. After reading the article, you should be able to answer the following, related, multiple-choice questions. To complete the questions (with a minimum 75% passing score) and earn continuing medical education (CME) credit, please go to http://www.medscape.org/journal/eid. Credit cannot be obtained for tests completed on paper, although you may use the worksheet below to keep a record of your answers.

You must be a registered user on http://www.medscape.org. If you are not registered on http://www.medscape.org, please click on the “Register” link on the right hand side of the website.

Only one answer is correct for each question. Once you successfully answer all post-test questions, you will be able to view and/or print your certificate. For questions regarding this activity, contact the accredited provider, CME@medscape.net. For technical assistance, contact CME@medscape.net. American Medical Association’s Physician’s Recognition Award (AMA PRA) credits are accepted in the US as evidence of participation in CME activities. For further information on this award, please go to https://www.ama-assn.org. The AMA has determined that physicians not licensed in the US who participate in this CME activity are eligible for AMA PRA Category 1 Credits™. Through agreements that the AMA has made with agencies in some countries, AMA PRA credit may be acceptable as evidence of participation in CME activities. If you are not licensed in the US, please complete the questions online, print the AMA PRA CME credit certificate, and present it to your national medical association for review.

Article Title

Case Studies and Literature Review of *Francisella tularensis*–Related Prosthetic Joint Infection

CME Questions

1. Your patient is a 52-year-old man with suspected *Francisella tularensis* prosthetic joint infection (PJI). On the basis of the case series of 3 cases of *F. tularensis* subsp. *holarctica*–related PJI in France between 2016 and 2019 and a review of 5 other cases reported in the literature by Ponder and colleagues, which one of the following statements about clinical presentation and course of *F. tularensis* PJI is correct?

 A. Clinical symptoms always began within 1 month of prosthetic joint placement
 B. Symptoms were specific for tularemia
 C. In 6 of 8 patients, clinical symptoms appeared away from the joint placement
 D. All patients had severe infectious symptoms

2. According to the case series of 3 cases of *F. tularensis* subsp. *holarctica*–related PJI in France between 2016 and 2019 and review of 5 other cases reported in the literature by Ponder and colleagues, which one of the following statements about diagnosis and laboratory findings of *F. tularensis* PJI is correct?

 A. Joint aspiration or perioperative tissue cultures were positive in only 2 of 8 patients
 B. *F. tularensis* was initially identified in 2 patients by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
 C. *F. tularensis* was identified by molecular methods in 3 patients
 D. When reported, inflammatory blood markers were usually in normal range

3. On the basis of the case series of 3 cases of *F. tularensis* subsp. *holarctica*–related PJI in France between 2016 and 2019 and review of 5 other cases reported in the literature by Ponder and colleagues, which one of the following statements about treatment of *F. tularensis* PJI is correct?

 A. Surgical treatment plus long-term (4–6 weeks) antimicrobial treatment led to favorable outcomes, with no relapse after 6 months of follow-up
 B. All patients with tularemia PJI should have prosthesis removal
 C. Clindamycin is recommended for first-line treatment of tularemia
 D. Severe tularemia PJI should be treated with oral ciprofloxacin 800–1,000 mg daily for 10 days
Earning CME Credit

To obtain credit, you should first read the journal article. After reading the article, you should be able to answer the following, related, multiple-choice questions. To complete the questions (with a minimum 75% passing score) and earn continuing medical education (CME) credit, please go to http://www.medscape.org/journal/eid. Credit cannot be obtained for tests completed on paper, although you may use the worksheet below to keep a record of your answers.

You must be a registered user on http://www.medscape.org. If you are not registered on http://www.medscape.org, please click on the “Register” link on the right hand side of the website.

Only one answer is correct for each question. Once you successfully answer all post-test questions, you will be able to view and/or print your certificate. For questions regarding this activity, contact the accredited provider, CME@medscape.net. For technical assistance, contact CME@medscape.net. American Medical Association’s Physician’s Recognition Award (AMA PRA) credits are accepted in the US as evidence of participation in CME activities. For further information on this award, please go to https://www.ama-assn.org. The AMA has determined that physicians not licensed in the US who participate in this CME activity are eligible for AMA PRA Category 1 Credits™. Through agreements that the AMA has made with agencies in some countries, AMA PRA credit may be acceptable as evidence of participation in CME activities. If you are not licensed in the US, please complete the questions online, print the AMA PRA CME credit certificate, and present it to your national medical association for review.

Article Title
Neurologic Complications of Babesiosis, United States, 2011–2021

CME Questions

1. Your patient is a 43-year-old man admitted for babesiosis, who is now complaining of headache. On the basis of the record review of all 163 adult patients admitted to Yale-New Haven Hospital from January 2011 to October 2021 for laboratory-confirmed babesiosis by Locke and colleagues, which one of the following statements about the type and frequency of neurologic complications of babesiosis is correct?
 A. One third of patients experienced 1 or more neurologic symptom during their hospital admission
 B. The most frequent symptoms were headache, confusion/delirium, and impaired consciousness
 C. Using the Glasgow Coma Scale (GCS), 6.1% of patients were classified as comatose
 D. On lumbar puncture (LP), cerebrospinal fluid (CSF) showed marked pleocytosis

2. According to the record review by Locke and colleagues, which one of the following statements about risk factors predisposing patients to neurologic complications of babesiosis and outcomes is correct?
 A. On multivariate analysis, stroke/transient ischemic attack (TIA) was significantly associated with confusion/delirium
 B. Neurological symptoms were associated with high-grade parasitemia, renal failure, and preexisting history of diabetes mellitus
 C. Overall, 11% of patients died during hospitalization

3. On the basis of the record review by Locke and colleagues, which one of the following statements about clinical implications of the type and frequency of neurologic complications of babesiosis and risk factors predisposing patients to neurologic complications is correct?
 A. More research is needed into the pathological mechanisms underlying neurologic manifestations and long-term outcomes of babesiosis
 B. Lyme disease is extremely difficult to differentiate from babesiosis
 C. The study proves that the babesiosis agent itself causes neurologic complications
 D. The study proves that vascular obstruction causes CNS complications in babesiosis